An Insight into the Feeding Ecology of Serranus scriba, a Shallow Water Mesopredator in the Northern Adriatic Sea, with a Non-Destructive Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork
2.3. Laboratory Work
2.4. Data Analyses
3. Results
3.1. S. scriba Density and Biometry
3.2. Feeding Habits of S.scriba
4. Discussion
4.1. Advantages and Disadvantages of Non-Destructive Methods of Sampling and Analyses
4.2. Feeding Habits and Trophic Levels of S. scriba in the Northern Adriatic and in Other Mediterranean Areas
4.3. Implications for Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orlando-Bonaca, M.; Lipej, L. Factors affecting habitat occupancy of fish assemblage in the Gulf of Trieste (Northern Adriatic Sea). Mar. Ecol. 2005, 26, 42–53. [Google Scholar] [CrossRef]
- IRP; Fletcher, S.; Lu, Y.; Alvarez, P.; McOwen, C.; Baninla, Y.; Fet, A.M.; He, G.; Hellevik, C.; Klimmek, H.; et al. Governing Coastal Resources. In Implications for a Sustainable Blue Economy; Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Airoldi, L.; Balata, D.; Beck, M.W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 2008, 366, 8–15. [Google Scholar] [CrossRef]
- Elliott, M.; Borja, A.; Cormier, R. Activity-footprints, pressures-footprints and effects-footprints—Walking the pathway to determining and managing human impacts in the sea. Mar. Pol. Bul. 2020, 155, 111201. [Google Scholar] [CrossRef] [PubMed]
- Borja, A.; Menchaca, I.; Garmendia, J.M.; Franco, J.; Larreta, J.; Sagarminaga, Y.; Schembri, Y.; González, R.; Antón, R.; Micallef, T.; et al. Big Insights From a Small Country: The Added Value of Integrated Assessment in the Marine Environmental Status Evaluation of Malta. Front. Mar. Sci. 2021, 8, 638232. [Google Scholar] [CrossRef]
- Sarrazin, V.; Kuhs, V.; Kullmann, B.; Kreutle, A.; Pusch, C.; Thiel, R. A sensitivity-based procedure to select representative fish species for the Marine Strategy Framework Directive indicator development, applied to the Greater North Sea. Ecol. Indic. 2021, 131, 108161. [Google Scholar] [CrossRef]
- Nelson, J.S. Fishes of the World; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bauchot, M.L. Poissons osseux. Fiches FAO d’identification pour les besoins de la pêche. (rev. 1). Méditerranée et mer Noire. Zone Pêche. 1987, 37, 891–1421. (In French) [Google Scholar]
- Maigret, J.; Ly, B.; Maigret, S. Marine fishes of Mauritania. France Sci. Nat. 1986, 213, 77. [Google Scholar]
- Moreno-Lopes, A.; Tuset, J.V.; González Garcia-Diaz, M.M. Feeding habits of Serranus scriba (Osteichthyes, Serranidae). Bol. Mus. Munic. Funchal. 2002, 53, 5–17. [Google Scholar]
- Zorica, B.; Pallaoro, A.; Sinovčić, G.; Keč, V.Č. Recent data of maximum age and length of painted comber Serranus scriba (Linnaeus, 1758) in Mediterranean Sea. Acta Adriat. 2010, 51, 223–226. [Google Scholar]
- Heemstra, P.C.; Anderson, W.D., Jr.; Lobel, P.S. Groupers (seabasses, creolefish, coney, hinds, hamlets, anthiines, and soapfishes). In FAO Species Identification Guide for Fishery Purpouses. The Living Marine Resources of the Western Central Atlantic; Bony Fishes Part 1 (Acipenseridae to Grammatidae); Food and agriculture organization of the United Nations: Rome, Italy, 2013; Volume 2, pp. 1308–1369. [Google Scholar]
- Arculeo, M.; Froglia, C.; Riggio, S. Food partitioning between Serranus scriba and Scorpaena porcus (Perciformes) on the infralittoral ground of the South Tyrrhenian Sea. Cybium 1993, 17, 251–258. [Google Scholar]
- Vasiliki, M. An Estimation of the Diet of the Species Serranus scriba (Linnaeus, 1758) in the Area of Nisiopi, in South-West Lesvos. J. Environ. Eng. Sci. 2016, 5, 593–600. [Google Scholar] [CrossRef]
- Deudero, S.; Pinnegar, J.K.; Polunin, N.V.C. Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar. Biol. 2004, 145, 971–981. [Google Scholar] [CrossRef] [Green Version]
- Heemstra, P.C.; Randall, J.E. Groupers of the world. FAO Fish. Synop. 1993, 16, 1. [Google Scholar]
- Pinnegar, J.K.; Polunin, N.V.C. Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 2000, 122, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Labropoulou, M.; Eleftheriou, A. The foraging ecology of two pairs of congeneric demersal fish species: Importance of morphological characteristics in prey selection. J. Fish. Biol. 1997, 50, 324–340. [Google Scholar] [CrossRef]
- Saikia, S.K. On the methodology of feeding ecology in fish. Eur. J. Ecol. 2016, 2, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Ferry, L.; Cailliet, G. Sample size and data analysis: Are we characterizing and comparing diet properly. In Proceedings of the Feeding, Ecology and Nutrition in Fish. International Congress on the Biology of Fishes, San Francisco, CA, USA, 14–18 July 1996; pp. 71–80. [Google Scholar]
- Wootton, J.T. Effects of disturbance on species diversity: A multitrophic perspective. Am. Nat. 1998, 152, 803–825. [Google Scholar] [CrossRef]
- Ross, S.T. Resource partitioning in fish assemblages: A review of field studies. Copeia 1986, 2, 352–388. [Google Scholar] [CrossRef]
- Guedes, A.P.P.; Araújo, F.G. Trophic resource partitioning among five flatfish species (Actinopterygii, Pleuronectiformes) in a tropical bay in south-eastern Brazil. J. Fish Biol. 2008, 72, 1035–1054. [Google Scholar] [CrossRef]
- Wetherbee, B.M.; Cortés, E.; Bizzarro, J.J. Food consumption and feeding habits. In Biology of Sharks and Their Relatives, 1st ed.; Jeffrey, C., Carrier, J.A., Musick, M.R., Heithaus, Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 225–246. [Google Scholar]
- Motta, P.J.; Wilga, C.D. Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. In The Behavior and Sensory Biology of Elasmobranch Fishes: An Anthology in Memory of Donald Richard Nelson, 1st ed.; Timothy, C.T., Samuel, H.G., Eds.; Springer Science-Business Media, B.V.: Dordrecht, The Netherlands, 2001; pp. 131–156. [Google Scholar]
- Martin, R.A.; Hammerschlag, N.; Collier, R.S.; Fallows, C. Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa. J. Mar. Biolog. Assoc. 2005, 85, 1121–1136. [Google Scholar] [CrossRef] [Green Version]
- Frid, A.; Marliave, J. Predatory fishes affect trophic cascades and apparent competition in temperate reefs. Biol. Lett. 2010, 6, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Collar, D.C.; O’Meara, B.C.; Wainwright, P.C.; Near, T.J. Piscivory limits diversification of feeding morphology in centrarchid fishes. Int. J. Org. Evol. 2009, 63, 1557–1573. [Google Scholar] [CrossRef]
- Stergiou, K.I.; Karpouzi, V.S. Feeding habits and trophic levels of Mediterranean fish. Rev. Fish Biol. Fish. 2002, 11, 217–254. [Google Scholar] [CrossRef]
- Svanback, R.; Bolnick, D.I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. 2007, 274, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 2001, 98, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Baxter, C.V.; Fausch, K.D.; Murakami, M.; Chapman, P.L. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 2004, 85, 2656–2663. [Google Scholar] [CrossRef]
- Baxter, C.V.; Fausch, K.D.; Saunders, C.W. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 2005, 50, 201–220. [Google Scholar] [CrossRef]
- Hynes, H.B.N. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a Review of Methods Used in Studies of the Food of Fishes. J. Anim. Ecol. 1950, 19, 36–58. [Google Scholar] [CrossRef]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Cortes, E. A critical review of methods of studying fish feeding based on analysis of stomach contents: Application to elasmobranch fishes. Can. J. Fish. Aquat. Sci. 1997, 54, 726–738. [Google Scholar] [CrossRef]
- Baker, A.M.; Fraser, D.F. A method for securing the gut contents of small, live fish. Trans. Am. Fish. Soc. 1976, 105, 520–522. [Google Scholar] [CrossRef]
- Crossman, E.J.; Hamilton, J.G. An apparatus for sampling gut contents of large, living fishes. Environ. Biol. Fishes 1978, 3, 297–300. [Google Scholar] [CrossRef]
- Light, R.W.; Adler, P.H.; Arnold, D.E. Evaluation of gastric lavage for stomach analyses. N. Am. J. Fish. Manag. 1983, 3, 81–85. [Google Scholar] [CrossRef]
- Kamler, J.F.; Pope, K.L. Nonlethal methods of examining fish stomach contents. Rev. Fish. Sci. Aquac. 2001, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hartleb, C.F.; Moring, J.R. An improved gastric lavage device for removing stomach contents from live fish. Fish. Res. 1995, 24, 261–265. [Google Scholar] [CrossRef]
- Meehan, W.R.; Miller, R.A. Stomach flushing: Effectiveness and influence on survival and condition of juvenile salmonids. J. Fish. Res. Board Can. 1978, 35, 1359–1363. [Google Scholar] [CrossRef] [Green Version]
- Boicourt, W.C.; Kuzmić, M. The inland sea: Circulation of Chesapeake Bay and the Northern Adriatic. Mar. Ecol. Prog. Ser. 1999, 303, 81–129. [Google Scholar] [CrossRef]
- Ogrin, D. Podnebje in izredni vremenski dogodki ob Tržaškem zalivu pred letom 1841. Geogr. Obz. 2012, 3, 23–30. (In Slovene) [Google Scholar]
- Bailey, R.G. Ecoregions—The Ecosystem Geography of the Oceans and Continents, 2nd ed.; Springer: New York, NY, USA, 1998; pp. 196–200. [Google Scholar]
- Bićanić, Z. Undersurface Salinity Minimum Participation in the Process of Making Deep Adriatic Sea-water. Hrvat. Geogr. Glas. 1998, 60, 123–134. [Google Scholar]
- Turk, R. An assessment of the vulnerability of the Slovene coastal belt and its categorisation in view of (in)admissible human pressure, various activities and land-use. Ann. Ser. Hist. Nat. 1999, 9, 37–50. [Google Scholar]
- Lipej, L.; Orlando-Bonaca, M. Assessing Blennioid fish populations in the shallow Gulf of Trieste: A comparison of four in situ methods. Period. Biol. 2006, 108, 23–29. [Google Scholar]
- Labrosse, P.; Kulbicki, M.; Ferraris, J. Underwater visual fish census surveys: Proper use and implementation. In Reef Resources Assessment Tools; Secretariat of the Pacific Community: Noumea, New Caledonia, 2002. [Google Scholar]
- Tuset, V.M.; Garcia-Diaz, M.M.; Gonzalez, J.A.; Lorente, M.J.; Lozano, I.J. Reproduction and growth of the painted comber Serranus scriba (Serranidae) of the Marine Reserve of Lanzarote Island (Central-Eastern Atlantic). Estuar. Coast. Shelf Sci. 2005, 64, 335–346. [Google Scholar] [CrossRef]
- Riedl, R. Fauna e flora del Mediterraneo. Dalle Alghe ai Mammiferi; una Guida Sistematica alle Specie che Vivono nel mar Mediterraneo, 1st ed.; Franco Muzzio Editore: Padova, Italy, 1991. (In Italian) [Google Scholar]
- Falciai, L.; Minervini, R. Guida dei Crostacei Decapodi d’Europa, 1st ed.; Franco Muzzio Editore: Padova, Italy, 1992. [Google Scholar]
- Hayward, J.P.; Ryland, S.J. Handbook of the Marine Fauna of North-West Europe, 2nd ed.; Oxford University Press: Oxford, UK, 2017; (In Italian). [Google Scholar] [CrossRef]
- Tuset, V.M.; Lombarte, A.; Assis, C.A. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 2008, 72, 7–198. [Google Scholar] [CrossRef]
- Lombarte, A.; Chic, Ò.; Parisi-Baradad, V.; Olivella, R.; Piera, J.; Garcia-Ladona, E. A web-based environment for shape analysis of fish otoliths. The AFORO database. Sci. Mar. 2006, 70, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, J.S.; Green, R.H. Redundancy of variables used to describe importance of prey species in fish diets. Can. J. Fish. Aquat. 1983, 40, 635–637. [Google Scholar] [CrossRef]
- Hureau, J.C. Biologie Comparée de Quelques Poissons Antarctiques (Nototheniidae). Musée Océanographique: Monaco-Ville, Monaco, 1970; p. 68. (In French) [Google Scholar]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication, 1st ed.; University of Illinois Press: Urbana, IL, USA, 1963. [Google Scholar]
- Pauly, D.; Froese, R. Trophic levels of fishes. In FishBase 2000: Concepts, Design and Data Sources, 1st ed.; The International Center for Living Aquatic Resources Management (ICLARM): Manila, Philippines, 2000; p. 127. [Google Scholar]
- Pauly, D.; Froese, R.; Palomares, M.L. Fishing down aquatic food webs: Industrial fishing over the past half-century has noticeably depleted the topmost links in aquatic food chains. Am. Sci. 2000, 88, 46–51. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. Primer v6: User Manual/Tutorial. Plymouth; PRIMER-E: Auckland, New Zealand, 2006. [Google Scholar]
- Trkov, D.; Lipej, L. A non-destructive method for assessing the feeding habits of coastal fish. Mediterr. Mar. Sci. 2019, 20, 453–459. [Google Scholar] [CrossRef]
- Zorica, B.; Ezgeta-Balić, D.; Vidjak, O.; Vuletin, V.; Šestanovič, M.; Isajović, I.; Čikeš Keč, V.; Vrgoč, N.; Harod, C. Diet Composition and Isotopic Analysis of Nine Important Fisheries Resources in the Eastern Adriatic Sea (Mediterranean). Front. Mar. Sci. 2021, 8, 609432. [Google Scholar] [CrossRef]
- Muoneke, M.I.; Childress, W.M. Hooking mortality: A review for recreational fisheries. Rev. Fish. Sci. Aquac. 1994, 2, 123–156. [Google Scholar] [CrossRef]
- Wilde, G.R. Tournament-associated mortality in black bass. Fisheries 1998, 23, 12–22. [Google Scholar] [CrossRef]
- Alos, J.; Palmer, M.; Grau, A.M.; Deudero, S. Effects of hook size and barbless hooks on hooking injury, catch per unit effort, and fish size in a mixed-species recreational fishery in the western Mediterranean Sea. ICES J. Mar. Sci. 2008, 65, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, M.K.; Gray, C.A.; Reid, D.D.; Wooden, M.E.L.; Young, D.J.; Haddy, J.A.; Damiano, C. Mortality of key fish species released by recreational anglers in an Australian estuary. J. Exp. Mar. Biol. Ecol. 2005, 321, 171–179. [Google Scholar] [CrossRef]
- Carbines, G.D. Large hooks reduce catch-and-release mortality of blue cod, Parapercis colias in the Marlborough Sounds of New Zealand. N. Am. J. Fish. Manag. 1999, 19, 81–85. [Google Scholar] [CrossRef]
- Bacheler, N.M.; Buckel, J.A. Does hook type influence the catch rate, size, and injury of grouper in a North Carolina commercial fishery? Fish. Res. 2004, 69, 303–311. [Google Scholar] [CrossRef]
- Cooke, S.J.; Barthel, B.L.; Suski, C.D.; Siepker, M.J.; Philipp, D.P. Influence of circle hook size on hooking efficiency, injury, and size selectivity of bluegill with comments on circle hook conservation benefits in recreational fisheries. N. Am. J. Fish. Manag. 2005, 25, 211–219. [Google Scholar] [CrossRef]
- Chopin, F.S.; Arimoto, T.; Inoue, Y. A comparison of the stress response and mortality of sea bream Pagrus major captured by hook and line and trammel net. Fish. Res. 1996, 28, 277–289. [Google Scholar] [CrossRef]
- Alos, J.; Palmer, M.; Balle, S.; Grau, A.M.; Morales-Nin, B. Individual growth pattern and variability in Serranus scriba: Bayesian analysis. ICES J. Mar. Sci. 2010, 67, 502–512. [Google Scholar] [CrossRef] [Green Version]
- March, D.; Palmer, M.; Alós, J.; Grau, A.; Cardona, F. Short-term residence, home range size and diel patterns of the painted comber Serranus scriba in a temperate marine reserve. Mar. Ecol. Prog. Ser. 2010, 400, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Beulig, A.; Fowler, J. Fish on prozac: Effect of serotonin reuptake inhibitors on cognition in goldfish. Behav. Neurosci. 2008, 122, 426. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Hernandez, J. Feeding studies take guts–critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 2019, 95, 1364–1373. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.; Buckland, A.; Sheaves, M. Fish gut content analysis: Robust measures of diet composition. Fish Fish. 2014, 15, 170–177. [Google Scholar] [CrossRef]
- Buckland, A.; Baker, R.; Loneragan, N.; Sheaves, M. Standardising fish stomach content analysis: The importance of prey condition. Fish. Res. 2017, 196, 126–140. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Klemetsen, A. Diet, gastric evacuation rates and food consumption in a stunted population of Arctic charr, Salvelinus alpinus L., in Takvatn, northern Norway. J. Fish Biol. 1988, 33, 697–709. [Google Scholar] [CrossRef]
- Greenwell, C.N.; Coulson, P.G.; Tweedley, J.R.; Loneragan, N.R. Regional differences in the feeding of the ambush predator Neosebastes pandus and comparisons of diets in the Scorpaenidae, Triglidae and Platycephalidae. J. Fish Biol. 2018, 93, 95–109. [Google Scholar] [CrossRef]
- Morato, T.; Santos, S.R.; Andrade, P.J. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atricauda (Pisces: Serranidae), from the Azores, Northeastern Atlantic. Fish. Res. 2000, 49, 51–60. [Google Scholar] [CrossRef]
- Gill, A.B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish Biol. 2003, 63, 105–116. [Google Scholar] [CrossRef]
- Mihalitsis, M.; Bellwood, D.R. A morphological and functional basis for maximum prey size in piscivorous fishes. PLoS ONE 2017, 12, e0184679. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B. Predator foraging capabilities and prey antipredator behaviours: Pre-versus postcapture constraints on size-dependent predator-prey interactions. Oikos 1996, 76, 368–380. [Google Scholar] [CrossRef]
- Hoyle, J.A.; Keast, A. The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Can. J. Zool. 1987, 65, 1972–1977. [Google Scholar] [CrossRef]
- Reimchen, T.E. Evolutionary attributes of headfirst prey manipulation and swallowing in piscivores. Can. J. Zool. 1991, 69, 2912–2916. [Google Scholar] [CrossRef]
- Price, S.A.; Claverie, T.; Near, T.J.; Wainwright, P.C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs. 2015, 34, 997–1009. [Google Scholar] [CrossRef]
- Nilsson, P.A.; Brönmark, C. Prey vulnerability to a gape-size limited predator: Behavioural and morphological impacts on northern pike piscivory. Oikos 2000, 88, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Wootton, R.J. Biology of the sticklebacks. Hydrobiology 1978, 63, 434. [Google Scholar] [CrossRef]
- Darcy, G.H.; Maisel, E.; Ogden, J.C. Cleaning preferences of the gobies Gobiosoma evelynae and G. prochilos and the juvenile wrasse Thalassoma bifasciatum. Copeia 1974, 147, 375–379. [Google Scholar] [CrossRef]
- Wicksten, M.K. Behaviour of cleaners and their client fishes at Bonaire, Netherlands Antilles. J. Nat. Hist. 1998, 32, 13–30. [Google Scholar] [CrossRef]
- Soares, M.C.; Bshary, R.; Cardoso, S.C.; Côté, I.M.; Oliveira, R.F. Face your fears: Cleaning gobies inspect predators despite being stressed by them. PLoS ONE 2012, 7, e39781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruschel, C.; Schultz, S.T. Aggressive predation drives assembly of Adriatic fish communities. Diversity 2020, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Vandewalle, P.; Casinos, A.; Viladiu, C.; Osse, J. Suction Feeding Strategies of Two Species of Mediterranean Serranidae (Serranus cabrilla and Serranus scriba). Neth. J. Zool. 1999, 49, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Vieira, P.E.; Queiroga, H.; Costa, F.O.; Holdich, D.M. Distribution and species identification in the crustacean isopod genus Dynamene Leach, 1814 along the North East Atlantic-Black Sea axis. ZooKeys 2016, 635, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Fišer, C. Prispevek k poznavanju škarjevk (Tanaidacea: Peracarida: Crustacea) v slovenskem morju. Nat. Slov. 2004, 6, 11–17. (In Slovene) [Google Scholar]
- Karachle, P.K.; Stergiou, K.I. The effect of season and sex on trophic levels of marine fishes. J. Fish Biol. 2008, 72, 1463–1487. [Google Scholar] [CrossRef]
- Politou, C.Y.; Papaconstantinou, C. Feeding ecology of Mediterranean poor cod, Trisopterus minutus capelanus (Lacepede), from the eastern coast of Greece. Fish. Res. 1994, 19, 269–292. [Google Scholar] [CrossRef]
- Tudela, S. Ecosystem effects of fishing in the Mediterranean. FAO Fisheries Department (EP/INT/759/GEF). General fisheries Comission for the Mediterranean Studies and Reviews. 2000, 74, 44. [Google Scholar]
- Karachle, P.K.; Stergiou, K.I. An update on the feeding habits of fish in the Mediterranean Sea (2002–2015). Mediterr. Mar. Sci. 2017, 18, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lipej, L.; Mavrič, B.; Orlando-Bonaca, M.; Uhan, J.; Makovec, T.; Trkov, D. Raziskave Ribjih Združb v Akvatoriju Krajinskega Parka Strunjan: Zaključno Poročilo 2015; Nacionalni Inštitut za Biologijo: Morska Biološka Postaja: Piran, Slovenija, 2015; p. 32. (In Slovene) [Google Scholar]
- Jennings, S.; Renones, O.; Morales-Nin, B.; Polunin, N.V.C.; Moranta, J.; Coll, J. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: Implications for the study of trophic pathways. Mar. Ecol. Progr. Ser. 1997, 146, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Pinnegar, J.K. Why the damselfish Chromis chromis is a key species in the M editerranean rocky littoral—A quantitative perspective. J. Fish Biol. 2018, 92, 851–872. [Google Scholar] [CrossRef]
- Chovanec, A.; Hofer, R.; Schiemer, F. Fish as bioindicators. Trace Met. Contam. Environ. 2003, 6, 639–676. [Google Scholar] [CrossRef]
- Gerhart, A. Bioindicator species and their use in biomonitoring. Env. Mon. 2002, 1, 77–123. [Google Scholar]
- Simpfendorfer, C.A.; Heupel, M.R.; White, W.T.; Dulvy, N.K. The importance of research and public opinion to conservation management of sharks and rays: A synthesis. Mar. Freshw. Res. 2011, 62, 518–527. [Google Scholar] [CrossRef]
- Ferretti, F.; Osio, G.C.; Jenkins, C.J.; Rosenberg, A.A.; Lotze, H.K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 2013, 3, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gül, G.; Demirel, N. Evaluation of the comprehensive feeding strategy and trophic role of overexploited mesopredator species in the Sea of Marmara (northeastern Mediterranean). Estuar. Coast. Shelf Sci. 2021, 259, 107448. [Google Scholar] [CrossRef]
- Gianni, F.; Bartolini, F.; Airoldi, L.; Mangialajo, L. Reduction of herbivorous fish pressure can facilitate focal algal species forestation on artificial structures. Mar. Environ. Res. 2018, 138, 102–109. [Google Scholar] [CrossRef]
- Sergio, F.; Newton, I.; Marchesi, L.; Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 2006, 43, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.A.; Terborgh, J.; Brashares, S.J.; Power, E.M.; Berger, J.; Bond, J.W.; Carpenter, R.S.; Essington, T.E.; Holt, D.R.; Jackson, B.C.; et al. Trophic downgrading of planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampling Site | Site Name | Latitude (N) | Longitude (E) | Sampling Dates | Total n of Fish |
---|---|---|---|---|---|
1 | Žusterna | 45.547027 | 13.708841 | 27 May 2021, 11 June 2021 | 4 |
2 | Belveder | 45.532796 | 13.640692 | 24 June 2021 | 13 |
3 | Cape Ronek | 45.540174 | 13.615569 | 25 May 2021 | 11 |
4 | Pacug | 45.525771 | 13.589926 | 28 May 2021 | 18 |
5 | Fiesa | 45.525989 | 13.583407 | 5 June 2021 | 28 |
6 | Cape Piran | 45.529401 | 13.571537 | 20 May 2021 | 5 |
7 | Marine Biology Station Piran | 45.517830 | 13.568325 | 22 September 2020, 30 September 2020, 1 October 2020, 11 May 2021, 20 May 2021, 26 May 2021, 27 May 2021 | 44 |
8 | Bernardin | 45.515486 | 13.569735 | 31 May 2021, 1 June 2021, 2 June 2021, 3 June 2021 | 27 |
%PN | %PF | Prey Category |
---|---|---|
>50 | >30 | Main preferential prey |
<30 | Main occasional prey | |
10 < %PN < 50 | >10 | Secondary frequent prey |
<10 | Secondary frequent prey | |
1 < %PN < 10 | >10 | Complementary prey of 1st order |
<10 | Complementary prey of 2nd order | |
<1 | Accidental prey |
Sampling Location | Date | Length (m) | Depth (m) | Average Density (ind./100 m2) |
---|---|---|---|---|
Cape Piran | 20 May 2021 | 50 | 1.5 | 7 |
3.0–3.5 | 8 | |||
Cape Ronek | 25 May 2021 | 50 | 1.5 | 11.5 |
3.8 | 10 | |||
Pacug | 23 June 2021 | 50 | 1.5 | 7 |
3.5 | 6.5 |
TL | FL | SL | |
---|---|---|---|
Average size (mm) | 140.38 (SD = ±19.12) | 137.31 (SD = ±18.28) | 117.23 (SD = ±16.50) |
Max. size (mm) | 216.98 | 213.62 | 180.02 |
Min. size (mm) | 108.30 | 107.40 | 68.88 |
Average weight (g) | 42.68 (SD = ±21.74) | ||
Min. weight (g) | 17.00 | ||
Max. weight (g) | 163.80 |
Age | TL (mm) | N | % |
---|---|---|---|
1+ | 108–130 | 50 | 33.3 |
2+ | 130–152 | 60 | 40.0 |
3+ | 152–170 | 29 | 19.3 |
4+ | 170–200 | 11 | 7.3 |
Taxa | %PF (n= 150) | %PN | Prey Category (Hureau 1970) |
---|---|---|---|
CRUSTACEA (total) | 98.67 | 69.21 | Main preference prey |
AMPHIPODA (total) | 2.67 | 0.83 | Accidental prey |
Caprellidae | 2.67 | 0.83 | |
CIRRIPEDIA | 2.00 | 0.50 | Accidental prey |
Crustacea indeterminata | 1.33 | 0.33 | |
DECAPODA (total) | 96.67 | 46.75 | Secondary frequent prey |
ANOMURA (total) | 79.33 | 25.45 | Secondary frequent prey |
Anomura indeterminata | 5.33 | 1.66 | |
Pisidia sp. | 56.67 | 18.80 | |
Porcellana platycheles | 6.00 | 1.66 | |
BRACHYURA (total) | 30.67 | 7.65 | Complementary prey of 1st order |
Brachyura indeterminata | 16.67 | 4.16 | |
Pilumnus hirtellus | 12.67 | 3.16 | |
Majidae | 1.33 | 0.33 | |
CARIDEA (total) | 11.33 | 3.33 | Complementary prey of 1st order |
Athanas nitescens | 2.67 | 0.67 | |
Caridea indeterminata | 8.67 | 2.66 | |
Decapoda indeterminata | 38.00 | 10.32 | |
ISOPODA (total) | 37.33 | 13.64 | Secondary frequent prey |
Anthuridae | 2.67 | 0.83 | |
Idoteidae | 0.67 | 0.17 | |
Isopoda indeterminata | 18.67 | 5.32 | |
Sphaeromatidae | 20.67 | 7.32 | |
MYSIDA | 15.33 | 3.99 | Complementary prey of 1st order |
OSTRACODA | 2.67 | 0.67 | Accidental prey |
TANAIDACEA (Tanais dulongii) | 8.67 | 2.50 | Complementary prey of 2nd order |
POLYCHAETA (total) | 40.67 | 12.63 | Secondary frequent prey |
Polychaeta-Errantia | 39.33 | 11.81 | |
Polynoidae | 0.67 | 0.17 | |
Spirorbis sp. | 2.67 | 0.65 | |
MOLLUSCA | 5.33 | Accidental prey | |
BIVALVIA | 2.67 | 0.67 | Accidental prey |
GASTROPODA | 17.33 | 4.66 | Complementary prey of 1st order |
TELEOSTEI | 20.67 | 6.82 | Complementary prey of 1st order |
Atherina hepsetus | 5.33 | 1.50 | |
Gobius cruentatus | 2.67 | 1.00 | |
Gobius fallax | 3.33 | 1.33 | |
Mullus surmuletus | 0.67 | 0.17 | |
Osteichtyes indeterminata | 8.00 | 2.00 | |
Pomatoschistus bathii | 2.00 | 0.50 | |
Symphodus cinereus | 0.67 | 0.17 | |
Symphodus ocellatus | 0.67 | 0.17 | |
Eggs | 11.33 | 5.99 | Complementary prey of 1st order |
Age | TROPH | SD |
---|---|---|
1+ | 3.42 | ±0.53 |
2+ | 3.46 | ±0.56 |
3+ | 3.48 | ±0.57 |
4+ | 3.36 | ±0.56 |
Our Research | Moreno-Lopes et al., 2002 | Arculeo et al., 1993 | ||||
---|---|---|---|---|---|---|
Northern Adriatic, Gulf of Trieste | Lanzarote, Atlantic Ocean | Thyrrenian sea, Gulf of Palermo | ||||
N= | 150 | 351 | 244 | |||
%PN | %PF | %PN | %PF | %PN | %PF | |
CRUSTACEA (total) | 69.21 | 98.67 | 75.08 | 95.52 | 60.9 | |
AMPHIPODA | 0.83 | 2.67 | 0.98 | 1.87 | 0.7 | 0.02 |
CIRRIPEDIA | 0.50 | 2.00 | ||||
Crustacea indeterminata | 0.33 | 1.33 | ||||
DECAPODA (total) | 46.75 | 96.67 | 60 | 82.24 | ||
ANOMURA | 25.45 | 79.33 | 13.44 | 23.36 | ||
Galatheidae | 18.6 | 24.1 | ||||
Paguridae | 0.02 | <0.1 | ||||
Porcellanidae | 3.4 | 2.2 | ||||
BRACHYURA (total) | 7.65 | 30.67 | 21.64 | 46.73 | 0.4 | 12.9 |
CARIDEA (total) | 3.33 | 11.33 | 24.92 | 37.38 | 49.8 | 27.7 |
ISOPODA | 13.64 | 0.33 | 0.93 | 3.1 | ||
MYSIDA | 3.99 | 15.33 | 1.5 | 0.1 | ||
OSTRACODA | 0.67 | 2.67 | ||||
STOMATOPODA | 0.33 | 0.93 | ||||
TANAIDACEA | 2.50 | 8.67 | 2.50 | 8.67 | ||
MOLLUSCA | 5.33 | 1.97 | 5.61 | 0.9 | ||
BIVALVIA | 0.67 | 2.67 | ||||
CEPHALOPODA | 0.98 | 2.80 | 0.2 | 1.5 | ||
GASTROPODA | 4.66 | 17.33 | 0.98 | 2.80 | 0.7 | <0.01 |
POLYCHAETA (total) | 12.63 | 40.67 | 0.33 | 0.93 | 0.8 | 0.7 |
TELEOSTEI | 6.82 | 20.67 | 22.64 | 38.32 | 10.2 | 30.1 |
Teleostei indeterminata | 2.00 | 8.00 | 11.15 | 20.56 | ||
Atherinidae | ||||||
Atherina sp. | 1.50 | 5.33 | 2.3 | 6.65 | ||
Blennidae | ||||||
Blennidae indeterminata | 0.33 | 0.93 | ||||
Parablennius pilicornis | 1.31 | 2.80 | ||||
Scartella cristata | 0.33 | 0.93 | ||||
Gobiesocidae | ||||||
Lepadogaster sp. | 0.66 | 0.93 | ||||
Gobiidae | ||||||
Gobius cruentatus | 1.00 | 2.67 | ||||
Gobius fallax | 1.33 | 3.33 | ||||
Gobius niger | 0.66 | 1.87 | ||||
Pomatoschistius bathi | 0.50 | 2.00 | ||||
Labriidae | ||||||
Centrolabrus trutta | 0.33 | 0.93 | ||||
Labridae indeterminata | 2.62 | 5.61 | ||||
Symphodus cinereus | 0.17 | 0.67 | ||||
Symphodus ocellatus | 0.17 | 0.67 | ||||
Mullidae | ||||||
Mullus surmuletus | 0.17 | 0.67 | ||||
Serranidae | ||||||
Serranus sp. | 0.33 | 0.93 | ||||
Scorpaenidae | ||||||
Scorpaena maderensis | 0.66 | 1.87 | ||||
Sygnathidae | ||||||
Sygnathus sp. | 0.66 | 1.87 | ||||
Synodontidae | ||||||
Synodus synodus | 0.33 | 0.93 | ||||
Trypterygiidae | ||||||
Tripterygion delaisi | 0.66 | 1.87 | ||||
Eggs | 5.99 | 11.33 |
Authors and Year of Publication | Sampling Location | TROPH | TL (mm) |
---|---|---|---|
Our study, 2021 | Northern Adriatic, Gulf of Trieste | 3.43 ± 0.52 | 108–217 |
Karachle and Stergiou, 2017 | Northwest Aegean Sea | 3.94 ± 0.63 | 106–236 |
Stergiou and Karpouzi, 2002 | (Review–average from various locations in Mediterranean) | 3.79 | 50–230 |
Khoury, 1984 | Tyrrhenian Sea, Gulf of Napoli | 3.8 | |
Arculeo et al., 1993 | Tyrrhenian Sea, Gulf of Palermo | 3.87 | 100–230 |
Vasilki, 2016 | South-West Lesvos, Aegan Sea, | 3.8 | 173+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokovšek, A.; Orlando-Bonaca, M.; Trkov, D.; Lipej, L. An Insight into the Feeding Ecology of Serranus scriba, a Shallow Water Mesopredator in the Northern Adriatic Sea, with a Non-Destructive Method. Fishes 2022, 7, 210. https://doi.org/10.3390/fishes7040210
Lokovšek A, Orlando-Bonaca M, Trkov D, Lipej L. An Insight into the Feeding Ecology of Serranus scriba, a Shallow Water Mesopredator in the Northern Adriatic Sea, with a Non-Destructive Method. Fishes. 2022; 7(4):210. https://doi.org/10.3390/fishes7040210
Chicago/Turabian StyleLokovšek, Ana, Martina Orlando-Bonaca, Domen Trkov, and Lovrenc Lipej. 2022. "An Insight into the Feeding Ecology of Serranus scriba, a Shallow Water Mesopredator in the Northern Adriatic Sea, with a Non-Destructive Method" Fishes 7, no. 4: 210. https://doi.org/10.3390/fishes7040210
APA StyleLokovšek, A., Orlando-Bonaca, M., Trkov, D., & Lipej, L. (2022). An Insight into the Feeding Ecology of Serranus scriba, a Shallow Water Mesopredator in the Northern Adriatic Sea, with a Non-Destructive Method. Fishes, 7(4), 210. https://doi.org/10.3390/fishes7040210