A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management
Abstract
:1. Introduction
2. Definitions and Acronyms
3. Literature Review
3.1. Recognition
3.2. Measurement
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Al-Jubouri et al. [64] | Length | Underwater (controlled) | Zebrafish | Mathematical model | 0.99 1 |
Alshdaifat et al. [65] | Body segmentation | Underwater (Fish4Knowledge) | Clownfish | Faster R-CNN, RPN, modified FCN | 0.95 7 |
Álvarez Ellacuría et al. [1] | Length | Out of water | European hake | Mask R-CNN | 0.92 6 |
Baloch et al. [66] | Length of body parts | All | Several fish species | Mathematical morphology, rules | 0.87 1 |
Bravata et al. [63] | Length, weight, circumference | Out of water | 22 species | CNN | 0.73–0.94 1 |
Fernandes et al. [67] | Length, weight | Out of water | Nile tilapia | SegNet-based model | 0.95–0.96 5 |
Garcia et al. [68] | Length | Underwater (controlled) | 7 species | Mask R-CNN | 0.58–0.90 5 |
Jeong et al. [34] | Length, width | Out of water (conveyor belt) | Flatfish | Mathematical morphology | 0.99 1 |
Konovalov et al. [69] | Weight | Out of water | Asian Seabass | FCN-8s (CNN) | 0.98 8 |
Monkman et al. [70] | Length | Out of water | European sea bass | NasNet, ResNet-101, MobileNet | 0.93 5 |
Muñoz-Benavent et al. [61] | Length | Underwater (uncontrolled) | Bluefin tuna | Mathematical model | 0.93–0.97 1 |
Palmer et al. [62] | Length | Out of water | Dolphinfish | Mask R-CNN | 0.86 1 |
Rasmussen et al. [71] | Length (larvae) | Petri dishes | 6 species | Mathematical morphology | 0.97 1 |
Ravanbakhsh et al. [72] | Body segmentation | Underwater (controlled) | Bluefin tuna | PCA, Haar classifier | 0.90–1.00 1 |
Rico-Díaz et al. [73] | Length | Underwater (uncontrolled) | 3 species | Hough algorithm, ANN | 0.74 1 |
Shafait et al. [74] | Length | Underwater (uncontrolled) | Southern Bluefin Tuna | Template matching | 0.90–0.99 1 |
Tseng et al. [75] | Length | Out of water | 3 species | CNN | 0.96 1 |
White et al. [76] | Length | Out of water | 7 species | Mathematical model | 1.00 1 |
Yao et al. [77] | Body segmentation | Out of water | Back crucian carp, common carp | K-means | N/A |
Yu et al. [78] | Length, width, others | Out of water | Silverfish | Mask R-CNN | 0.97–0.99 1 |
Yu et al. [79] | Length, width, area | Out of water | Silverfish | Improved U-net | 0.97–0.99 1 |
Zhang et al. [80] | Weight | Out of water | Crucian carp | BPNN | 0.90 8 |
Zhang et al. [81] | Body segmentation | Underwater (uncontrolled) | Several | DPANet | 0.85–0.91 1 |
Zhou et al. [82] | Body segmentation | Out of water | 9 species | Atrous pyramid GAN | 0.96–0.98 5 |
3.3. Tracking
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Abe et al. [35] | Individual | Underwater (uncontrolled) | Bluefin tuna | SegNet | 0.72 2 |
Anas et al. [85] | Individual | Underwater (controlled) | Goldfish, tilapia | YOLO, NB, kNN, RF | 0.8–0.9 1 |
Atienza-Vanacloig et al. [60] | Individual | Underwater (uncontrolled) | Bluefin tuna | Deformable adaptive 2D model | 0.9 1 |
Boom et al. [94] | Individual | Underwater (Fish4Knowledge) | Several | GMM, APMM, ViBe, Adaboost, SVM | 0.80–0.93 1 |
Cheng et al. [95] | Individual | Underwater (controlled) | N/A | CNN | 0.93–0.97 2 |
Delcourt et al. [96] | Individual | Underwater (controlled) | Tilapia | Mathematical morphology | 0.83–0.99 1 |
Ditria et al. [58] | Individual | Underwater | Luderick | ResNet50 | 0.92 2 |
Duarte et al. [90] | Individual | Underwater (controlled) | Senegalese sole | Mathematical model | 0.8–0.9 8 |
Han et al. [86] | Shoal | Underwater (controlled) | Zebrafish | CNN | 0.71–0.82 1 |
Huang et al. [97] | Individual | Underwater (uncontrolled) | N/A | Kalman filter, SSD, YOLOv2 | 0.94–0.96 1 |
Li et al. [98] | Individual | Underwater (controlled) | N/A | CMFTNet | 0.66 1 |
Liu et al. [99] | Individual | Underwater (controlled) | Zebrafish | Mathematical models | 0.95 1 |
Papadakis et al. [92] | Individual | Underwater (controlled) | Gilthead sea bream | LABView (3rd party software) | N/A |
Papadakis et al. [93] | Individual | Underwater (controlled) | Sea bass, see bream | Mathematical model | N/A |
Pérez-Escudero et al. [100] | Individual | Underwater (controlled) | Zebrafish, medaka | Mathematical morphology | 0.99 1 |
Pinkiewicz et al. [91] | Individual | Underwater (uncontrolled) | Atlantic salmon | Kalman filter | 0.99 1 |
Qian et al. [59] | Individual | Underwater (controlled) | Zebrafish | Kalman filter, feature matching | 0.96–0.99 1 |
Qian et al. [83] | Individual | Underwater (controlled) | Zebrafish | Mathematical model | 0.97–0.98 1 |
Saberioon and Cisar [101] | Individual | Underwater (controlled) | Nile tilapia | Mathematical morphology | 0.97–0.98 1 |
Sadoul et al. [102] | Shoal | Underwater (controlled) | Rainbow trout | Mathematical model | 0.94 1 |
Sun et al. [103] | Shoal | Underwater (controlled) | Crucian | K-means | 0.93 1 |
Teles et al. [104] | Individual | Underwater (controlled) | Zebrafish | PNN, SOM | 0.94 1 |
Wageeh et al. [105] | Individual | Underwater (controlled) | Goldfish | MSR-YOLO | N/A |
Wang et al. [106] | Individual | Underwater (controlled) | Zebrafish | CNN | 0.94–0.99 2 |
Wang et al. [84] | Individual | Underwater (controlled) | Spotted knifejaw | FlowNet2, 3D CNN | 0.95 1 |
Xia et al. [107] | Individual | Underwater (controlled) | Zebrafish | Mathematical model | 0.98–1.00 1 |
Xu et al. [87] | Individual | Underwater (controlled) | Goldfish | Faster R-CNN, YOLO-V3 | 0.95–0.98 1 |
Zhao et al. [88] | Individual | Underwater (controlled) | Red snapper | Thresholding, Kalman filter | 0.98 1 |
3.4. Classification
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Ahmed et al. [112] | Diseased/healthy | Out of water | Salmon | SVM | 0.91–0.94 |
Allken et al. [113] | Species | Underwater (controlled) | 3 fish species | CNN | 0.94 |
Alsmadi et al. [114] | Broad classes | Out of water | Several fish species | Memetic algorithm | 0.82–0.90 |
Alsmadi [115] | Broad classes | Out of water | Several fish species | Hybrid Tabu search, genetic algorithm | 0.82–0.87 |
Banan et al. [116] | Species | Out of water | Carp (4 species) | CNN | 1.00 |
Banerjee et al. [117] | Species | Out of water | Carp (3 species) | Deep convolutional autoencoder | 0.97 |
Boom et al. [94] | Species | Underwater (Fish4Knowledge) | Several | GMM, APMM, ViBe, Adaboost, SVM | 0.80–0.93 |
Chuang et al. [118] | Species | Underwater (Fish4Knowledge) | Several fish species | Hierarchical partial classifier (SVM) | 0.92–0.97 |
Coro and Walsh [42] | Size categories | Underwater (uncontrolled) | Tuna, sharks, mantas | YOLOv3 | 0.65–0.75 |
Hernández-Serna and Jiménez-Segura [119] | Species | Out of water | Several fish species | MLPNN | 0.88–0.92 |
Hsiao et al. [120] | Species | Underwater (uncontrolled) | Several fish species | SRC-MP | 0.82–0.96 |
Hu et al. [121] | Species | Out of water | 6 fish species | Multi-class SVM | 0.98 |
Huang et al. [39] | Species | Underwater (uncontrolled) | 15 fish species | Hierarchical tree, GMM | 0.97 |
Iqbal et al. [122] | Species | All | 6 fish species | Reduced AlexNet (CNN) | 0.9 |
Iqbal et al. [89] | Feeding status | Underwater (controlled) | Black scrapers | CNN | 0.98 |
Ismail et al. [123] | Species | All | 18 species | AlexNet, GoogleNet, ResNet50 | 0.99 |
Jalal et al. [124] | Species | Underwater (Fish4Knowledge) | Several fish species | YOLO-based model, GMM | 0.8–0.95 |
Joo et al. [125] | Species | Underwater (controlled) | Cichlids (12 species) | SVM, RF | 0.67–0.78 |
Ju and Xue [126] | Species | All | Several fish species | AlexNet (CNN) | 0.91–0.97 |
Knausgård et al. [127] | Species | Underwater (Fish4Knowledge) | 23 fish species | YOLOv3, CNN | 0.84–0.99 |
Kutlu et al. [128] | Species | Out of water | 25 fish species | kNN | 0.99 |
Li et al. [129] | Fish face recognition | Underwater (controlled) | Golden crucian carp | Self-SE module, FFRNet | 0.9 |
Liu et al. [130] | Feeding activity | Underwater (controlled) | Atlantic salmon | Mathematical model | 0.92 |
Lu et al. [131] | Species | Out of water | 6 species | Modified VGG-16 (CNN) | 0.96 |
Måløy et al. [132] | Feeding status | Underwater (uncontrolled) | Salmon | DSRN | 0.8 |
Mana and Sasipraba [133] | Species | Underwater (Fish4Knowledge) | Corkwing, pollack, coalfish | Mask R-CNN, ODKELM | 0.94–0.96 |
Mathur et al. [134] | Species | Underwater (Fish4Knowledge) | 23 species | ResNet50 (CNN) | 0.98 |
Meng et al. [135] | Species | Underwater (uncontrolled) | Guppy, snakehead, medaka, neontetora | GoogleNet, AlexNet (CNN) | 0.85–0.87 |
Ovalle et al. [111] | Species | Out of water | 14 species | Mask R-CNN, MobileNet-V1 | 0.75–0.98 |
Pramunendar et al. [136] | Species | Underwater (Fish4Knowledge) | 23 species | MLPNN | 0.93–0.96 |
Qin et al. [137] | Species | Underwater (Fish4Knowledge) | 23 species | SVM, CNN | 0.98 |
Qiu et al. [138] | Species | Underwater (uncontrolled) | Several | Bilinear CNN | 0.72–0.95 |
Rauf et al. [139] | Species identification | Out of water | 6 species | 32-layer CNN | 0.85–0.96 |
Rohani et al. [140] | Fish eggs (dead/alive) | Out of water | Rainbow trout | MLPNN, SVM | 0.99 |
Saberioon et al. [141] | Feeding status | Out of water (anesthetized fish) | Rainbow trout | RF, SVM, LR, kNN | 0.75–0.82 |
Saitoh et al. [142] | Species | Out of water | 129 species | RF | 0.30–0.87 |
Salman et al. [143] | Species | Underwater (Fish4Knowledge) | 15 species | CNN | 0.90 |
dos Santos and Gonçalves [144] | Species | All | 68 species | CNN | 0.87 |
Shafait et al. [6] | Species | Underwater (Fish4Knowledge) | 10 species | PCA, nearest neighbor classifier | 0.94 |
Sharmin et al. [145] | Species | Out of water | 6 species | PCA, SVM | 0.94 |
Siddiqui et al. [146] | Species | Underwater (uncontrolled) | 16 species | CNN, SVM | 0.94 |
Smadi et al. [147] | Species | Out of water | 8 species | CNN | 0.98 |
Spampinato et al. [148] | Species | Underwater (Fish4Knowledge) | 10 species | SIFT, LTP, SVM | 0.85–0.99 |
Štifanić et al. [149] | Species | Underwater (Fish4Knowledge) | 4 species | CNN | 0.99 |
Storbeck and Daan [150] | Species | Out of water (conveyor belt) | 6 species | MLPNN | 0.95 |
Tharwat et al. [151] | Species | Out of water | 4 species | LDA, AdaBoost | 0.96 |
Ubina et al. [152] | Feeding intensity | Water tank | N/A | 3D CNN | 0.95 |
Villon et al. [108] | Species | Underwater (uncontrolled) | 20 species | CNN | 0.95 |
White et al. [76] | Species | Out of water | 7 species | Canonical discriminant analysis | 1.00 |
Wishkerman et al. [153] | Pigmentation patterns | Out of water | Senegalese sole | GLCM, PCA, LDA | >0.9 |
Xu et al. [154] | Species | Out of water | 6 species | SE-ResNet152 | 0.91–0.98 |
Zhang et al. [110] | Species | Out of water | 8 species | AdaBoost | 0.99 |
Zhang et al. [109] | Species | Underwater (uncontrolled) | 9 species | ResNet50 (CNN) | 0.85–0.90 |
Zhou et al. [155] | Feeding intensity | Underwater (controlled) | Tilapia | LeNet5 (CNN) | 0.9 |
Zion et al. [156] | Species | Underwater (controlled) | 3 species | Mathematical model | 0.91–1.00 |
Zion et al. [157] | Species | Underwater (controlled) | 3 species | Mathematical model | 0.89–1.00 |
4. General Remarks
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Álvarez Ellacuría, A.; Palmer, M.; Catalán, I.A.; Lisani, J.L. Image-based, unsupervised estimation of fish size from commercial landings using deep learning. ICES J. Mar. Sci. 2020, 77, 1330–1339. [Google Scholar] [CrossRef]
- Banno, K.; Kaland, H.; Crescitelli, A.M.; Tuene, S.A.; Aas, G.H.; Gansel, L.C. A novel approach for wild fish monitoring at aquaculture sites: Wild fish presence analysis using computer vision. Aquac. Environ. Interact. 2022, 14, 97–112. [Google Scholar] [CrossRef]
- Saleh, A.; Sheaves, M.; Rahimi Azghadi, M. Computer vision and deep learning for fish classification in underwater habitats: A survey. Fish Fish. 2022, 23, 977–999. [Google Scholar] [CrossRef]
- Ditria, E.M.; Sievers, M.; Lopez-Marcano, S.; Jinks, E.L.; Connolly, R.M. Deep learning for automated analysis of fish abundance: The benefits of training across multiple habitats. Environ. Monit. Assess. 2020, 192, 698. [Google Scholar] [CrossRef] [PubMed]
- Ditria, E.M.; Lopez-Marcano, S.; Sievers, M.; Jinks, E.L.; Brown, C.J.; Connolly, R.M. Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Shafait, F.; Mian, A.; Shortis, M.; Ghanem, B.; Culverhouse, P.F.; Edgington, D.; Cline, D.; Ravanbakhsh, M.; Seager, J.; Harvey, E.S. Fish identification from videos captured in uncontrolled underwater environments. ICES J. Mar. Sci. 2016, 73, 2737–2746. [Google Scholar] [CrossRef]
- Noda, J.J.; Travieso, C.M.; Sánchez-Rodríguez, D. Automatic Taxonomic Classification of Fish Based on Their Acoustic Signals. Appl. Sci. 2016, 6, 443. [Google Scholar] [CrossRef] [Green Version]
- Helminen, J.; Linnansaari, T. Object and behavior differentiation for improved automated counts of migrating river fish using imaging sonar data. Fish. Res. 2021, 237, 105883. [Google Scholar] [CrossRef]
- Saberioon, M.; Gholizadeh, A.; Cisar, P.; Pautsina, A.; Urban, J. Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues. Rev. Aquac. 2017, 9, 369–387. [Google Scholar] [CrossRef]
- Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307. [Google Scholar] [CrossRef]
- Alsmadi, M.K.; Almarashdeh, I. A survey on fish classification techniques. J. King Saud-Univ.—Comput. Inf. Sci. 2022, 34, 1625–1638. [Google Scholar] [CrossRef]
- An, D.; Hao, J.; Wei, Y.; Wang, Y.; Yu, X. Application of computer vision in fish intelligent feeding system—A review. Aquac. Res. 2021, 52, 423–437. [Google Scholar] [CrossRef]
- Delcourt, J.; Denoël, M.; Ylieff, M.; Poncin, P. Video multitracking of fish behaviour: A synthesis and future perspectives. Fish Fish. 2013, 14, 186–204. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A Review on Intelligence Dehazing and Color Restoration for Underwater Images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [Google Scholar] [CrossRef]
- Goodwin, M.; Halvorsen, K.T.; Jiao, L.; Knausgård, K.M.; Martin, A.H.; Moyano, M.; Oomen, R.A.; Rasmussen, J.H.; Sørdalen, T.K.; Thorbjørnsen, S.H. Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES J. Mar. Sci. 2022, 79, 319–336. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Wu, S.; Miao, Z.; Du, L.; Duan, Y. Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture 2020, 528, 735508. [Google Scholar] [CrossRef]
- Li, D.; Hao, Y.; Duan, Y. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: A review. Rev. Aquac. 2020, 12, 1390–1411. [Google Scholar] [CrossRef]
- Li, D.; Du, L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif. Intell. Rev. 2022, 55, 4077–4116. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Li, X.; Niu, M.; Wang, H.; Liu, C. Recent advances of machine vision technology in fish classification. ICES J. Mar. Sci. 2022, 79, 263–284. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Du, L.; Zheng, Y.; Wang, Z. Recent advances in intelligent recognition methods for fish stress behavior. Aquac. Eng. 2022, 96, 102222. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, H.; Wu, J.; Cui, Z.; Zhang, F. Survey of Fish Behavior Analysis by Computer Vision. J. Aquac. Res. Dev. 2018, 9, 534. [Google Scholar] [CrossRef]
- Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and Survey. arXiv 2022, arXiv:2206.05394. [Google Scholar] [CrossRef]
- Sheaves, M.; Bradley, M.; Herrera, C.; Mattone, C.; Lennard, C.; Sheaves, J.; Konovalov, D.A. Optimizing video sampling for juvenile fish surveys: Using deep learning and evaluation of assumptions to produce critical fisheries parameters. Fish Fish. 2020, 21, 1259–1276. [Google Scholar] [CrossRef]
- Shortis, M.R.; Ravanbakhsh, M.; Shafait, F.; Mian, A. Progress in the Automated Identification, Measurement, and Counting of Fish in Underwater Image Sequences. Mar. Technol. Soc. J. 2016, 50, 4–16. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.C. A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring and Management. Drones 2022, 6, 12. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent fish farm—The future of aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Fu, L.; Liu, Z.; Liu, H.; Chen, L.; Liu, Y. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress. J. Toxicol. 2018, 2018, 2591924. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2021, 13, 66–90. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Yu, H.; Fang, X.; Song, L.; Li, D.; Chen, Y. Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review. Arch. Comput. Methods Eng. 2021, 28, 2785–2816. [Google Scholar] [CrossRef]
- Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [CrossRef]
- Zion, B. The use of computer vision technologies in aquaculture—A review. Computers and Electronics in Agriculture 2012, 88, 125–132. [Google Scholar] [CrossRef]
- Bock, C.H.; Pethybridge, S.J.; Barbedo, J.G.A.; Esker, P.D.; Mahlein, A.K.; Ponte, E.M.D. A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues. Trop. Plant Pathol. 2022, 47, 14–24. [Google Scholar] [CrossRef]
- Follana-Berná, G.; Palmer, M.; Lekanda-Guarrotxena, A.; Grau, A.; Arechavala-Lopez, P. Fish density estimation using unbaited cameras: Accounting for environmental-dependent detectability. J. Exp. Mar. Biol. Ecol. 2020, 527, 151376. [Google Scholar] [CrossRef]
- Jeong, S.J.; Yang, Y.S.; Lee, K.; Kang, J.G.; Lee, D.G. Vision-based Automatic System for Non-contact Measurement of Morphometric Characteristics of Flatfish. J. Electr. Eng. Technol. 2013, 8, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Takagi, T.; Torisawa, S.; Abe, K.; Habe, H.; Iguchi, N.; Takehara, K.; Masuma, S.; Yagi, H.; Yamaguchi, T.; et al. Development of fish spatio-temporal identifying technology using SegNet in aquaculture net cages. Aquac. Eng. 2021, 93, 102146. [Google Scholar] [CrossRef]
- Labao, A.B.; Naval, P.C. Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild. Ecol. Inform. 2019, 52, 103–121. [Google Scholar] [CrossRef]
- French, G.; Fisher, M.; Mackiewicz, M.; Needle, C. Convolutional Neural Networks for Counting Fish in Fisheries Surveillance Video. In Machine Vision of Animals and their Behaviour (MVAB); Amaral, T., Matthews, S., Fisher, R., Eds.; BMVA Press: Dundee, UK, 2015; pp. 7.1–7.10. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Lu, J.; Wang, H.; Feng, Y.; Shi, C.; Li, D.; Zhao, R. A lightweight dead fish detection method based on deformable convolution and YOLOV4. Comput. Electron. Agric. 2022, 198, 107098. [Google Scholar] [CrossRef]
- Huang, P.; Boom, B.J.; Fisher, R.B. Hierarchical classification with reject option for live fish recognition. Mach. Vis. Appl. 2015, 26, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, I.; Gana, K.J.; Musa, A.A.; Adegboye, M.A.; Lim, C.G. Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry. KSII Trans. Internet Inf. Syst. 2020, 14, 4866–4888. [Google Scholar] [CrossRef]
- Boudhane, M.; Nsiri, B. Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 2016, 39, 226–238. [Google Scholar] [CrossRef]
- Coro, G.; Walsh, M.B. An intelligent and cost-effective remote underwater video device for fish size monitoring. Ecol. Inform. 2021, 63, 101311. [Google Scholar] [CrossRef]
- Coronel, L.; Badoy, W.; Namoco, C.S., Jr. Identification of an efficient filtering-segmentation technique for automated counting of fish fingerlings. Int. Arab. J. Inf. Technol. 2018, 15, 708–714. [Google Scholar]
- Costa, C.S.; Zanoni, V.A.G.; Curvo, L.R.V.; de Araújo Carvalho, M.; Boscolo, W.R.; Signor, A.; dos Santos de Arruda, M.; Nucci, H.H.P.; Junior, J.M.; Gonçalves, W.N.; et al. Deep learning applied in fish reproduction for counting larvae in images captured by smartphone. Aquac. Eng. 2022, 97, 102225. [Google Scholar] [CrossRef]
- Ditria, E.M.; Connolly, R.M.; Jinks, E.L.; Lopez-Marcano, S. Annotated Video Footage for Automated Identification and Counting of Fish in Unconstrained Seagrass Habitats. Front. Mar. Sci. 2021, 8, 629485. [Google Scholar] [CrossRef]
- Jiang, L.; Quan, H.; Xie, T.; Qian, J. Fish recognition in complex underwater scenes based on targeted sample transfer learning. Multimed. Tools Appl. 2022, 81, 25303–25317. [Google Scholar] [CrossRef]
- Laradji, I.H.; Saleh, A.; Rodriguez, P.; Nowrouzezahrai, D.; Azghadi, M.R.; Vazquez, D. Weakly supervised underwater fish segmentation using affinity LCFCN. Sci. Rep. 2021, 11, 17379. [Google Scholar] [CrossRef]
- Lee, J.V.; Loo, J.L.; Chuah, Y.D.; Tang, P.Y.; Tan, Y.C.; Goh, W.J. The Use of Vision in a Sustainable Aquaculture Feeding System. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 3658–3669. [Google Scholar] [CrossRef]
- Li, J.; Zhu, K.; Wang, F.; Jiang, F. Deep neural network-based real time fish detection method in the scene of marine fishing supervision. J. Intell. Fuzzy Syst. 2021, 41, 4527–4532. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Lu, X.; Wu, B. CME-YOLOv5: An Efficient Object Detection Network for Densely Spaced Fish and Small Targets. Water 2022, 14, 2412. [Google Scholar] [CrossRef]
- Lin, B.; Jiang, K.; Xu, Z.; Li, F.; Li, J.; Mou, C.; Gong, X.; Duan, X. Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection. Fishes 2021, 6, 65. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Gu, Y.; Li, P.; Zhai, F.; Huang, H.; He, S. A high-density fish school segmentation framework for biomass statistics in a deep-sea cage. Ecol. Inform. 2021, 64, 101367. [Google Scholar] [CrossRef]
- Marini, S.; Corgnati, L.; Mantovani, C.; Bastianini, M.; Ottaviani, E.; Fanelli, E.; Aguzzi, J.; Griffa, A.; Poulain, P.M. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement 2018, 126, 72–75. [Google Scholar] [CrossRef]
- Marini, S.; Fanelli, E.; Sbragaglia, V.; Azzurro, E.; Fernandez, J.D.R.; Aguzzi, J. Tracking Fish Abundance by Underwater Image Recognition. Sci. Rep. 2018, 8, 13748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Kang, C. A Study on Enhancement of Fish Recognition Using Cumulative Mean of YOLO Network in Underwater Video Images. J. Mar. Sci. Eng. 2020, 8, 952. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Wang, Y.; Zhao, Z.; Liu, J.; Liu, Y.; Sun, C.; Zhou, C. Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model. Animals 2020, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef]
- Ditria, E.M.; Jinks, E.L.; Connolly, R.M. Automating the analysis of fish grazing behaviour from videos using image classification and optical flow. Anim. Behav. 2021, 177, 31–37. [Google Scholar] [CrossRef]
- Qian, Z.M.; Cheng, X.E.; Chen, Y.Q. Automatically Detect and Track Multiple Fish Swimming in Shallow Water with Frequent Occlusion. PLoS ONE 2014, 9, e106506. [Google Scholar] [CrossRef] [Green Version]
- Atienza-Vanacloig, V.; Andreu-García, G.; López-García, F.; Valiente-González, J.M.; Puig-Pons, V. Vision-based discrimination of tuna individuals in grow-out cages through a fish bending model. Comput. Electron. Agric. 2016, 130, 142–150. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Puig-Pons, V.; Espinosa, V. Enhanced fish bending model for automatic tuna sizing using computer vision. Comput. Electron. Agric. 2018, 150, 52–61. [Google Scholar] [CrossRef]
- Palmer, M.; Álvarez Ellacuría, A.; Moltó, V.; Catalán, I.A. Automatic, operational, high-resolution monitoring of fish length and catch numbers from landings using deep learning. Fish. Res. 2022, 246, 106166. [Google Scholar] [CrossRef]
- Bravata, N.; Kelly, D.; Eickholt, J.; Bryan, J.; Miehls, S.; Zielinski, D. Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish. Ecol. Evol. 2020, 10, 9313–9325. [Google Scholar] [CrossRef] [PubMed]
- Al-Jubouri, Q.; Al-Nuaimy, W.; Al-Taee, M.; Young, I. An automated vision system for measurement of zebrafish length using low-cost orthogonal web cameras. Aquac. Eng. 2017, 78, 155–162. [Google Scholar] [CrossRef]
- Alshdaifat, N.F.F.; Talib, A.Z.; Osman, M.A. Improved deep learning framework for fish segmentation in underwater videos. Ecol. Inform. 2020, 59, 101121. [Google Scholar] [CrossRef]
- Baloch, A.; Ali, M.; Gul, F.; Basir, S.; Afzal, I. Fish Image Segmentation Algorithm (FISA) for Improving the Performance of Image Retrieval System. Int. J. Adv. Comput. Sci. Appl. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.F.; Turra, E.M.; Érika, R. de Alvarenga.; Passafaro, T.L.; Lopes, F.B.; Alves, G.F.; Singh, V.; Rosa, G.J. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Comput. Electron. Agric. 2020, 170, 105274. [Google Scholar] [CrossRef]
- Garcia, R.; Prados, R.; Quintana, J.; Tempelaar, A.; Gracias, N.; Rosen, S.; Vågstøl, H.; Løvall, K. Automatic segmentation of fish using deep learning with application to fish size measurement. ICES J. Mar. Sci. 2020, 77, 1354–1366. [Google Scholar] [CrossRef]
- Konovalov, D.; Saleh, A.; Domingos, J.; White, R.; Jerry, D. Estimating Mass of Harvested Asian Seabass Lates calcarifer from Images. World J. Eng. Technol. 2018, 6, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Monkman, G.G.; Hyder, K.; Kaiser, M.J.; Vidal, F.P. Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods Ecol. Evol. 2019, 10, 2045–2056. [Google Scholar] [CrossRef]
- Rasmussen, J.H.; Moyano, M.; Fuiman, L.A.; Oomen, R.A. FishSizer: Software solution for efficiently measuring larval fish size. Ecol. Evol. 2022, 12, e8672. [Google Scholar] [CrossRef]
- Ravanbakhsh, M.; Shortis, M.R.; Shafait, F.; Mian, A.; Harvey, E.S.; Seager, J.W. Automated Fish Detection in Underwater Images Using Shape-Based Level Sets. Photogramm. Rec. 2015, 30, 46–62. [Google Scholar] [CrossRef]
- Rico-Díaz, J.; Rabuñal, J.R.; Gestal, M.; Mures, O.A.; Puertas, J. An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks. Water 2020, 12, 3013. [Google Scholar] [CrossRef]
- Shafait, F.; Harvey, E.S.; Shortis, M.R.; Mian, A.; Ravanbakhsh, M.; Seager, J.W.; Culverhouse, P.F.; Cline, D.E.; Edgington, D.R. Towards automating underwater measurement of fish length: A comparison of semi-automatic and manual stereo–video measurements. ICES J. Mar. Sci. 2017, 74, 1690–1701. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.H.; Hsieh, C.L.; Kuo, Y.F. Automatic measurement of the body length of harvested fish using convolutional neural networks. Biosyst. Eng. 2020, 189, 36–47. [Google Scholar] [CrossRef]
- White, D.; Svellingen, C.; Strachan, N. Automated measurement of species and length of fish by computer vision. Fish. Res. 2006, 80, 203–210. [Google Scholar] [CrossRef]
- Yao, H.; Duan, Q.; Li, D.; Wang, J. An improved K-means clustering algorithm for fish image segmentation. Math. Comput. Model. 2013, 58, 790–798. [Google Scholar] [CrossRef]
- Yu, C.; Fan, X.; Hu, Z.; Xia, X.; Zhao, Y.; Li, R.; Bai, Y. Segmentation and measurement scheme for fish morphological features based on Mask R-CNN. Inf. Process. Agric. 2020, 7, 523–534. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Z.; Han, B.; Wang, P.; Zhao, Y.; Wu, H. Intelligent Measurement of Morphological Characteristics of Fish Using Improved U-Net. Electronics 2021, 10, 1426. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Duan, Q. Estimation for fish mass using image analysis and neural network. Comput. Electron. Agric. 2020, 173, 105439. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Bao, Z. DPANet: Dual Pooling-aggregated Attention Network for fish segmentation. IET Comput. Vis. 2022, 16, 67–82. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, S.; Ren, Y.; Zhang, Y.; Fu, J.; Fan, D.; Lin, J.; Wang, Q. Atrous Pyramid GAN Segmentation Network for Fish Images with High Performance. Electronics 2022, 11, 911. [Google Scholar] [CrossRef]
- Qian, Z.M.; Wang, S.H.; Cheng, X.E.; Chen, Y.Q. An effective and robust method for tracking multiple fish in video image based on fish head detection. BMC Bioinform. 2016, 17, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Muhammad, A.; Liu, C.; Du, L.; Li, D. Automatic Recognition of Fish Behavior with a Fusion of RGB and Optical Flow Data Based on Deep Learning. Animals 2021, 11, 2774. [Google Scholar] [CrossRef] [PubMed]
- Anas, O.; Wageeh, Y.; Mohamed, H.E.D.; Fadl, A.; ElMasry, N.; Nabil, A.; Atia, A. Detecting Abnormal Fish Behavior Using Motion Trajectories in Ubiquitous Environments. Procedia Comput. Sci. 2020, 175, 141–148. [Google Scholar] [CrossRef]
- Han, F.; Zhu, J.; Liu, B.; Zhang, B.; Xie, F. Fish Shoals Behavior Detection Based on Convolutional Neural Network and Spatiotemporal Information. IEEE Access 2020, 8, 126907–126926. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, Z.; Ge, F.; Han, Z.; Li, J. Analysis of Behavior Trajectory Based on Deep Learning in Ammonia Environment for Fish. Sensors 2020, 20, 4425. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, S.; Gao, Q. An Algorithm for Tracking Multiple Fish Based on Biological Water Quality Monitoring. IEEE Access 2019, 7, 15018–15026. [Google Scholar] [CrossRef]
- Iqbal, U.; Li, D.; Akhter, M. Intelligent Diagnosis of Fish Behavior Using Deep Learning Method. Fishes 2022, 7, 201. [Google Scholar] [CrossRef]
- Duarte, S.; Reig, L.; Oca, J. Measurement of sole activity by digital image analysis. Aquac. Eng. 2009, 41, 22–27. [Google Scholar] [CrossRef]
- Pinkiewicz, T.; Purser, G.; Williams, R. A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: A case study using cage-held Atlantic salmon. Aquac. Eng. 2011, 45, 20–27. [Google Scholar] [CrossRef]
- Papadakis, V.M.; Papadakis, I.E.; Lamprianidou, F.; Glaropoulos, A.; Kentouri, M. A computer-vision system and methodology for the analysis of fish behavior. Aquac. Eng. 2012, 46, 53–59. [Google Scholar] [CrossRef]
- Papadakis, V.M.; Glaropoulos, A.; Kentouri, M. Sub-second analysis of fish behavior using a novel computer-vision system. Aquac. Eng. 2014, 62, 36–41. [Google Scholar] [CrossRef]
- Boom, B.J.; He, J.; Palazzo, S.; Huang, P.X.; Beyan, C.; Chou, H.M.; Lin, F.P.; Spampinato, C.; Fisher, R.B. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecol. Inform. 2014, 23, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.E.; Du, S.S.; Li, H.Y.; Hu, J.F.; Chen, M.L. Obtaining three-dimensional trajectory of multiple fish in water tank via video tracking. Multimed. Tools Appl. 2018, 77, 24499–24519. [Google Scholar] [CrossRef]
- Delcourt, J.; Becco, C.; Vandewalle, N.; Poncin, P. A video multitracking system for quantification of individual behavior in a large fish shoal: Advantages and limits. Behav. Res. Methods 2009, 41, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.W.; Hwang, J.N.; Romain, S.; Wallace, F. Fish Tracking and Segmentation From Stereo Videos on the Wild Sea Surface for Electronic Monitoring of Rail Fishing. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3146–3158. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Li, Z. CMFTNet: Multiple fish tracking based on counterpoised JointNet. Comput. Electron. Agric. 2022, 198, 107018. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Y.; Shi, M.; Qian, Z.M. 3-D Video Tracking of Multiple Fish in a Water Tank. IEEE Access 2019, 7, 145049–145059. [Google Scholar] [CrossRef]
- Pérez-Escudero, A.; Vicente-Page, J.; Hinz, R.C.; Arganda, S.; de Polavieja, G.G. idTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 2014, 11, 743–748. [Google Scholar] [CrossRef]
- Saberioon, M.; Cisar, P. Automated multiple fish tracking in three-Dimension using a Structured Light Sensor. Comput. Electron. Agric. 2016, 121, 215–221. [Google Scholar] [CrossRef]
- Sadoul, B.; Evouna Mengues, P.; Friggens, N.; Prunet, P.; Colson, V. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 2014, 430, 179–187. [Google Scholar] [CrossRef]
- Sun, L.; Luo, B.; Liu, T.; Liu, Y.; Wei, Y. Algorithm of Adaptive Fast Clustering for Fish Swarm Color Image Segmentation. IEEE Access 2019, 7, 178753–178762. [Google Scholar] [CrossRef]
- Teles, L.O.; Fernandes, M.; Amorim, J.; Vasconcelos, V. Video-tracking of zebrafish (Danio rerio) as a biological early warning system using two distinct artificial neural networks: Probabilistic neural network (PNN) and self-organizing map (SOM). Aquat. Toxicol. 2015, 165, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wageeh, Y.; Mohamed, H.E.D.; Fadl, A.; Anas, O.; ElMasry, N.; Nabil, A.; Atia, A. YOLO fish detection with Euclidean tracking in fish farms. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 5–12. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhao, J.W.; Chen, Y.Q. Robust tracking of fish schools using CNN for head identification. Multimed. Tools Appl. 2017, 76, 23679–23697. [Google Scholar] [CrossRef]
- Xia, C.; Chon, T.S.; Liu, Y.; Chi, J.; Lee, J.M. Posture tracking of multiple individual fish for behavioral monitoring with visual sensors. Ecol. Inform. 2016, 36, 190–198. [Google Scholar] [CrossRef]
- Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A Deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecol. Inform. 2018, 48, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, W.; Zhu, Y.; Han, W.; Huang, Y.; Li, J. Research on fish identification in tropical waters under unconstrained environment based on transfer learning. Earth Sci. Inform. 2022, 15, 1155–1166. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, D.J.; Zhang, M.; Tippetts, B.J.; Lillywhite, K.D. Object recognition algorithm for the automatic identification and removal of invasive fish. Biosyst. Eng. 2016, 145, 65–75. [Google Scholar] [CrossRef]
- Ovalle, J.C.; Vilas, C.; Antelo, L.T. On the use of deep learning for fish species recognition and quantification on board fishing vessels. Mar. Policy 2022, 139, 105015. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Aurpa, T.T.; Azad, M.A.K. Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 5170–5182. [Google Scholar] [CrossRef]
- Allken, V.; Handegard, N.O.; Rosen, S.; Schreyeck, T.; Mahiout, T.; Malde, K. Fish species identification using a convolutional neural network trained on synthetic data. ICES J. Mar. Sci. 2019, 76, 342–349. [Google Scholar] [CrossRef]
- Alsmadi, M.K.; Tayfour, M.; Alkhasawneh, R.A.; Badawi, U.; Almarashdeh, I.; Haddad, F. Robust feature extraction methods for general fish classification. Int. J. Electr. Comput. Eng. 2019, 9, 5192–5204. [Google Scholar] [CrossRef]
- Alsmadi, M.K. Hybrid Genetic Algorithm with Tabu Search with Back-Propagation Algorithm for Fish Classification: Determining the Appropriate Feature Set. Int. J. Appl. Eng. Res. 2019, 14, 4387–4396. [Google Scholar]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species identification. Aquac. Eng. 2020, 89, 102053. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, A.; Behra, S.; Bhattacharjee, D.; Srinivasan, N.T.; Nasipuri, M.; Das, N. Carp-DCAE: Deep convolutional autoencoder for carp fish classification. Comput. Electron. Agric. 2022, 196, 106810. [Google Scholar] [CrossRef]
- Chuang, M.C.; Hwang, J.N.; Williams, K. A Feature Learning and Object Recognition Framework for Underwater Fish Images. IEEE Trans. Image Process. 2016, 25, 1862–1872. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Serna, A.; Jiménez-Segura, L.F. Automatic identification of species with neural networks. PeerJ 2014, 2, e563. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.H.; Chen, C.C.; Lin, S.I.; Lin, F.P. Real-world underwater fish recognition and identification, using sparse representation. Ecol. Inform. 2014, 23, 13–21. [Google Scholar] [CrossRef]
- Hu, J.; Li, D.; Duan, Q.; Han, Y.; Chen, G.; Si, X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Wang, Z.; Ali, Z.A.; Riaz, S. Automatic Fish Species Classification Using Deep Convolutional Neural Networks. Wirel. Pers. Commun. 2021, 116, 1043–1053. [Google Scholar] [CrossRef]
- Ismail, H.; Ayob, A.F.M.; Muslim, A.M.S.M.; Zulkifi, M.F.R. Convolutional neural network architectures performance evaluation for fish species classification. J. Sustain. Sci. Manag. 2021, 16, 124–139. [Google Scholar] [CrossRef]
- Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol. Inform. 2020, 57, 101088. [Google Scholar] [CrossRef]
- Joo, D.; Kwan, Y.s.; Song, J.; Pinho, C.; Hey, J.; Won, Y.J. Identification of Cichlid Fishes from Lake Malawi Using Computer Vision. PLOS ONE 2013, 8, e77686. [Google Scholar] [CrossRef] [Green Version]
- Ju, Z.; Xue, Y. Fish species recognition using an improved AlexNet model. Optik 2020, 223, 165499. [Google Scholar] [CrossRef]
- Knausgård, K.M.; Wiklund, A.; Sørdalen, T.K.; Halvorsen, K.T.; Kleiven, A.R.; Jiao, L.; Goodwin, M. Temperate fish detection and classification: A deep learning based approach. Appl. Intell. 2022, 52, 6988–7001. [Google Scholar] [CrossRef]
- Kutlu, Y.; Iscimen, B.; Turan, C. Multi-Stage Fish Classification System Using Morphometry. Fresenius Environ. Bull. 2017, 26, 1911–1917. [Google Scholar]
- Li, D.; Su, H.; Jiang, K.; Liu, D.; Duan, X. Fish Face Identification Based on Rotated Object Detection: Dataset and Exploration. Fishes 2022, 7, 219. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Fan, L.; Lu, H.; Liu, L.; Liu, Y. Measuring feeding activity of fish in RAS using computer vision. Aquac. Eng. 2014, 60, 20–27. [Google Scholar] [CrossRef]
- Lu, Y.C.; Tung, C.; Kuo, Y.F. Identifying the species of harvested tuna and billfish using deep convolutional neural networks. ICES J. Mar. Sci. 2020, 77, 1318–1329. [Google Scholar] [CrossRef]
- Måløy, H.; Aamodt, A.; Misimi, E. A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Comput. Electron. Agric. 2019, 167, 105087. [Google Scholar] [CrossRef]
- Mana, S.C.; Sasipraba, T. An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model. Int. J. Artif. Intell. Tools 2022, 31, 2250017. [Google Scholar] [CrossRef]
- Mathur, M.; Vasudev, D.; Sahoo, S.; Jain, D.; Goel, N. Crosspooled FishNet: Transfer learning based fish species classification model. Multimed. Tools Appl. 2020, 79, 31625–31643. [Google Scholar] [CrossRef]
- Meng, L.; Hirayama, T.; Oyanagi, S. Underwater-Drone With Panoramic Camera for Automatic Fish Recognition Based on Deep Learning. IEEE Access 2018, 6, 17880–17886. [Google Scholar] [CrossRef]
- Pramunendar, R.A.; Prabowo, D.P.; Pergiwati, D.; Sari, Y.; Andono, P.N.; Soeleman, M.A. New Workflow for Marine Fish Classification Based on Combination Features and CLAHE Enhancement Technique. Int. J. Intell. Eng. Syst. 2020, 13, 293–304. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 2016, 187, 49–58. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, S.; Wang, C.; Yu, Z.; Zheng, H.; Zheng, B. Improving Transfer Learning and Squeeze- and-Excitation Networks for Small-Scale Fine-Grained Fish Image Classification. IEEE Access 2018, 6, 78503–78512. [Google Scholar] [CrossRef]
- Rauf, H.T.; Lali, M.I.U.; Zahoor, S.; Shah, S.Z.H.; Rehman, A.U.; Bukhari, S.A.C. Visual features based automated identification of fish species using deep convolutional neural networks. Comput. Electron. Agric. 2019, 167, 105075. [Google Scholar] [CrossRef]
- Rohani, A.; Taki, M.; Bahrami, G. Application of artificial intelligence for separation of live and dead rainbow trout fish eggs. Artif. Intell. Agric. 2019, 1, 27–34. [Google Scholar] [CrossRef]
- Saberioon, M.; Císař, P.; Labbé, L.; Souček, P.; Pelissier, P.; Kerneis, T. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features. Sensors 2018, 18, 1027. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, T.; Shibata, T.; Miyazono, T. Feature Points based Fish Image Recognition. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2016, 8, 12–22. [Google Scholar]
- Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, E. Fish species classification in unconstrained underwater environments based on deep learning. Limnol. Oceanogr. Methods 2016, 14, 570–585. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, A.A.; Gonçalves, W.N. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. Ecol. Inform. 2019, 53, 100977. [Google Scholar] [CrossRef]
- Sharmin, I.; Islam, N.F.; Jahan, I.; Joye, T.A.; Rahman, M.R.; Habib, M.T. Machine vision based local fish recognition. SN Appl. Sci. 2019, 1, 1529. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 2018, 75, 374–389. [Google Scholar] [CrossRef]
- Smadi, A.A.; Mehmood, A.; Abugabah, A.; Almekhlafi, E.; Al-Smadi, A.M. Deep convolutional neural network-based system for fish classification. Int. J. Electr. Comput. Eng. 2022, 12, 2026–2039. [Google Scholar] [CrossRef]
- Spampinato, C.; Palazzo, S.; Joalland, P.H.; Paris, S.; Glotin, H.; Blanc, K.; Lingrand, D.; Precioso, F. Fine-grained object recognition in underwater visual data. Multimed. Tools Appl. 2016, 75, 131–142. [Google Scholar] [CrossRef]
- Štifanić, D.; Musulin, J.; Car, Z.; Čep, R. Use of Convolutional Neural Network for Fish Species Classification. Pomor. Zb. 2020, 59, 131–142. [Google Scholar] [CrossRef]
- Storbeck, F.; Daan, B. Fish species recognition using computer vision and a neural network. Fish. Res. 2001, 51, 11–15. [Google Scholar] [CrossRef]
- Tharwat, A.; Hemedan, A.A.; Hassanien, A.E.; Gabel, T. A biometric-based model for fish species classification. Fish. Res. 2018, 204, 324–336. [Google Scholar] [CrossRef]
- Ubina, N.; Cheng, S.C.; Chang, C.C.; Chen, H.Y. Evaluating fish feeding intensity in aquaculture with convolutional neural networks. Aquac. Eng. 2021, 94, 102178. [Google Scholar] [CrossRef]
- Wishkerman, A.; Boglino, A.; Darias, M.J.; Andree, K.B.; Estévez, A.; Gisbert, E. Image analysis-based classification of pigmentation patterns in fish: A case study of pseudo-albinism in Senegalese sole. Aquaculture 2016, 464, 303–308. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Duan, Q. Transfer learning and SE-ResNet152 networks-based for small-scale unbalanced fish species identification. Comput. Electron. Agric. 2021, 180, 105878. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, D.; Chen, L.; Zhang, S.; Sun, C.; Yang, X.; Wang, Y. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture 2019, 507, 457–465. [Google Scholar] [CrossRef]
- Zion, B.; Shklyar, A.; Karplus, I. In-vivo fish sorting by computer vision. Aquac. Eng. 2000, 22, 165–179. [Google Scholar] [CrossRef]
- Zion, B.; Shklyar, A.; Karplus, I. Sorting fish by computer vision. Comput. Electron. Agric. 1999, 23, 175–187. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, X.; Zhang, B.; Lin, K.; Xu, D.; Guo, Q.; Sun, C. An adaptive image enhancement method for a recirculating aquaculture system. Sci. Rep. 2017, 7, 6243. [Google Scholar] [CrossRef] [Green Version]
- Villon, S.; Mouillot, D.; Chaumont, M.; Subsol, G.; Claverie, T.; Villéger, S. A new method to control error rates in automated species identification with deep learning algorithms. Sci. Rep. 2020, 10, 10972. [Google Scholar] [CrossRef]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Fan, X.; Yang, S.X.; Zhang, X.; Zhu, X. Contrast Limited Adaptive Histogram Equalization-Based Fusion in YIQ and HSI Color Spaces for Underwater Image Enhancement. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1854018. [Google Scholar] [CrossRef]
- Abdul Ghani, A.S.; Mat Isa, N.A. Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl. Soft Comput. 2015, 27, 219–230. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarling, P.; Cantor, M.; Clapés, A.; Escalera, S. Deep learning with self-supervision and uncertainty regularization to count fish in underwater images. PLoS ONE 2022, 17, e0267759. [Google Scholar] [CrossRef]
- Zhou, C.; Lin, K.; Xu, D.; Chen, L.; Guo, Q.; Sun, C.; Yang, X. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Comput. Electron. Agric. 2018, 146, 114–124. [Google Scholar] [CrossRef]
- Irwin, A. Citizen Science: A Study of People, Expertise and Sustainable Development, 1st ed.; Routledge: London, UK, 2002. [Google Scholar]
- Barbedo, J.G.A. Deep learning applied to plant pathology: The problem of data representativeness. Trop. Plant Pathol. 2022, 47, 85–94. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Deng, Y. Deep learning on mobile devices: A review. In Mobile Multimedia/Image Processing, Security, and Applications 2019; Agaian, S.S., Asari, V.K., DelMarco, S.P., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 10993, p. 109930A. [Google Scholar] [CrossRef]
Reference | Theme |
---|---|
Alsmadi and Almarashdeh [11] | Fish classification |
An et al. [12] | Fish feeding systems |
Delcourt et al. [13] | Fish behavior (tracking) |
Han et al. [14] | Enhancement of underwater images |
Goodwin et al. [15] | Deep learning for marine ecology |
Li et al. [16] | Fish feeding behavior (not exclusively computer vision) |
Li et al. [17] | Fish biomass estimation (not exclusively computer vision) |
Li and Du [18] | Deep learning for aquaculture |
Li et al. [19] | Fish classification |
Li et al. [20] | Fish stress behavior (not exclusively computer vision) |
Zhou et al. [21] | Fish behavior |
Saberioon et al. [9] | Machine vision systems in aquaculture |
Saleh et al. [3] | Fish classification using deep learning |
Saleh et al. [22] | Deep learning in fish habitat monitoring |
Sheaves et al. [23] | Deep learning for juvenile fish surveys |
Shortis et al. [24] | Automated identification, measurement, and counting of fish |
Ubina and Cheng [25] | Unmanned systems for aquaculture monitoring and management |
Wang et al. [26] | Intelligent fish farming |
Xia et al. [27] | Fish behavior (toxicology) |
Yang et al. [28] | Deep learning for smart fish farming |
Yang et al. [29] | Computer vision applied to aquaculture |
Zha [30] | Machine learning applied to aquaculture |
Zion [31] | Computer vision applied to aquaculture |
Acronym | Meaning | Acronym | Meaning |
---|---|---|---|
AI | Artificial Intelligence | LSTM | Long Short-Term Memory |
ANN | Artificial Neural Network | LTP | Local Ternary Patterns |
APMM | Adaptive Poisson Mixture Model | MLPNN | Multilayer Perceptron Neural Network |
BPNN | Back Propagation Neural Network | MSR | Multi-Scale Retinex |
CMFTNet | Counterpoised Multiple Fish Tracking Network | NB | Naive Bayes |
CNN | Convolutional Neural Network | ODKELM | Optimal Deep Kernel Extreme Learning Machine |
DNN | Deep Neural Network | PCA | Principal Component Analysis |
DPANet | Depth Potentiality-Aware Network | PNN | Probabilistic Neural Network |
DSRN | Dual-Stream Recurrent Network | R-CNN | Region-Based Convolutional Neural Network |
FCN | Fully Convolutional Network | RF | Random Forests |
FFRNet | Fish Face Recognition Network | RPN | Region Proposal Network |
GAN | Generative Adversarial Network | SIFT | Scale-Invariant Feature Transform |
GLCM | Gray Level Co-Occurrence Matrix | SRC | Sparse Representation Classification |
GMM | Gaussian Mixture Model | SSD | Sigle-Shot Detector |
kNN | k-Nearest Neighbors | SOM | Self Organizing Map |
LDA | Linear Discriminant Analysis | SVM | Support Vector Machine |
LR | Logistic Regression | YOLO | You Only Look Once |
Reference | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|
Aliyu et al. [40] | Underwater (controlled) | Catfish | MLPNN | 1.00 1 |
Banno et al. [2] | All | Saithe, mackerel, cod | YOLOv4 | 0.95 1 |
Boudhane and Nsiri [41] | Underwater (uncontrolled) | N/A | Mean shift, Poisson–Gaussian mixture | 0.94 1 |
Coro and Walsh [42] | Underwater (uncontrolled) | Tuna, sharks, mantas | YOLOv3 | 0.65–0.75 1 |
Coronel et al. [43] | Underwater (controlled) | Tilapia (fingerlings) | Local Normalization, median filters, Minimum-Error threshold | 0.95–1.00 2 |
Costa et al. [44] | Petri dishes | Tilapia (larvae) | CNN (10 architectures) | 0.97 3 |
Ditria et al. [5] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.93 3 |
Ditria et al. [4] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.88–0.92 3 |
Ditria et al. [45] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.88–0.92 3 |
Follana-Berná et al. [33] | Underwater (uncontrolled) | Painted comber | Mathematical model | 0.74–0.76 4 |
French et al. [37] | Out of water (conveyor belt) | N/A | CNN | 0.84–0.98 1 |
Jiang et al. [46] | Underwater (Fish4Knowledge) | 10 fish species | CNN | 0.91 1 |
Labao and Naval [36] | Underwater (uncontrolled) | Several fish species | Region-based CNNs, LSTM networks | 0.44–0.56 2 |
Laradji et al. [47] | Underwater (uncontrolled) | Several fish species | B Affinity LCFCN | 0.75–0.88 5 |
Lee et al. [48] | Underwater (controlled) | N/A | LABView (3rd party software) | 0.8 1 |
Li et al. [49] | Out of water | Several fish species | YOLO-V3-Tiny | 0.40–0.99 3 |
Li et al. [50] | Underwater (uncontrolled) | N/A | CME-YOLOv5 | 0.95 1 |
Lin et al. [51] | Underwater (controlled) | Golden crucian carp | YOLOv5, DNN regression, AlexNet | 0.9 2 |
Liu et al. [52] | Underwater (uncontrolled) | N/A | Adaptive multi-scale Gaussian background model | 0.51 5 |
Marini et al. [53] | Underwater (uncontrolled) | N/A | Genetic programming | 0.98 6 |
Marini et al. [54] | Underwater (uncontrolled) | N/A | Genetic programming | 0.92 6 |
Park and Kang [55] | Underwater (uncontrolled) | Bluegill, Largemouth | YOLOv2 | 0.94–0.97 4 |
Salman et al. [10] | Underwater (Fish4Knowledge) | 15 species | GMM, region-based CNN | 0.80–0.87 2 |
Zhang et al. [56] | Underwater (uncontrolled) | Atlantic salmon | CNN | 0.95 1 |
Zhao et al. [38] | Underwater (controlled) | Porphyry seabream | YOLOv4 with MobileNetV3 backbone | 0.95 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbedo, J.G.A. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes 2022, 7, 335. https://doi.org/10.3390/fishes7060335
Barbedo JGA. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes. 2022; 7(6):335. https://doi.org/10.3390/fishes7060335
Chicago/Turabian StyleBarbedo, Jayme Garcia Arnal. 2022. "A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management" Fishes 7, no. 6: 335. https://doi.org/10.3390/fishes7060335
APA StyleBarbedo, J. G. A. (2022). A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes, 7(6), 335. https://doi.org/10.3390/fishes7060335