Editorial: New Trends in Freshwater Fishes
Conflicts of Interest
References
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impact across multiple levels of organization. Phil. Trans. R. Soc. B 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddha, S.; Sahu, P. Chapter 5—Impact of Climate Change on the River Ecosystem. In Ecological Significance of River Ecosystems Challenges and Management Strategies; Madhav, S., Kanhaiya, S., Srivastav, A., Sing, V., Singh, P., Eds.; Elsevier: New Delhi, India, 2022; pp. 79–104. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet Change 2019, 178, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Dolinar, N.; Rudolf, M.; Šraj, N.; Gaberščik, A. Environmental changes affect ecosystem services of the intermittent Lake Cerknica. Ecol. Complex. 2010, 7, 403–409. [Google Scholar] [CrossRef]
- Bertoli, M.; Lesa, D.; Merson, A.; Pastorino, P.; Prearo, M.; Pizzul, E. Biodiversity and Litter Breakdown in a Karstic Freshwater System (Doberdò Lake, Northeast Italy) in Relation to Water Level Fluctuations and Environmental Features. Diversity 2022, 14, 460. [Google Scholar] [CrossRef]
- Kirk, M.A.; Rahel, F.J. Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures. Ecol. Appl. 2022, 32, e02465. [Google Scholar] [CrossRef]
- Pandit, S.N.; Maitland, B.M.; Pandit, L.K.; Poesch, M.S.; Enders, E.C. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine Shiner (Notropis percobromus). Sci. Total Environ. 2017, 598, 1–11. [Google Scholar] [CrossRef]
- Galappaththi, E.K.; Susarla, V.B.; Loutet, S.J.T.; Ichinen, S.T.; Hyman, A.A.; Ford, J.D. Climate change adaptation in fisheries. Fish Fish. 2021, 23, 4–21. [Google Scholar] [CrossRef]
- Myers, B.J.E.; Lynch, A.J.; Bunnell, D.B.; Chu, C.; Falke, J.A.; Kovach, R.P.; Krabbenhoft, T.J.; Kwak, T.J.; Paukert, C.P. Global synthesis of the documented and projected effects of climate change on inland fishes. Rev. Fish Biol. Fish. 2017, 27, 339–361. [Google Scholar] [CrossRef]
- Tingley, R.W., III; Paukert, C.; Sass, G.G.; Jacobson, P.C.; Hansen, G.J.A.; Lynch, A.J.; Danielle Shannon, P. Adapting to climate change: Guidance for the management of inland glacial lake fisheries. Lake Reserv. Manag. 2019, 35, 435–452. [Google Scholar] [CrossRef]
- Rahel, F.J. Managing Freshwater Fish in a Changing Climate: Resist, Accept, or Direct. Fish. Mag. 2022, 47, 245–255. [Google Scholar] [CrossRef]
- Paukert, C.P.; Glazer, B.A.; Hansen, G.J.A.; Irwin, B.J.; Jacobson, P.C.; Kershner, J.L.; Shuter, B.J.; Whitney, J.E.; Lynch, A.J. Adapting inland fisheries management to a changing climate. Fisheries 2016, 41, 374–384. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Chadwick, D.D.A.; Pritchard, E.G.; Bradley, P.; Sayer, C.D.; Chadwick, M.A.; Eagle, L.J.B.; Axmacher, J.C. A novel ‘triple drawdown’ method highlights deficiencies in invasive alien crayfish survey and control techniques. J. Appl. Ecol. 2020, 58, 316–326. [Google Scholar] [CrossRef]
- Manfrin, C.; Zanetti, M.; Stanković, D.; Fattori, U.; Bertucci-Maresca, V.; Giulianini, P.G.; Pallavicini, A. Detection of the endangered stone crayfish Austropotamobius torrentium (Schrank, 1803) and its congeneric A. pallipes in its last Italian biotope by eDNA Analysis. Diversity 2022, 14, 205. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzales, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [Green Version]
- Bellard, C.; Rysman, J.F.; Leroy, B.; Claud, C.; Mace, G.M. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 2017, 1, 1862–1869. [Google Scholar] [CrossRef]
- Gallardo, B.; Bacher, S.; Bradley, B.; Comín, F.A.; Gallien, L.; Jeschke, J.M.; Sorte, C.J.B.; Vilà, M. InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services. NeoBiota 2019, 50, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Essl, F.; Lenzner, B.; Bacher, S.; Bailey, S.; Capinha, C.; Daehler, C.; Dullinger, S.; Genovesi, P.; Hui, C.; Hulme, P.E.; et al. Drivers of future alien species impacts: An expert-based assessment. Glob. Chang. Biol. 2020, 26, 4880–4893. [Google Scholar] [CrossRef]
- Hong, S.; Jang, I.; Kim, D.; Kim, S.; Park, H.S.; Lee, K. Predicting Potential Habitat Changes of Two Invasive Alien Fish Species with Climate Change at a Regional Scale. Sustainability 2022, 14, 6093. [Google Scholar] [CrossRef]
- Roberts, J.J.; Fausch, K.D.; Hooten, M.B.; Peterson, D.P. Nonnative trout invasions combined with climate change threaten persistence of isolated cutthroat trout populations in the Southern Rocky Mountains. N. Am. J. Fish. Manag. 2017, 37, 314–325. [Google Scholar] [CrossRef]
- Blackwell, T.; Ford, A.G.P.; Ciezarek, A.G.; Bradbeer, S.J.; Gracida Juarez, C.A.; Smith, A.M.; Ngatunga, B.P.; Shechonge, A.; Tamatamah, R.; Etherington, G.; et al. Newly discovered cichlid fish biodiversity threatened by hybridization with non-native species. Molec. Ecol. 2021, 30, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Isaak, D.J.; Luce, C.H.; Horan, D.L.; Chandler, G.L.; Wollrab, S.P.; Nagel, D.E. Global warming of salmon and trout rivers in the northwestern U.S.: Road to ruin or path through purgatory? Trans. Am. Fish. Soc. 2018, 147, 566–587. [Google Scholar] [CrossRef]
- Jacobson, P.C.; Fang, X.; Stefan, H.G.; Pereira, D.L. Protecting Cisco (Coregonus artedi Leseur) oxythermal habitat from climate change: Building resilience in deep lakes using a landscape approach. Adv. Limnol. 2013, 64, 323–332. [Google Scholar] [CrossRef]
- Dantas, D.V.; Barletta, M.; Da Costa, M.F. The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums (Sciaenidae). Environ. Sci. Pollut. Res. 2012, 19, 600–606. [Google Scholar] [CrossRef]
- Sanchez, W.; Bender, C.; Porcher, J.M. Wild gudgeons (Gobio gobio) from french rivers are contaminated by microplastics: Preliminary study and first evidence. Environ. Res. 2014, 128, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, K.; Su, L.; Li, J.; Yang, D.; Tong, C.; Mu, J.; Shi, H. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017, 221, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Miranda, D.D.A.; de Carvalho-Souza, G.F. Are we eating plastic-ingesting fish? Mar. Pollut. Bull. 2016, 103, 109–114. [Google Scholar] [CrossRef]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzul, E. Editorial: New Trends in Freshwater Fishes. Fishes 2022, 7, 388. https://doi.org/10.3390/fishes7060388
Pizzul E. Editorial: New Trends in Freshwater Fishes. Fishes. 2022; 7(6):388. https://doi.org/10.3390/fishes7060388
Chicago/Turabian StylePizzul, Elisabetta. 2022. "Editorial: New Trends in Freshwater Fishes" Fishes 7, no. 6: 388. https://doi.org/10.3390/fishes7060388
APA StylePizzul, E. (2022). Editorial: New Trends in Freshwater Fishes. Fishes, 7(6), 388. https://doi.org/10.3390/fishes7060388