Population Structure, Age and Growth of Sardine (Sardina pilchardus, Walbaum, 1792) in an Upwelling Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biological Data
2.3. Estimation of Growth Parameters
2.4. Statistical Analysis
3. Results
3.1. Population Structure
3.2. Growth Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Baldé, B.S. Dynamique des Petits Poissons Pélagiques (Sardinella aurita et Ethmalosa fimbriata) au Sénégal dans un Contexte de Changement Climatique: Diagnostic et Synthèse Bioécologiques. Ph.D. Thesis, Université Cheikh Anta Diop, Dakar, Senegal, 2019. [Google Scholar]
- Checkley, D.; Alheit, J.; Oozeki, Y.; Roy, C. Climate Change and Small Pelagic Fish; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Baldé, B.S.; Fall, M.; Kantoussan, J.; Sow, F.N.; Diouf, M.; Brehmer, P. Fish-Length Based Indicators for Improved Management of the Sardinella Fisheries in Senegal. Reg. Stud. Mar. Sci. 2019, 31, 100801. [Google Scholar] [CrossRef]
- Baldé, B.S.; Sow, F.N.; Ba, K.; Ekau, W.; Brehmer, P.; Kantoussan, J.; Fall, M.; Diouf, M. Variability of Key Biological Parameters of Round Sardinella Sardinella aurita and the Effects of Environmental Changes. J. Fish Biol. 2019, 94, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerta, P.; Hunsicker, M.E.; Quetglas, A.; Álvarez-Berastegui, D.; Esteban, A.; González, M.; Hidalgo, M. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea. PLoS ONE 2015, 10, e0133439. [Google Scholar] [CrossRef] [PubMed]
- Baldé, B.S.; Döring, J.; Ekau, W.; Diouf, M.; Brehmer, P. Bonga Shad (Ethmalosa fimbriata) Spawning Tactics in an Upwelling Environment. Fish. Oceanogr. 2019, 28, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. On the Pile-up Effect and Priors for Linf and M/K: Response to a Comment by Hordyk et al. on A New Approach for Estimating Stock Status from Length Frequency Data. ICES J. Mar. Sci. 2019, 7, 461–465. [Google Scholar] [CrossRef]
- Brehmer, P.; Gerlotto, F.; Laurent, C.; Cotel, P.; Achury, A.; Samb, B. Schooling Behaviour of Small Pelagic Fish: Phenotypic Expression of Independent Stimuli. Mar. Ecol. Prog. Ser. 2007, 334, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Voulgaridou, P.; Stergiou, K.I. Trends in Various Biological Parameters of the European Sardine, Sardina pilchardus (Walbaum, 1792), in the Eastern Mediterranean Sea. Sci. Mar. 2003, 67, 269–280. [Google Scholar] [CrossRef] [Green Version]
- FAO. Report of the FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa. Banjul, the Gambia, 26 June–1 July 2018. Rapport Du Groupe de Travail de La FAO Sur l’évaluation Des Petits Pélagiques Au Large de l’Afrique Nord-Occidentale. Banjul, Gambie, 26 Juin–1 Juillet 2018; FAO: Rome, Italy, 2020; p. 321. [Google Scholar]
- ICES. Report of the Working Group on Biological Parameters; ICES: Ghent, Belgium, 2018; p. 186. [Google Scholar]
- ICES. Report of the Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA); ICES: Lisbon, Portugal, 2018. [Google Scholar]
- Fréon, P.; Stéquert, B. Note Sur La Présence de Sardina pilchardus (Walb.) Au Sénégal: Étude de La Biométrie et Interprétation. Cybium 1979, 6, 65–90. [Google Scholar]
- FAO. Report of the FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa. Casablanca. Morocco, 24–28 May 2011; FAO: Casablanca, Maroc, 2013; p. 267. [Google Scholar]
- Diankha, O.; Demarcq, H.; Fall, M.; Thiao, D.; Thiaw, M.; Sow, B.A.; Gaye, A.T.; Brehmer, P. Studying the Contribution of Different Fishing Gears to the Sardinella Small-Scale Fishery in Senegalese Waters. Aquat. Living Resour. 2017, 30, 27. [Google Scholar] [CrossRef] [Green Version]
- Colloca, F.; Cardinale, M.; Maynou, F.; Giannoulaki, M.; Scarcella, G.; Jenko, K.; Bellido, J.M.; Fiorentino, F. Rebuilding Mediterranean Fisheries: A New Paradigm for Ecological Sustainability. Fish Fish. 2013, 14, 89–109. [Google Scholar] [CrossRef]
- Laskaridis, K. Study of the Biology of the Sardine (Clupea pilchardus Walb.) in Greek Waters. Prakt. Ell.’Udrobiol. Inst 1948, 2, 83–87. [Google Scholar]
- López-Jamar, E.; Coombs, S.H.; García, A. The Distribution and Survival of Larvae of Sardine Sardina pilchardus (Walbaum, 1792) off the North and North-Western Atlantic Coast of the Iberian Peninsula, in Relation to Environmental Conditions. Oceanogr. Lit. Rev. 1998, 7, 1234. [Google Scholar]
- Guisande, C.; Vergara, A.R.; Riveiro, I.; Cabanas, J.M. Climate Change and Abundance of the Atlantic-Iberian Sardine (Sardina pilchardus). Fish. Oceanogr. 2004, 13, 91–101. [Google Scholar] [CrossRef]
- Borja, A.; Fontan, A.; Sáenz, J.O.N.; Valencia, V. Climate, Oceanography, and Recruitment: The Case of the Bay of Biscay Anchovy (Engraulis encrasicolus). Fish. Oceanogr. 2008, 17, 477–493. [Google Scholar] [CrossRef]
- Chouvelon, T.; Chappuis, A.; Bustamante, P.; Lefebvre, S.; Mornet, F.; Guillou, G.; Violamer, L.; Dupuy, C. Trophic Ecology of European Sardine Sardina pilchardus and European Anchovy Engraulis encrasicolus in the Bay of Biscay (North-East Atlantic) Inferred from Δ13C and Δ15N Values of Fish and Identified Mesozooplanktonic Organisms. J. Sea Res. 2014, 85, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Laurent, V.; Planes, S. Effective Population Size Estimation on Sardina pilchardus in the Bay of Biscay Using a Temporal Genetic Approach. Biol. J. Linn. Soc. 2007, 90, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Planque, B.; Bellier, E.; Lazure, P. Modelling Potential Spawning Habitat of Sardine (Sardina pilchardus) and Anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish. Oceanogr. 2007, 16, 16–30. [Google Scholar] [CrossRef]
- Belveze, H. Observations Complémentaires Sur Le Stock Sardinier de l’Atlantique Maroccain de 1968 à 1971 et Estimation de Quelques Paramètres.(Supplementary Observations on the Sardine Stock along the Moroccan Atlantic Coast from 1968 to 1971 and Estimation of Some Parameters). Bull. Inst. Pêches Marit. Maroco 1972, 20, 5–69. [Google Scholar]
- Erzini, K. An Empirical Study of Variability in Length-at-Age of Marine Fishes. J. Appl. Ichthyol. 1994, 10, 17–41. [Google Scholar] [CrossRef]
- Idrissi, M. Note Sur La Pecherie Des Espéces Pélagiques En Méditerranée. FAO Fish. Rep. 1987, 395, 133–139. [Google Scholar]
- FAO. Report of the FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa Casablanca, Morocco, 20–25 July 2015/ Rapport du groupe de travail de la FAO sur l’évaluation des petits pélagiques au large de l’Afrique Nord-Occidentale Casablanca, Maroc, 20-25 Juillet 2015 (Casablanca, Maroc: FAO); FAO: Casablanca, Maroc, 2016; p. 243. [Google Scholar]
- Hordyk, A.; Ono, K.; Valencia, S.; Loneragan, N.; Prince, J. A Novel Length-Based Empirical Estimation Method of Spawning Potential Ratio (SPR), and Tests of Its Performance, for Small-Scale, Data-Poor Fisheries. ICES J. Mar. Sci. 2015, 72, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Rev. Fish Biol. Fish. 1992, 2, 177–178. [Google Scholar]
- Methot, R.D., Jr.; Wetzel, C.R. Stock Synthesis: A Biological and Statistical Framework for Fish Stock Assessment and Fishery Management. Fish. Res. 2013, 142, 86–99. [Google Scholar] [CrossRef]
- Alemany, J. Development of a Bayesian Framework for Data Limited Stock Assessment Methods and Management Scenarios Proposal. Case Studies of Cuttlefish (Sepia officinalis) and Pollack (Pollachius pollachius). Ph.D. Thesis, Normandie Université, Le Havre, France, 2017. [Google Scholar]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and Solutions for the World’s Unassessed Fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, N.A.; Dichmont, C.M.; Haddon, M.; Smith, D.C.; Smith, A.D.M.; Sainsbury, K. Empirical Harvest Strategies for Data-Poor Fisheries: A Review of the Literature. Fish. Res. 2015, 171, 141–153. [Google Scholar] [CrossRef]
- Chrysafi, A.; Kuparinen, A. Assessing Abundance of Populations with Limited Data: Lessons Learned from Data-Poor Fisheries Stock Assessment. Environ. Rev. 2016, 24, 25–38. [Google Scholar] [CrossRef]
- Chrysafi, A.; Cope, J.M.; Kuparinen, A. Eliciting Expert Knowledge to Inform Stock Status for Data-Limited Stock Assessments. Mar. Policy 2019, 101, 167–176. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. A New Approach for Estimating Stock Status from Length Frequency Data. ICES J. Mar. Sci. 2018, 75, 2004–2015. [Google Scholar] [CrossRef]
- Rudd, M.B.; Thorson, J.T. Accounting for Variable Recruitment and Fishing Mortality in Length-Based Stock Assessments for Data-Limited Fisheries. Can. J. Fish. Aquat. Sci. 2017, 75, 1019–1035. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Gascuel, D.; Sumalia, U.R.; Pauly, D. Minimizing the Impact of Fishing. Fish Fish. 2016, 17, 785–802. [Google Scholar] [CrossRef]
- Mildenberger, T.K.; Taylor, M.H.; Wolff, M. TropFishR: An R Package for Fisheries Analysis with Length-Frequency Data. Methods Ecol. Evol. 2017, 8, 1520–1527. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stocks; Fisheries Report; FAO: Rome, Italy, 1982; Volume 234, ISBN 92-5-101333-0. [Google Scholar]
- McQuinn, I.H.; Cleary, L.; O’Boyle, R.N. Estimation de La Mortalité Naturelle. In Méthodes d’évaluation des Stocks Halieutiques; Projet CIEO-860060; Centre International d’Exploitation des Oceans: Halifex, NS, Canada, 1990; Volume 1, pp. 441–464. [Google Scholar]
- Bentley, N.; Stokes, K. Contrasting Paradigms for Fisheries Management Decision Making: How Well Do They Serve Data-Poor Fisheries? Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 2009, 1, 391–401. [Google Scholar] [CrossRef]
- Prince, J.; Hordyk, A.; Valencia, S.R.; Loneragan, N.; Sainsbury, K. Revisiting the Concept of Beverton–Holt Life-History Invariants with the Aim of Informing Data-Poor Fisheries Assessment. ICES J. Mar. Sci. 2015, 72, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Pilling, G.M.; Apostolaki, P.; Failler, P.; Floros, C.; Large, P.A.; Morales-Nin, B.; Reglero, P.; Stergiou, K.I.; Tsikliras, A.C. Assessment and Management of Data-Poor Fisheries. Adv. Fish. Sci. 2008, 50, 280–305. [Google Scholar] [CrossRef]
- Gningue, I.D.; Gueye, P. Recueil Des Données Physico-Chimiques Enregistrées Au Niveau Des Stations Côtières Du Sénégal de 1987 à 1993; Centre de Recherches Océanographiques de DakarThiaroye: Dakar, Senegal, 1994; p. 141. [Google Scholar]
- Ndoye, S.; Capet, X.; Estrade, P.; Sow, B.; Dagorne, D.; Lazar, A.; Gaye, A.; Brehmer, P. SST Patterns and Dynamics of the Southern Senegal-Gambia Upwelling Center. J. Geophys. Res. Oceans 2014, 119, 8315–8335. [Google Scholar] [CrossRef] [Green Version]
- Diankha, O.; Thiaw, M.; Sow, B.A.; Brochier, T.; GAyE, A.T.; Brehmer, P. Round Sardinella (Sardinella aurita) and Anchovy (Engraulis encrasicolus) Abundance as Related to Temperature in the Senegalese Waters. Thalassas 2015, 31, 9–17. [Google Scholar]
- Faye, S.; Lazar, A.; Sow, B.A.; Gaye, A.T. A Model Study of the Seasonality of Sea Surface Temperature and Circulation in the Atlantic North-Eastern Tropical Upwelling System. Front. Phys. 2015, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; Estrade, P.; Machu, É.; Ndoye, S.; Grelet, J.; Lazar, A.; Marié, L.; Dausse, D.; Brehmer, P. On the Dynamics of the Southern Senegal Upwelling Center: Observed Variability from Synoptic to Superinertial Scales. J. Phys. Oceanogr. 2017, 47, 155–180. [Google Scholar] [CrossRef]
- Hamerlynck, O.; Duvail, S. The Rehabilitation of the Delta of the Senegal River in Mauritania: Fielding the Ecosystem Approach; Starr Pirot; International Union for Conservation of Nature: Gland, Switzerland, 2003; ISBN 2-8317-0751-X. [Google Scholar]
- Hamerlynck, O.; Duvail, S. Crues Artificielles et Gestion Intégrée Des Basses Vallées Des Fleuves Africains Les Exemples Du Fleuve Sénégal (Afrique de l’Ouest) et Du Fleuve Rufiji (Afrique de l’Est). In Pêche et Aquaculture: Pour une Exploitation Durable des Ressources Vivantes de la Mer et du Littoral; Espace et Territoires; Presses Universitaires de Rennes: Rennes, France, 2006; pp. 471–485. ISBN 2-7535-0222-6. [Google Scholar]
- Thiaw, M.; Auger, P.-A.; Sow, F.N.; Brochier, T.; FAYE, S.; Diankha, O.; Brehmer, P. Effect of Environmental Conditions on the Seasonal and Inter-Annual Variability of Small Pelagic Fish Abundance off North-West Africa: The Case of Both Senegalese Sardinella. Fish. Oceanogr. 2017, 26, 583–601. [Google Scholar] [CrossRef]
- Charouki, N.; Sarré, A.; Serghini, M.; Ebaye, O.S.; Krakstad, J.O. Contribution to Acoustic Targets Identification in Northwest Africa by Statistical Schools Properties. In Science and Management of Small Pelagics. Symposium on Science and the Challenge of Managing Small Pelagic Fisheries on Shared Stocks in Northwest Africa; FAO: Rome, Italy, 2011; Volume 18, pp. 285–294. [Google Scholar]
- Wetherall, J.A. A New Method for Estimating Growth and Mortality Parameters from Length Frequency Data. Fishbyte 1986, 4, 12–14. [Google Scholar]
- Wetherall, J.A.; Polovina, J.J.; Ralston, S. Estimating Growth and Mortality in Steady-State Fish Stocks from Length-Frequency Data. In Proceedings of the ICLARM Conference Proceeding; ICLARM: Manila, Philippines, 1987; Volume 13, pp. 53–74. [Google Scholar]
- Sparre, P.; Venema, S.C. Introduction to Tropical Fish Stock Assessment. Food and Agriculture Organization of the United Nations. Part 1; Manual Fisheries Technical Paper; FAO: Rome, Italy, 1996; Volume 306. [Google Scholar]
- Schwamborn, R. How Reliable Are the Powell–Wetherall Plot Method and the Maximum-Length Approach? Implications for Length-Based Studies of Growth and Mortality. Rev. Fish Biol. Fish. 2018, 28, 587–605. [Google Scholar] [CrossRef] [Green Version]
- von Bertalanffy, L. A Quantitative Theory of Organic Growth (Inquiries on Growth Laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Munro, J.L.; Pauly, D. A Simple Method for Comparing the Growth of Fishes and Invertebrates. Fishbyte 1983, 1, 5–6. [Google Scholar]
- Pauly, D. Growth Performance in Fishes: Rigorous Description of Patterns as a Basis for Understanding Causal Mechanisms. ICLARM Aquabyte 1991, 4, 3–6. [Google Scholar]
- Pauly, D. A Preliminary Compilation of Fish Length Growth Parameters; Ber. Inst. Meereskd; Christian-Albrechts-Univ: Kiel, Germany, 1978; p. 200. [Google Scholar]
- Tserpes, G. Evaluation of Growth Rate Differences in Populations of Sardina pilchardus (Walbaum, 1792) from the Aegean and Ionian Seas. Cybium 1991, 15, 15–22. [Google Scholar]
- Antonakakis, K.; Giannoulaki, M.; Machias, A.; Somarakis, S.; Sanchez, S.; Ibaibarriaga, L.; Uriarte, A. Assessment of the Sardine (Sardina pilchardus Walbaum, 1792) Fishery in the Eastern Mediterranean Basin (North Aegean Sea). Mediterr. Mar. Sci. 2011, 12, 333–357. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, K.I. Biology, Ecology and Dynamics of Cepola macrophthalma (L., 1758)(Pisces: Cepolidae) in the Euboikos and Pagassitikos Gulfs. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 1991. [Google Scholar]
- Erzini, K. A Compilation of Data on Variability in Length-Age in Marine Fishes; Collaborative Research Support Program; University of Rhode Island: Kingston, RI, USA, 1991; p. 36. [Google Scholar]
- Silva, A.V.; Meneses, I.; Silva, A. Predicting the Age of Sardine Juveniles (Sardina pilchardus) from Otolith and Fish Morphometric Characteristics. Sci. Mar. 2015, 79, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Carrera, P.; Massé, J.; Uriarte, A.; Santos, M.B.; Oliveira, P.B.; Soares, E.; Porteiro, C.; Stratoudakis, Y. Geographic Variability of Sardine Growth across the Northeastern Atlantic and the Mediterranean Sea. Fish. Res. 2008, 90, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Pertierra, J.P.; Morales-Nin, B. Sardine Growth in the Catalan Sea (NW Mediterranean) Determined by Means of Otolith Interpretation and Length Frequency Data. Sci. Mar. 1989, 53, 821–826. [Google Scholar]
- Froese, R. Estimating Somatic Growth of Fishes from Maximum Age or Maturity. Acta Ichthyol. Piscat. 2022, 52, 125–133. [Google Scholar] [CrossRef]
- Alemany, F.; Alvarez, F. Growth Differences among Sardine (Sardina pilchardus Walb.) Populations in Western Mediterranean. Sci. Mar. 1993, 57, 229–234. [Google Scholar]
- Belveze, H.; Erzini, K. The Influence of Hydroclimatic Factors on the Availability of the Sardine (Sardina pilchardus Walbaum) in the Moroccan Atlantic Fishery. In Proceedings of the Expert Consultation to Examine Changes in Abundance and Species Composition of Neritic Fish Resources; Fisheries Report; FAO: Rome, Italy, 1983; Volume 2, pp. 285–327. ISBN 92-5-001447-3. [Google Scholar]
- Bouchereau, J.L.; Djabali, F.; Do Chi, T.; Mouhoub, R.; Pastor, X.; Tomasini, J.A. Essais d’evaluation de l’etat d’exploitation Des Stocks de Sardines Dans Les Divisions Statistiques Baléares et Golfe Du Lion, Par Quelques Méthodes Analytiques Simples. FAO Fish. Rep. 1985, 347, 163–185. [Google Scholar]
- McDonald, J.H. Handbook of Biological Statistics; Sparky House Publishing: Baltimore, MD, USA, 2009; Volume 2. [Google Scholar]
- Harrell, F.E., Jr. With Contributions from Charles Dupont and Many Others: Hmisc: Harrell Miscellaneous; R Package Version 3.17-2; 2017. [Google Scholar]
- Bakun, A. Patterns in the Ocean; California Sea Grant, in cooperation with Centro de Investigaciones Biologicas del Noroeste: La Paz, Mexico; San Diego, CA, USA, 1996; ISBN 1-888691-01-8. [Google Scholar]
- Auger, P.-A.; Gorgues, T.; Machu, E.; Aumont, O.; Brehmer, P. What Drives the Spatial Variability of Primary Productivity and Matter Fluxes in the North-West African Upwelling System? A Modelling Approach and Box Analysis. Biogeosciences 2016, 13, 6419–6440. [Google Scholar] [CrossRef] [Green Version]
- Silva, A. Morphometric Variation among Sardine (Sardina pilchardus) Populations from the Northeastern Atlantic and the Western Mediterranean. ICES J. Mar. Sci. 2003, 60, 1352–1360. [Google Scholar] [CrossRef]
- Atarhouch, T.; Rüber, L.; Gonzalez, E.G.; Albert, E.M.; Rami, M.; Dakkak, A.; Zardoya, R. Signature of an Early Genetic Bottleneck in a Population of Moroccan Sardines (Sardina pilchardus). Mol. Phylogenet. Evolut. 2006, 39, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Morales-Nin, B. Growth Determination of Tropical Marine Fishes by Means of Otolith Interpretation and Length Frequency Analysis. Aquat. Living Resour. 1989, 2, 241–253. [Google Scholar] [CrossRef]
- Francis, M.P.; Francis, R. Growth Rate Estimates for New Zealand Rig (Mustelus Lenticulatus). Mar. Freshw. Res. 1992, 43, 1157–1176. [Google Scholar] [CrossRef]
- Campana, S.E. Accuracy, Precision and Quality Control in Age Determination, Including a Review of the Use and Abuse of Age Validation Methods. J. Fish Biol. 2001, 59, 197–242. [Google Scholar] [CrossRef]
- Lux, F.E. Age Determination of Fishes; National Marine Fisheries Service; Fishery Leaflet: Seattle, WA, USA, 1971. [Google Scholar]
- Hammers, B.E.; Miranda, L.E. Comparison of Methods for Estimating Age, Growth, and Related Population Characteristics of White Crappies. N. Am. J. Fish. Manag. 1991, 11, 492–498. [Google Scholar] [CrossRef]
- Basilone, G.; Guisande, C.; Patti, B.; Mazzola, S.; Cuttitta, A.; Bonanno, A.; Kallianiotis, A. Linking Habitat Conditions and Growth in the European Anchovy (Engraulis encrasicolus). Fish. Res. 2004, 68, 9–19. [Google Scholar] [CrossRef]
- Brosset, P.; Fromentin, J.-M.; Van Beveren, E.; Lloret, J.; Marques, V.; Basilone, G.; Bonanno, A.; Carpi, P.; Donato, F.; Keč, V.Č. Spatio-Temporal Patterns and Environmental Controls of Small Pelagic Fish Body Condition from Contrasted Mediterranean Areas. Prog. Oceanogr. 2017, 151, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Barra, M.; Basilone, G.; Genovese, S.; Rumolo, P.; Goncharov, S.; Popov, S.; Buongiorno Nardelli, B.; Iudicone, D.; Procaccini, G. Environmental Processes Driving Anchovy and Sardine Distribution in a Highly Variable Environment: The Role of the Coastal Structure and Riverine Input. Fish. Oceanogr. 2016, 25, 471–490. [Google Scholar] [CrossRef]
- Hattab, T.; Gucu, A.; Ventero, A.; de Felice, A.; Machias, A.; Saraux, C.; Gašparević, D.; Basilone, G.; Costantini, I.; Leonori, I. Temperature Strongly Correlates with Regional Patterns of Body Size Variation in Mediterranean Small Pelagic Fish Species. Mediterr. Mar. Sci. 2021, 22, 800. [Google Scholar] [CrossRef]
- Basilone, G.; Ferreri, R.; Mangano, S.; Pulizzi, M.; Gargano, A.; Barra, M.; Mazzola, S.; Fontana, I.; Giacalone, G.; Genovese, S. Effects of Habitat Conditions at Hatching Time on Growth History of Offspring European Anchovy, Engraulis encrasicolus, in the Central Mediterranean Sea. Hydrobiologia 2018, 821, 99–111. [Google Scholar] [CrossRef]
- Basilone, G.; Ferreri, R.; Barra, M.; Bonanno, A.; Pulizzi, M.; Gargano, A.; Fontana, I.; Giacalone, G.; Rumolo, P.; Mazzola, S. Spawning Ecology of the European Anchovy (Engraulis encrasicolus) in the Strait of Sicily: Linking Variations of Zooplankton Prey, Fish Density, Growth, and Reproduction in an Upwelling System. Prog. Oceanogr. 2020, 184, 102330. [Google Scholar] [CrossRef]
- Baibai, T.; Oukhattar, L.; Quinteiro, J.V.; Mesfioui, A.; Rey-Mendez, M. First Global Approach: Morphological and Biological Variability in a Genetically Homogeneous Population of the European Pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic Coast. Rev. Fish Biol. Fish. 2012, 22, 63–80. [Google Scholar] [CrossRef]
- Diogoul, N.; Brehmer, P.; Demarcq, H.; El Ayoubi, S.; Thiam, A.; Sarre, A.; Mouget, A.; Perrot, Y. On the Robustness of an Eastern Boundary Upwelling Ecosystem Exposed to Multiple Stressors. Sci. Rep. 2021, 11, 1908. [Google Scholar] [CrossRef]
- Sarré, A.; Krakstad, J.-O.; Brehmer, P.; Mbye, E.M. Spatial Distribution of Main Clupeid Species in Relation to Acoustic Assessment Surveys in the Continental Shelves of Senegal and The Gambia. Aquat. Living Res. 2018, 31, 9. [Google Scholar] [CrossRef]
- Sedykh, K.A. Etude de l’upwelling Pres de La Cote de l’Afrique Du Nord-Ouest Part l’Institut Atlantique de Recherches Scientifiques de La Pêche et de l’Oceanographie (Atlan. NIRO). Rapp. Groupe Trav. Poisson. Pelagiques Cotiers Ouest Afr. Maurit. Liberia (26 N-5 N) COPACE/PACE/Series 1979, 78, 93–99. [Google Scholar]
- Baldé, B.S.; Brehmer, P.; Sow, F.N.; Ekau, W.; Kantoussan, J.; Fall, M.; Diouf, M. Population Dynamics and Stock Assessment of Ethmalosa fimbriata in Senegal Call for Fishing Regulation Measures. Reg. Stud. Mar. Sci. 2018, 24, 165–173. [Google Scholar] [CrossRef]
- Hiyama, Y.; Nishida, H.; Goto, T. Interannual Fluctuations in Recruitment and Growth of the Sardine, Sardinops melanostictus, in the Sea of Japan and Adjacent Waters. Res. Popul. Ecol. 1995, 37, 177–183. [Google Scholar] [CrossRef]
Length (cm) | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 3 | 0 | 8 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 4 | 0 |
22 | 101 | 42 | 15 | 14 | 8 | 12 | 13 | 26 | 35 | 22 | 35 | 71 |
23 | 15 | 57 | 45 | 26 | 5 | 16 | 17 | 34 | 46 | 37 | 27 | 56 |
24 | 98 | 46 | 31 | 41 | 37 | 63 | 79 | 45 | 54 | 65 | 94 | 71 |
25 | 83 | 12 | 11 | 56 | 27 | 16 | 7 | 26 | 46 | 66 | 32 | 29 |
26 | 99 | 0 | 0 | 32 | 35 | 0 | 38 | 41 | 19 | 44 | 9 | 45 |
27 | 46 | 0 | 0 | 2 | 40 | 0 | 78 | 31 | 0 | 22 | 8 | 68 |
28 | 39 | 25 | 8 | 22 | 51 | 1 | 65 | 37 | 7 | 45 | 8 | 53 |
29 | 15 | 19 | 17 | 21 | 56 | 5 | 71 | 37 | 1 | 46 | 5 | 42 |
30 | 9 | 31 | 26 | 16 | 62 | 11 | 77 | 38 | 8 | 46 | 7 | 37 |
31 | 33 | 31 | 13 | 9 | 23 | 17 | 21 | 19 | 8 | 27 | 9 | 14 |
Country | Lmax | Method | L∞ | K | t0 | φ’ | Reference |
---|---|---|---|---|---|---|---|
Mediterranean Sea | |||||||
Greece | NR | NR | 16.6 | 0.39 | −1.64 | 2.04 | Laskaridis [17] |
NR | NR | 16.7 | 0.48 | −1.31 | 2.13 | Pauly [61] | |
18 | Scale | 18.1 | 0.30 | −3.21 | 1.99 | Tserpes [62] | |
21 | LF | 20.8 | 0.86 | NR | 2.57 | Voulgaridou and Stergiou [9] | |
18.5 | NR | 19.5 | 0.39 | −0.48 | 2.17 | Antonakakis et al. [63] | |
Italy | 20.4 | Otoliths | 20.5 | 0.46 | −0.5 | 2.29 | Stergiou [64] |
NR | NR | 18.8 | 0.38 | −2.3 | 2.13 | Colloca et al. [16] | |
Morocco | 17.9 | Otoliths | 19.8 | 0.27 | −3.52 | 2.11 | Idrissi [26] |
NR | Otoliths | 21.3 | 0.25 | −2.79 | 2.06 | Idrissi [26] | |
NR | Otoliths | 21.8 | 0.27 | −2.93 | 2.11 | Idrissi [26] | |
NR | NR | 25.2 | 0.23 | NR | 2.16 | Erzini [65] | |
Iberian Peninsula | |||||||
Portugal | 16 | Otoliths | 14.3 | NR | NR | NR | Sylva et al. [66] |
North Portugal | 23.4 | LF | 20.8 | 0.6 | NR | 2.64 | Sylva et al. [67] |
South Portugal | 23.4 | LF | 20.4 | 0.1 | NR | 2.34 | Sylva et al. [67] |
Portugal | NR | LF | 22.4 | 0.67 | NR | 2.53 | Erzini [65] |
Spain | NR | Otholiths & LF | 20.08 | 0.23 | −1.1 | 1.91 | Pertierra and Morales-Nin [68] |
Bay of Biscay | |||||||
France | NR | LF | 20 | 0.32 | NR | 2.11 | Pauly [61] |
NR | LF | 25 | 0.25 | NR | 2.19 | Pauly [61] | |
NR | LF | 16.4 | 0.56 | −0.66 | 2.18 | Pauly [61] | |
NR | LF | 19 | 0.4 | NR | 2.16 | Pauly [61] | |
Spain | NR | LF | 28.4 | 0.23 | NR | 2.27 | Froese [69] |
NR | NR | 22.5 | 0.33 | −1.81 | 2.22 | Pauly [61] | |
NR | NR | 20.9 | 0.53 | −1.11 | 2.36 | Pauly [61] | |
NR | Otoliths | 20.7 | 0.69 | −0.64 | 2.47 | Alemany and Alvarez [70] | |
Northwest Africa | |||||||
Morocco | NR | NR | 21.6 | 0.49 | NR | 2.36 | Belveze [24] |
NR | NR | 21.2 | 0.68 | NR | 2.49 | Belveze and Erzini [71] | |
NR | LF | 22.2 | 0.26 | NR | 2.10 | Bouchereau et al. [72] | |
NR | Otoliths | 21.6 | 0.82 | −0.13 | 2.58 | Erzini [25] | |
Senegal | 33 | LF | 30.5 | 0.85 | −0.58 | 2.65 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldé, B.S.; Brehmer, P.; Faye, S.; Diop, P. Population Structure, Age and Growth of Sardine (Sardina pilchardus, Walbaum, 1792) in an Upwelling Environment. Fishes 2022, 7, 178. https://doi.org/10.3390/fishes7040178
Baldé BS, Brehmer P, Faye S, Diop P. Population Structure, Age and Growth of Sardine (Sardina pilchardus, Walbaum, 1792) in an Upwelling Environment. Fishes. 2022; 7(4):178. https://doi.org/10.3390/fishes7040178
Chicago/Turabian StyleBaldé, Bocar Sabaly, Patrice Brehmer, Saliou Faye, and Penda Diop. 2022. "Population Structure, Age and Growth of Sardine (Sardina pilchardus, Walbaum, 1792) in an Upwelling Environment" Fishes 7, no. 4: 178. https://doi.org/10.3390/fishes7040178
APA StyleBaldé, B. S., Brehmer, P., Faye, S., & Diop, P. (2022). Population Structure, Age and Growth of Sardine (Sardina pilchardus, Walbaum, 1792) in an Upwelling Environment. Fishes, 7(4), 178. https://doi.org/10.3390/fishes7040178