Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Housing of Specimens
2.2. RNA Extraction, Library Preparation and Sequencing
2.3. Data Preparation
2.4. Gene Expression Analysis
2.5. Limitations of the Experimental Design
3. Results
3.1. Differential Gene Expression in Response to +1.5 C Warming
3.2. Differential Gene Expression in Response to Stabling
4. Discussion
4.1. Transcriptional Response of Brain to Heat and Stabling Stress
4.2. Transcriptional Response of Gills to Heat and Stabling Stress
4.3. Transcriptional Response of Skeletal Muscle to Heat and Stabling Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.; Roberts, D.; Skea, J.; Shukla, P.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global; Technical Report; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Marshall, G.J.; Orr, A.; van Lipzig, N.P.M.; King, J.C. The Impact of a Changing Southern Hemisphere Annular Mode on Antarctic Peninsula Summer Temperatures. J. Clim. 2006, 19, 5388–5404. [Google Scholar] [CrossRef]
- Turner, J.; Overland, J.E.; Walsh, J.E. An Arctic and Antarctic Perspective on Recent Climate Change. Int. J. Climatol. 2007, 27, 277–293. [Google Scholar] [CrossRef]
- Domack, E.; Levente, A.; Burnet, A.; Bindschadler, R.; Convey, P.; Kirby, M. Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives: Domack/Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives; Antarctic Research Series; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Pudsey, C.J.; Evans, J. First Survey of Antarctic Sub–Ice Shelf Sediments Reveals Mid-Holocene Ice Shelf Retreat. Geology 2001, 29, 787. [Google Scholar] [CrossRef]
- Dayton, P.K. Polar Benthos. In Polar Oceanography; Elsevier: Amsterdam, The Netherlands, 1990; pp. 631–685. [Google Scholar] [CrossRef]
- Dayton, P.K.; Mordida, B.J.; Bacon, F. Polar Marine Communities. Am. Zool. 1994, 34, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic Climate Change during the Last 50 Years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Jacobs, S.S.; Giulivi, C.F.; Mele, P.A. Freshening of the Ross Sea During the Late 20th Century. Science 2002, 297, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Moline, M.A.; Claustre, H.; Frazer, T.K.; Schofield, O.; Vernet, M. Alteration of the Food Web along the Antarctic Peninsula in Response to a Regional Warming Trend: Alteration of the Antarctic Food Web. Glob. Chang. Biol. 2004, 10, 1973–1980. [Google Scholar] [CrossRef]
- Eastman, J.T. The Nature of the Diversity of Antarctic Fishes. Polar Biol. 2005, 28, 93–107. [Google Scholar] [CrossRef]
- Eastman, J.T.; McCune, A.R. Fishes on the Antarctic Continental Shelf: Evolution of Amarine Species Flock? J. Fish Biol. 2000, 57, 84–102. [Google Scholar] [CrossRef]
- Harding, M.M.; Anderberg, P.I.; Haymet, A.D.J. ‘Antifreeze’ Glycoproteins from Polar Fish. Eur. J. Biochem. 2003, 270, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Matschiner, M.; Hanel, R.; Salzburger, W. On the Origin and Trigger of the Notothenioid Adaptive Radiation. PLoS ONE 2011, 6, e18911. [Google Scholar] [CrossRef]
- Hofmann, G.E.; Buckley, B.A.; Airaksinen, S.; Airaksinen, S.; Keen, J.E.; Keen, J.E.; Somero, G.N. Heat-Shock Protein Expression is Absent in the Antarctic Fish Trematomus Bernacchii (Family Nototheniidae). J. Exp. Biol. 2000, 15, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.B.; Place, S.P.; Hofmann, G.E. Regulation of Heat Shock Genes in Isolated Hepatocytes from an Antarctic Fish, Trematomus Bernacchii. J. Exp. Biol. 2004, 21, 3649–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, G.E.; Lund, S.G.; Place, S.P.; Whitmer, A.C. Some like It Hot, Some like It Cold: The Heat Shock Response Is Found in New Zealand but Not Antarctic Notothenioid Fishes. J. Exp. Mar. Biol. Ecol. 2005, 316, 79–89. [Google Scholar] [CrossRef]
- Tetens, V.; Wells, R.M.G.; Devries, A.L. Antarctic Fish Blood: Respiratory Properties and the Effects of Thermal Acclimation. J. Exp. Biol. 1984, 109, 265–279. [Google Scholar] [CrossRef]
- Sidell, B.D.; O’Brien, K.M. When Bad Things Happen to Good Fish: The Loss of Hemoglobin and Myoglobin Expression in Antarctic Icefishes. J. Exp. Biol. 2006, 209, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Maffia, M.; Rizzello, A.; Rizzello, A.; Acierno, R.; Rollo, M.; Chiloiro, R.; Storelli, C. Carbonic Anhydrase Activity in Tissues of the Icefish Chionodraco Hamatus and of the Red-Blooded Teleosts Trematomus Bernacchii and Anguilla Anguilla. J. Exp. Biol. 2001, 204, 3983–3992. [Google Scholar] [CrossRef]
- Ansaloni, F.; Gerdol, M.; Torboli, V.; Fornaini, N.R.; Greco, S.; Giulianini, P.G.; Coscia, M.R.; Miccoli, A.; Santovito, G.; Buonocore, F.; et al. Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency. Int. J. Mol. Sci. 2021, 22, 1812. [Google Scholar] [CrossRef]
- Sanchez, S.; Dettai, A.; Bonillo, C.; Ozouf-Costaz, C.; Ozouf-Costaz, C.; Detrich, H.W.; Lecointre, G. Molecular and Morphological Phylogenies of the Antarctic Teleostean Family Nototheniidae, with Emphasis on the Trematominae. Polar Biol. 2007, 30, 155–166. [Google Scholar] [CrossRef]
- Brueggeman, P. Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica; The National Science Foundation’s Office of Polar Progams, University of California: San Diego, CA, USA, 1998. [Google Scholar]
- Miller, R.G. History and Atlas of the Fishes of the Antarctic Ocean; Foresta Institute: Carson City, NV, USA, 1993. [Google Scholar]
- Bilyk, K.T.; DeVries, A.L. Heat Tolerance and Its Plasticity in Antarctic Fishes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 158, 382–390. [Google Scholar] [CrossRef]
- Somero, G.N.; DeVries, A.L. Temperature Tolerance of Some Antarctic Fishes. Science 1967, 156, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Podrabsky, J.E.; Somero, N. Inducible Heat Tolerance in Antarctic Notothenioid Fishes. Polar Biol. 2006, 30, 39–43. [Google Scholar] [CrossRef]
- Sandersfeld, T.; Davison, W.; Lamare, M.; Knust, R.; Richter, C. Elevated Temperature Causes Metabolic Trade-Offs at the Whole Organism Level in the Antarctic Fish Trematomusbernacchii. J. Exp. Biol. 2015, 15, 2373–2381. [Google Scholar] [CrossRef] [Green Version]
- Jayasundara, N.; Healy, T.M.; Somero, G.N. Effects of Temperature Acclimation on Cardiorespiratory Performance of the Antarctic Notothenioid Trematomus Bernacchii. Polar Biol. 2013, 36, 1047–1057. [Google Scholar] [CrossRef]
- Enzor, L.A.; Hunter, E.M.; Place, S.P. The Effects of Elevated Temperature and Ocean Acidification on the Metabolic Pathways of Notothenioid Fish. Conserv. Physiol. 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleadd, I.M.; Lee, M.; Hassumani, D.O.; Stecyk, T.M.; Zeitz, O.K.; Buckley, B.A. Sub-Lethal Heat Stress Causes Apoptosis in an Antarctic Fish That Lacks an Inducible Heat Shock Response. J. Therm. Biol. 2014, 44, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, F.; Santovito, G.; Amelio, D. Morpho-Functional Effects of Heat Stress on the Gills of Antarctic T. Bernacchii and C. Hamatus. Mar. Pollut. Bull. 2019, 141, 194–204. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Antonucci, M.; Scarponi, G.; Illuminati, S. Gas Chromatography–Mass Spectrometry Analysis on Effects of Thermal Shock on the Fatty Acid Composition of the Gills of the Antarctic Teleost, Trematomus Bernacchii. Environ. Chem. 2018, 15, 424–435. [Google Scholar] [CrossRef]
- Rizzotti, D.; Manfrin, C.; Gerdol, M.; Greco, S.; Santovito, G.; Giulianini, P. Morphological Analysis of Erythrocytes of an Antarctic Teleost under Heat Stress: Bias of the Stabling Effect. J. Therm. Biol. 2021, 103, 103139. [Google Scholar] [CrossRef]
- Illumina Pooling Calculator. Available online: https://support.illumina.com/help/pooling-calculator/pooling-calculator.htm (accessed on 13 July 2019).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. bioRxiv 2018. [Google Scholar] [CrossRef] [PubMed]
- Bista, I.; Wood, J.M.D.; Desvignes, T.; McCarthy, S.A.; Matschiner, M.; Ning, Z.; Tracey, A.; Torrance, J.; Sims, Y.; Chow, W.; et al. Genomics of Cold Adaptations in the Antarctic Notothenioid Fish Radiation. bioRxiv 2022, 494096v1. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corley, S.M.; Troy, N.M.; Bosco, A.; Wilkins, M.R. QuantSeq. 3’ Sequencing Combined with Salmon Provides a Fast, Reliable Approach for High Throughput RNA Expression Analysis. Sci. Rep. 2019, 9, 18895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential Analyses for RNA-seq: Transcript-Level Estimates Improve Gene-Level Inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, M.; Chang, H.Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.O. The Gene Ontology (GO) Database and Informatics Resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Gene Ontology Consortium; Carbon, S.; Douglass, E.; Good, B.M.; Unni, D.R.; Harris, N.L.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.G.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Timmons, J.A.; Szkop, K.J.; Gallagher, I.J. Multiple Sources of Bias Confound Functional Enrichment Analysis of Global-Omics Data. Genome Biol. 2015, 16, 186. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.M.; Aglyamova, G.V.; Meyer, E.; Matz, M.V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 2015, 16, 371. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Waskom, M.L. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Huth, T.J.; Place, S.P. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. BMC Genom. 2016, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Truzzi, C.; Illuminati, S.; Antonucci, M.; Scarponi, G.; Annibaldi, A. Heat Shock Influences the Fatty Acid Composition of the Muscle of the Antarctic Fish Trematomus Bernacchii. Mar. Environ. Res. 2018, 139, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Vasadia, D.J.; Zippay, M.L.; Place, S.P. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar. Genom. 2019, 48, 100698. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.E.; Nardi, A.; Carlo, M.D.; Benedetti, M.; Regoli, F. Transcriptional and Catalytic Responsiveness of the Antarctic Fish Trematomus bernacchii Antioxidant System toward Multiple Stressors. Antioxidants 2021, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Zgajnar, N.; De Leo, S.; Lotufo, C.; Erlejman, A.; Piwien-Pilipuk, G.; Galigniana, M. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Wochnik, G.M.; Rüegg, J.; Abel, G.A.; Schmidt, U.; Holsboer, F.; Rein, T. FK506-binding Proteins 51 and 52 Differentially Regulate Dynein Interaction and Nuclear Translocation of the Glucocorticoid Receptor in Mammalian Cells. J. Biol. Chem. 2005, 280, 4609–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caratti, G.; Matthews, L.; Poolman, T.; Kershaw, S.; Baxter, M.; Ray, D. Glucocorticoid Receptor Function in Health and Disease. Clin. Endocrinol. 2015, 83, 441–448. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and Physiological Roles of Inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Martin, L.B. Stress and Immunity in Wild Vertebrates: Timing is Everything. Gen. Comp. Endocrinol. 2009, 163, 70–76. [Google Scholar] [CrossRef]
- Bilyk, K.T.; Cheng, C.H.C. RNA-seq Analyses of Cellular Responses to Elevated Body Temperature in the High Antarctic Cryopelagic Nototheniid Fish Pagothenia Borchgrevinki. Mar. Genom. 2014, 18, 163–171. [Google Scholar] [CrossRef]
- Clark, M.S.; Fraser, K.P.P.; Burns, G.; Peck, L.S. The HSP70 Heat Shock Response in the Antarctic Fish Harpagifer Antarcticus. Polar Biol. 2007, 31, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Ismailov, I.I.; Scharping, J.B.; Andreeva, I.E.; Friedlander, M.J. Antarctic Teleosts with and without Hemoglobin Behaviorally Mitigate Deleterious Effects of Acute Environmental Warming. PLoS ONE 2021, 16, e0252359. [Google Scholar] [CrossRef] [PubMed]
- Bolognin, S.; Messori, L.; Zatta, P. Metal Ion Physiopathology in Neurodegenerative Disorders. Neuromolecular Med. 2009, 11, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.S.; Dyck, R.H. Zinc and Cortical Plasticity. Brain Res. Rev. 2009, 59, 347–373. [Google Scholar] [CrossRef] [PubMed]
- Drago, D.; Cavaliere, A.; Mascetra, N.; Ciavardelli, D.; Di Ilio, C.; Zatta, P.; Sensi, S.L. Aluminum Modulates Effects of β Amyloid 1–42 on Neuronal Calcium Homeostasis and Mitochondria Functioning and Is Altered in a Triple Transgenic Mouse Model of Alzheimer’s Disease. Rejuvenation Res. 2008, 11, 861–871. [Google Scholar] [CrossRef]
- Song, J.; Xie, H.; Lian, Z.; Zhaorui, L.; Yang, G.T.; Yang, G.; Du, R.; Du, Y.; Zou, X.; Jin, H.; et al. Enhanced Cell Survival of Gastric Cancer Cells by a Novel Gene URG4. Neoplasia 2006, 8, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Tufan, N.L.S.; Lian, Z.; Zhaorui, L.; Liu, J.; Pan, J.; Arbuthnot, P.; Kew, M.C.; Clayton, M.; Zhu, M.H.; Feitelson, M.A. Hepatitis Bx Antigen Stimulates Expression of a Novel Cellular Gene, URG4, That Promotes Hepatocellular Growth and Survival. Neoplasia 2002, 4, 355–368. [Google Scholar] [CrossRef]
- Turchi, L.; Fareh, M.; Aberdam, E.; Kitajima, S.; Simpson, F.; Wicking, C.; Aberdam, D.; Virolle, T. ATF3 and p15PAF Are Novel Gatekeepers of Genomic Integrity upon UV Stress. Cell Death Differ. 2009, 16, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Segura-Totten, M.; Kowalski, A.K.; Craigie, R.; Wilson, K.L. Barrier-to-Autointegration Factor: Major Roles in Chromatin Decondensation and Nuclear Assembly. J. Cell Biol. 2002, 158, 475–485. [Google Scholar] [CrossRef]
- Ishimi, Y. A DNA Helicase Activity Is Associated with an MCM4, -6, and -7 Protein Complex. J. Biol. Chem. 1997, 272, 24508–24513. [Google Scholar] [CrossRef]
- Gee, H.Y.; Ashraf, S.; Wan, X.; Vega-Warner, V.; Esteve-Rudd, J.; Lovric, S.; Fang, H.; Hurd, T.W.; Sadowski, C.E.; Allen, S.J.; et al. Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome. Am. J. Hum. Genet. 2014, 94, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Morales, S.A.; Telander, D.G.; Leon, D.; Forward, K.; Braun, J.; Wadehra, M.; Gordon, L.K. Epithelial Membrane Protein 2 Controls VEGF Expression in ARPE-19 Cells. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Takao, M.; Kanno, S.i.; Kobayashi, K.; Zhang, Q.M.; Yonei, S.; van der Horst, G.T.; Yasui, A. A Back-up Glycosylase in Nth1 Knock-out Mice Is a Functional Nei (Endonuclease VIII) Homologue. J. Biol. Chem. 2002, 277, 42205–42213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masumoto, J.; Zhou, W.; Chen, F.F.; Su, F.; Kuwada, J.Y.; Hidaka, E.; Katsuyama, T.; Sagara, J.; Taniguchi, S.; Ngo-Hazelett, P.; et al. Caspy, a Zebrafish Caspase, Activated by ASC Oligomerization is Required for Pharyngeal Arch Development. J. Biol. Chem. 2003, 278, 4268–4276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.Y.; Gao, K.; Shao, T.; Fan, D.D.; Hu, C.B.; Sun, C.C.; Dong, W.R.; Lin, A.F.; Xiang, L.X.; Shao, J.Z. Characterization of an NLRP1 Inflammasome from Zebrafish Reveals a Unique Sequential Activation Mechanism Underlying Inflammatory Caspases in Ancient Vertebrates. J. Immunol. 2018, 201, 1946–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, A.; Zhong, F.L.; Venteicher, A.S.; Meng, Z.; Veenstra, T.D.; Frydman, J.; Artandi, S.E. Proteostatic Control of Telomerase Function through TRiC-mediated Folding of TCAB1. Cell 2014, 159, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Tan, Y.J. Structural and Functional Characterization of Human SGT and Its Interaction with Vpu of the Human Immunodeficiency Virus Type 1. Biochemistry 2008, 47, 10123–10131. [Google Scholar] [CrossRef]
- Liu, F.H.; Wu, S.J.; Hu, S.M.; Hsiao, C.D.; Wang, C. Specific Interaction of the 70-kDa Heat Shock Cognate Protein with the Tetratricopeptide Repeats. J. Biol. Chem. 1999, 274, 34425–34432. [Google Scholar] [CrossRef] [Green Version]
- Buckley, B.A.; Somero, G.N. cDNA Microarray Analysis Reveals the Capacity of the Cold-Adapted Antarctic Fish Trematomus Bernacchii to Alter Gene Expression in Response to Heat Stress. Polar Biol. 2009, 32, 403–415. [Google Scholar] [CrossRef]
- Feeser, E.A.; Ignacio, C.M.G.; Krendel, M.; Ostap, E.M. Myo1e Binds Anionic Phospholipids with High Affinity. Biochemistry 2010, 49, 9353–9360. [Google Scholar] [CrossRef]
- Krendel, M.; Osterweil, E.K.; Mooseker, M.S. Myosin 1E Interacts with Synaptojanin-1 and Dynamin and is Involved in Endocytosis. FEBS Lett. 2007, 581, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Tao, S.; Song, S.; Cho, W. Sorting Nexin 21 is a Novel Membrane-binding Endonuclease. FASEB J. 2015, 29, LB175. [Google Scholar] [CrossRef]
- Mostowy, S.; Cossart, P. Septins: The Fourth Component of the Cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012, 13, 183–194. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Ferrito, V.; Biscotti, M.A.; Canapa, A.; Capriglione, T. Transposable Elements and Stress in Vertebrates: An Overview. Int. J. Mol. Sci. 2021, 22, 1970. [Google Scholar] [CrossRef]
- DeDiego, M.L.; Nogales, A.; Martinez-Sobrido, L.; Topham, D.J. Interferon-Induced Protein 44 Interacts with Cellular FK506-Binding Protein 5, Negatively Regulates Host Antiviral Responses, and Supports Virus Replication. mBio 2019, 10, e01839-19. [Google Scholar] [CrossRef] [Green Version]
- Kueck, T.; Bloyet, L.M.; Cassella, E.; Zang, T.; Schmidt, F.; Brusic, V.; Tekes, G.; Pornillos, O.; Whelan, S.P.J.; Bieniasz, P.D. Vesicular Stomatitis Virus Transcription is Inhibited by TRIM69 in the Interferon-Induced Antiviral State. J. Virol. 2019, 93, e01372-19. [Google Scholar] [CrossRef] [Green Version]
- Rihn, S.J.; Aziz, M.A.; Stewart, D.G.; Hughes, J.; Turnbull, M.L.; Varela, M.; Sugrue, E.; Herd, C.S.; Stanifer, M.; Sinkins, S.P.; et al. TRIM69 Inhibits Vesicular Stomatitis Indiana Virus. J. Virol. 2019, 93, e00951-19. [Google Scholar] [CrossRef] [Green Version]
- Webb, L.M.C.; Pascall, J.C.; Hepburn, L.; Carter, C.; Turner, M.; Butcher, G.W. Generation and Characterisation of Mice Deficient in the Multi-GTPase Domain Containing Protein, GIMAP8. PLoS ONE 2014, 9, e110294. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.; Edgar, J.R.; Esteves, T.; Darios, F.; Madeo, M.; Chang, J.; Roda, R.H.; Dürr, A.; Anheim, M.; Gellera, C.; et al. Loss of AP-5 Results in Accumulation of Aberrant Endolysosomes: Defining a New Type of Lysosomal Storage Disease. Hum. Mol. Genet. 2015, 24, 4984–4996. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, S.; Miyazawa, H.; Enomoto, T.; Hanaoka, F.; Kikuchi, Y.; Kikuchi, A.; Ui, M. A Human Homologue of the Yeast GST1 Gene Codes for a GTP-binding Protein and Is Expressed in a Proliferation-Dependent Manner in Mammalian Cells. EMBO J. 1989, 8, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xuan, Y.; Han, Y.; Ding, X.; Ye, K.; Yang, F.; Gao, P.; Goff, S.P.; Gao, G. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed-1 Ribosomal Frameshifting. Cell 2019, 176, 625–635.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Ma, N.; Gao, X.; Liu, W.; Jia, J.; Tang, L.; Li, M.; Yang, L.; Li, T.; Yan, L.; et al. Role of GSPT1 and GSPT2 Polymorphisms in Different Outcomes upon Hepatitis B Virus Infection and Prognosis to Lamivudine Therapy. Biosci. Rep. 2019, 39, BSR20181668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, I.A. Muscle Metabolism and Growth in Antarctic Fishes (Suborder Notothenioidei): Evolution in a Cold Environment. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 136, 701–713. [Google Scholar] [CrossRef] [PubMed]
Time Point | Upregulated DEGs | Downregulated DEGs | ||||
---|---|---|---|---|---|---|
Muscle | Gills | Brain | Muscle | Gills | Brain | |
T1 (6 h) | 1 | 0 | 0 | 0 | 0 | 0 |
T2 (7 d) | 1 | 1 | 114 | 0 | 0 | 3 |
T3 (20 d) | 0 | 17 | 519 | 0 | 7 | 490 |
GO ID | FDR p-Value | GO Description |
---|---|---|
GO:0006260 | 3.50 × 10 | DNA replication |
GO:0043066 | 2.75 × 10 | negative regulation of apoptotic process |
GO:0005576 | 7.89 × 10 | extracellular region |
GO:0005694 | 1.16 × 10 | chromosome |
GO:0007049 | 1.37 × 10 | cell cycle |
GO:0007155 | 1.58 × 10 | cell adhesion |
GO:0003677 | 2.37 × 10 | DNA binding |
Tissue | Number of DEGs | Number of Co-Expressed Gene Clusters |
---|---|---|
Brain | 1840 | 4 |
Gills | 84 | 5 |
Skeletal muscle | 1 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, S.; Gaetano, A.S.; Furlanis, G.; Capanni, F.; Manfrin, C.; Giulianini, P.G.; Santovito, G.; Edomi, P.; Pallavicini, A.; Gerdol, M. Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress. Fishes 2022, 7, 387. https://doi.org/10.3390/fishes7060387
Greco S, Gaetano AS, Furlanis G, Capanni F, Manfrin C, Giulianini PG, Santovito G, Edomi P, Pallavicini A, Gerdol M. Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress. Fishes. 2022; 7(6):387. https://doi.org/10.3390/fishes7060387
Chicago/Turabian StyleGreco, Samuele, Anastasia Serena Gaetano, Gael Furlanis, Francesca Capanni, Chiara Manfrin, Piero Giulio Giulianini, Gianfranco Santovito, Paolo Edomi, Alberto Pallavicini, and Marco Gerdol. 2022. "Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress" Fishes 7, no. 6: 387. https://doi.org/10.3390/fishes7060387
APA StyleGreco, S., Gaetano, A. S., Furlanis, G., Capanni, F., Manfrin, C., Giulianini, P. G., Santovito, G., Edomi, P., Pallavicini, A., & Gerdol, M. (2022). Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress. Fishes, 7(6), 387. https://doi.org/10.3390/fishes7060387