Optimizing Hard Clam Production in Taiwan by Accounting for Nonlinear Effects of Stocking Density and Feed Costs on Farm Output of Clams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Culture Method
2.2. Data Acquisition Process
2.3. Data Analysis
2.4. Threshold Regression Model
3. Results
3.1. Summary Descriptive Statistics
3.2. Parameter Estimation
3.3. Simulation Analysis of The Effects of Input Factors on Output
3.4. Analysis of the Economic and Biological Variables by Stocking Density and Feed Cost
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAO Yearbook. In Fishery and Aquaculture Statistics 2017; FAO: Rome, Italy, 2019. [Google Scholar]
- Guo, X.; Ford, S.E. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philos. Trans. R. Soc. B-Biol. Sci. 2016, 371, 20150206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paillard, C.; Le, R.F.; Borrego, J.J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 2004, 17, 477–498. [Google Scholar] [CrossRef] [Green Version]
- Rungrassamee, W.; Leelatanawit, R.; Jiravanichpaisal, P.; Klinbunga, S.; Karoonuthaisiri, N. Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Dev. Comp. Immunol. 2010, 34, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2002, 2, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Liu, B.; Xiang, J.; Jia, J. Identification and characterization of the pathogenic effect of a Vibrio parahaemolyticus-related bacterium isolated from clam Meretrix meretrix with mass mortality. J. Invertebr. Pathol. 2010, 103, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zannella, C.; Mosca, F.; Mariani, F.; Franci, C.; Folliero, V.; Galdiero, M.; Tiscar, P.; Galdiero, M. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 2017, 15, 182. [Google Scholar] [CrossRef]
- Huang, J.F.; Chou, M.T.; Lee, J.M.; Cheng, Y.H. Effects of culture area, stocking density, and shrimp and fish polyculture on the cost efficiency of hard clam, Meretrix meretrix, culture: A case study of hard clam farms in Yunlin, Taiwan. J. World Aquac. Soc. 2016, 47, 481–495. [Google Scholar] [CrossRef]
- Kuo, J. Technical Efficiency Analysis of Hard Clam (Meretrix lusoria) Production in Taiwan. Master’s Thesis, National Taiwan Ocean University, Keelung, Taiwan, 2005. [Google Scholar]
- Chang, C.C.; Huang, J.F.; Schafferer, C.; Lee, J.M.; Ho, L.M. Impacts of culture survival rate on culture cost and input factors: Case study of the hard clam (Meretrix meretrix) culture in Yunlin County, Taiwan. J. World Aquac. Soc. 2020, 51, 139–158. [Google Scholar] [CrossRef]
- Nga, B.T.; Lebailly, P. Cost Monitoring for Clam Raising Farmers in the Northern Area of Vietnam. Greener J. Agric. Sci. 2014, 4, 378–383. [Google Scholar]
- Balcázar, J.L.; De Blas, I.; Ruiz, Z.I.; Cunningham, D.; Vendrell, D.; Múzquiz, J.L. The role of probiotics in aquaculture. Vet. Microbiol. 2006, 114, 173–186. [Google Scholar] [CrossRef]
- Lara-Flores, M.; Olvera-Novoa, M.A.; Guzmán-Méndez, B.E.; López-Madrid, W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 2003, 216, 193–201. [Google Scholar] [CrossRef]
- Renuka, K.; Venkateshwarlu, M.; Ramachandra, N.A.; Prashantha, K.S. Influence of probiotics on growth performance and digestive enzyme activity of common carp (Cyprinus carpio). Int. J. Curr. Res. 2013, 5, 1696–1700. [Google Scholar]
- Far, H.Z.; Saad, C.R.B.; Daud, H.M.; Harmin, S.A.; Shakibazadeh, S. Effect of Bacillus subtilis on the growth and survival rate of shrimp (Litopenaeus vannamei). Afr. J. Biotechnol. 2009, 8, 3369–3376. [Google Scholar]
- Nikoskelainen, S.; Salminen, S.; Bylund, G.; Ouwehand, A.C. Characterization of the properties of human-and dairy-derived probiotics for prevention of infectious diseases in fish. Appl. Environ. Microbiol. 2001, 67, 2430–2435. [Google Scholar] [CrossRef] [Green Version]
- Demirci, A.; Pometto, A.L.; Cox, D.J. Enhanced organically bound selenium yeast production by fed-batch fermentation. J. Agric. Food Chem. 1999, 47, 2496–2500. [Google Scholar] [CrossRef]
- Yang, P.; Lin, J. Aerobic treatment process with by-product utilization for wastewater containing high organic solids. In Proceedings of the 13th Mid-Atlantic Industrial Wastes Conference, Ann Arbor, MI, USA, 29–30 June 1981. [Google Scholar]
- Moriarty, D. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 1998, 164, 351–358. [Google Scholar] [CrossRef]
- Martínez, C.P.; Ibáñez, A.L.; Monroy, H.O.A.; Ramírez, S.H.C. Use of probiotics in aquaculture. ISRN Microbiol. 2012, 16, 916845. [Google Scholar] [CrossRef] [Green Version]
- Zhan, P.R.; Liu, W. Immobilization and ammonia removal of photosynthetic bacteria. Adv. Mater. Res. 2013, 610–613, 311–314. [Google Scholar] [CrossRef]
- Bordignon, F.; Trocino, A.; Rossetti, E.; Zomeño, C.; Pascual, A.; Birolo, M.; Llorens, S.M.; Xiccato, G. Effect of stocking density on growth and survival of juvenile Manila clams (Ruditapes philippinarum) farmed in suspended lanterns in a North Italian lagoon. Aquac. Rep. 2021, 20, 100719. [Google Scholar] [CrossRef]
- Pellizzato, M.; Da Ros, L. Clam farming quality as a management tool: A proposal based on recent studies in Northern Adriatic lagoons. Aquac. Int. 2005, 13, 57–66. [Google Scholar] [CrossRef]
- Ponti, M.; Castellini, A.; Ragazzoni, A.; Gamba, E.; Ceccherelli, V.U.; Abbiati, M. Decline of the Manila clams stock in the northern Adriatic lagoons: A survey on ecological and socio-economic aspects. Acta Adriat. 2017, 58, 89–104. [Google Scholar] [CrossRef]
- Parisi, G.; Centoducati, G.; Gasco, L.; Gatta, P.P.; Moretti, V.M.; Piccolo, G.; Roncarati, A.; Terova, G.; Pais, A. Molluscs and echinoderms aquaculture: Biological aspects, current status, technical progress and future perspectives for the most promising species in Italy. Ital. J. Anim. Sci. 2012, 11, 397–413. [Google Scholar] [CrossRef]
- De Oliveira Ramos, C.; da Silva, F.C.; de Miranda Gomes, C.H.A.; Langdon, C.; Takano, P.; Gray, M.W.; de Melo, C.M.R. Effect of larval density on growth and survival of the Pacific oyster Crassostrea gigas in a recirculation aquaculture system. Aquaculture 2021, 540, 736667. [Google Scholar] [CrossRef]
- Dethier, M.N.; Kobelt, J.; Yiu, D.; Wentzel, L.; Ruesink, J.L. Ruesink, Context-dependence of abiotic and biotic factors influencing performance of juvenile clams. Estuar. Coast. Shelf Sci. 2019, 219, 201–209. [Google Scholar] [CrossRef]
- Cordero, D.; Delgado, M.; Liu, B.; Ruesink, J.; Saavedra, C. Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Sci. Rep. 2017, 7, 39745. [Google Scholar] [CrossRef] [Green Version]
- Jara-Jara, R.; Pazos, A.J.; Abad, M.; García-Martín, L.O.; S’anchez, J.L. Growth of clam seed (Ruditapes decussatus) reared in the wastewater effluent from a fish farm in Galicia (N.W. Spain). Aquaculture 1997, 158, 247–262. [Google Scholar] [CrossRef]
- Cigarría, J.; Fernandez, J. Management of Manila clam beds: I. Influence of seed size, type of substratum and protection on initial mortality. Aquaculture 2000, 182, 173–182. [Google Scholar] [CrossRef]
- Castagna, M. Aquaculture of the hard clam, Mercenaria Mercenaria. In Biology of the Hard Clam Developments in Aquaculture and Fisheries Science; Chapter 15; Kraeuter, J.N., Castagna, M., Eds.; Elsevier Publication: New York, NY, USA, 2001; Volume 31, pp. 675–699. [Google Scholar]
- Ngo, T.T.H.; Azadi, H.; Tran, H.C.; Lebailly, P. Assessment of household risk management strategies for coastal aquaculture: The case of clam farming in Thaibinh Province, Vietnam. Aquac. Int. 2018, 26, 451–468. [Google Scholar] [CrossRef]
- Engle, C.R. Risk analysis in production aquaculture research. In Aquaculture Economics and Financing: Management and Analysis; Wiley-Blackwell: Oxford, UK, 2010; pp. 197–206. [Google Scholar]
- Handisyde, N.T.; Ross, L.G.; Badjeck, M.-C.; Allison, E.H. The Effects of Climate Change on World Aquaculture: A Global Perspective; Final Technical Report; DFID Aquaculture and Fish Genetics Research Programme Stirling Institute of Aquaculture: Stirling, UK, 2006. [Google Scholar]
- De Silva, S.S.; Soto, D. Climate change and aquaculture: Potential impacts, adaptation and mitigation. Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge. FAO Fish. Aquac. Tech. Pap. 2009, 530, 151–212. [Google Scholar]
- Asamoah, E.K.; Nunoo, F.K.E.; Osei-Asare, Y.B.; Addo, S.; Sumaila, U.R. A production function analysis of pond aquaculture in Southern Ghana. Aquac. Econ. Manag. 2012, 16, 183–201. [Google Scholar] [CrossRef]
- Boonchuwong, P.; Boonchuwong, K.; Noorit, K. Economics of aquaculture feeding practices: Thailand. In Economics of Aquaculture Feeding Practices in Selected Asian Countries; Hasan, M.R., Ed.; FAO Fisheries Technical Paper 505; FAO: Rome, Italy, 2007; pp. 159–181. [Google Scholar]
- Phuong, N.T.; Sinh, L.; Thinh, N.; Chau, H.; Anh, C.; Hau, N. Economics of aquaculture feeding practices: Viet Nam. In Economics of Aquaculture Feeding Practices in Selected Asian Countries; Hasan, M.R., Ed.; FAO Fisheries Technical Paper 505; FAO: Rome, Italy, 2007; pp. 183–205. [Google Scholar]
- Yeh, C.Y.; Huang, J.F.; Lee, J.M.; Schafferer, C. An economic analysis of hard clam (Meretrix meretrix) farmer polyculture with milkfish (Chanos chanos), silver sea bream (Rhabdosargus sarba), and shrimps at different hard clam stocking densities: A case study of Yunlin County, Taiwan. Aquac. Int. 2017, 25, 1039–1055. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y. Advance in the mechanisms and application of microecologics in aquaculture. Prog. Vet. Med. 2008, 29, 72–75. [Google Scholar]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Murshed-e-Jahan, K.; Belton, B.; Dhar, G.C.; Rashid, H.O. Factors determining the productivity of mola carplet (Amblypharyngodon mola, Hamilton, 1822) in carp polyculture systems in Barisal district of Bangladesh. Aquaculture 2016, 465, 198–208. [Google Scholar] [CrossRef]
- Dey, M.M.; Paraguas, F.J.; Bimbao, G.B.; Regaspi, P.B. Technical efficiency of tilapia growout pond operations in the Philippines. Aquac. Econ. Manag. 2000, 4, 33–47. [Google Scholar] [CrossRef]
- Golez, N.V. Formation of acid sulfate soil and its implications to brackishwater ponds. Aquac. Eng. 1995, 14, 297–316. [Google Scholar] [CrossRef]
- Nunoo, F.K.E.; Asamoah, E.K.; Osei-Asare, Y.B. Economics of aquaculture production: A case study of pond and pen culture in southern G hana. Aquac. Res. 2014, 45, 675–688. [Google Scholar] [CrossRef]
- Reddy, G.; Reddy, M.; Sontakki, B.; Prakash, D.B. Measurement of efficiency of shrimp (Penaeus monodon) farmers in Andhra Pradesh. Indian, J. Agric. Econ. 2008, 63, 653–657. [Google Scholar]
- Tho, N.; Vromant, N.; Hung, N.T.; Hens, L. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environ. Geol. 2008, 54, 1739–1746. [Google Scholar] [CrossRef]
- Khan, M.A.; Begum, R.; Nielsen, R.; Hoff, A. Production risk, technical efficiency, and input use nexus: Lessons from Bangladesh aquaculture. J. World Aquac. Soc. 2021, 52, 57–72. [Google Scholar] [CrossRef]
- Lara-Flores, M. The use of probiotic in aquaculture: An overview. Int. Res. J. Microbiol. 2011, 2, 471–478. [Google Scholar]
- Sayed, S.; Zakaria, A.; Mohamed, G.; Mohamed, K. Use of probiotics as growth promoter, anti-bacterial and their effects on the physiological parameters and immune response of Oreochromis niloticus Lin. fingerlings J. Arab. Aquac. Soc. 2011, 6, 201–222. [Google Scholar]
- Kumar, R.; Mukherjee, S.C.; Prasad, K.P.; Pal, A.K. Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquac. Res. 2006, 37, 1215–1221. [Google Scholar] [CrossRef]
Years | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | Total | |||||||||
No. of farms | 74 | 60 | 85 | 219 | ||||||||
Variables | Mean | % | Standard Deviation | Mean | % | Standard Deviation | Mean | % | Standard Deviation | Mean | % | Standard Deviation |
Outputs (kg/ha) | ||||||||||||
Hard clam | 8658 | 5967 | 7309 | 5415 | 10,272 | 4130 | 8964 | 5293 | ||||
Inputs (NTD/ha) | ||||||||||||
Seed costs | 115,541 | 28.73 | 193,151 | 145,512 | 31.67 | 192,914 | 167,537 | 34.62 | 101,127 | 143,933 | 32.02 | 164,317 |
Feed costs | 48,142 | 11.97 | 80,479 | 49,030 | 10.67 | 43,016 | 53,225 | 11.00 | 29,748 | 50,358 | 11.20 | 54,945 |
Other costs | 116,914 | 29.08 | 349,281 | 117,551 | 25.59 | 147,329 | 117,199 | 24.22 | 65,087 | 117,199 | 26.07 | 222,543 |
Labor costs | 92,610 | 23.03 | 152,897 | 112,998 | 24.60 | 88,358 | 116,355 | 24.04 | 24,876 | 107,412 | 23.89 | 101,460 |
Capital costs | 28,885 | 7.18 | 48,288 | 34,321 | 7.47 | 30,111 | 29,642 | 6.12 | 27,290 | 30,668 | 6.82 | 36,311 |
Costs, returns, and profitability (NTD/ha) | ||||||||||||
Total costs | 402,092 | 494,116 | 459,412 | 561,274 | 483,953 | 496,737 | 449,570 | 513,533 | ||||
Gross revenue | 813,852 | 816,333 | 716,282 | 102,106 | 1,056,400 | 910,552 | 908,993 | 908,993 | ||||
Net profit | 411,760 | 322,217 | 256,870 | 459,792 | 572,447 | 413,815 | 459,423 | 395,461 | ||||
Average cost (NTD/kg) | 46.44 | 87.55 | 62.86 | 18.40 | 47.11 | 89.23 | 50.15 | 50.34 | ||||
Technical and farmer characteristics | ||||||||||||
Culture area (ha) | 2.33 | 1.99 | 1.77 | 1.21 | 1.44 | 0.99 | 1.83 | 1.50 | ||||
Culture period (months) | 10.1 | 9.38 | 11.9 | 15.64 | 12.1 | 29.74 | 11.7 | 54.94 | ||||
Fry stocking density (Million inds/ha) | 110 | 30.48 | 120 | 44.36 | 119 | 21.09 | 117 | 32.15 | ||||
Culture survival | 0.51 | 0.23 | 0.45 | 0.25 | 0.62 | 0.23 | 0.54 | 0.25 | ||||
Experience of household head (years) | 21.5 | 11.34 | 22.9 | 11.80 | 18.5 | 10.01 | 20.8 | 11.06 | ||||
Age of household head (years) | 54 | 9.00 | 53 | 9.68 | 55 | 9.42 | 54 | 9.33 | ||||
High school or above education level (%) | 56.1 | 37.23 | 58.7 | 38.78 | 61.6 | 32.54 | 58.2 | 35.13 |
Variables | Threshold Variable = Stocking Density | Variables | Threshold Variable = Feed Inputs | ||
---|---|---|---|---|---|
Coefficients | (t-Statistics) | Coefficients | (t-Statistics) | ||
Regime 1 (Stocking Density ≤ 1,087,870 inds/ha) | Regime 1 (Feed Cost ≤ 13,889 NTD/ha) | ||||
Constant | −8.674 | (−1.026) | Constant | −3.228 | (−0.253) |
Year2019 (1 = 2019) | −1.570 | (−1.428) | Year2019 (1 = 2019) | −1.878 * | (−1.759) |
Year2020 (1 = 2020) | 1.994 | (1.469) | Year2020 (1 = 2020) | −0.406 | (−0.369) |
Region (1= Sihu Township) | 1.292 | (1.313) | Region (1= Sihu Township) | 0.019 | (0.032) |
Log(Seed) | 2.106 | (1.466) | Log(Seed) | 0.885 | (0.416) |
Log(Labor) | −1.773 | (−1.050) | Log(Labor) | 1.343 | (0.859) |
Log(Feed) | 2.803 * | (1.862) | Log(Feed) | −0.068 | (−0.690) |
Log(Other) | 2.105 | (1.064) | Log(Other) | −0.499 | (−0.384) |
Log(Capital) | −3.668 ** | (−2.556) | Log(Capital) | −0.390 | (−0.474) |
Observations | 23 | Observations | 23 | ||
R2 | 0.375 | R2 | 0.268 | ||
Shapiro-Wilk W test for Normality | 0.93 [0.13] | Shapiro-Wilk W test for Normality | 0.89 [0.15] | ||
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity [p-value] | 16.89 *** [0.00] | Breusch-Pagan/Cook-Weisberg test for heteroskedasticity [p-value] | 3.16 * [0.08] | ||
Regime 2 (Stocking Density > 1,087,870 inds/ha) | Regime 2 (Feed Cost > 13,889 NTD/ha) | ||||
Constant | 0.009 | (0.013) | Constant | −1.637 | (−1.304) |
Year2019 (1 = 2019) | 0.108 * | (1.845) | Year2019 (1 = 2019) | 0.428 *** | (3.763) |
Year2020 (1 = 2020) | −0.007 | (−0.129) | Year2020 (1 = 2020) | −0.071 | (−0.883) |
Region(1 = Sihu Township) | 0.004 | (0.074) | Region(1 = Sihu Township) | 0.060 | (0.659) |
Log(Seed) | 0.275 ** | (2.539) | Log(Seed) | 0.401 * | (1.713) |
Log(Labor) | 0.595 *** | (6.089) | Log(Labor) | 1.210 *** | (3.309) |
Log(Feed) | −0.004 | (−0.110) | Log(Feed) | 0.225 | (0.892) |
Log(Other) | −0.013 | (−0.162) | Log(Other) | −0.176 | (−0.970) |
Log(Capital) | −0.133 * | (−1.787) | Log(Capital) | −0.676 *** | (−3.009) |
Observations | 196 | Observations | 196 | ||
R2 | 0.329 | R2 | 0.273 | ||
Shapiro-Wilk W test for Normality | 0.96 [0.18] | Shapiro-Wilk W test for Normality | 0.95 [0.13] | ||
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity [p-value] | 20.70 *** [0.00] | Breusch-Pagan/Cook-Weisberg test for heteroskedasticity [p-value] | 427.76 *** [0.00] | ||
Threshold effect test | Threshold effect test | ||||
LM test for no threshold [Bootstrapped p-value] | 57.236 *** [0.000] | LM test for no threshold [Bootstrapped p-value] | 24.792 *** [0.000] | ||
Threshold | F-statistics | [Bootstrapped p-value] | Threshold | F-statistics | [Bootstrapped p-value] |
Single | 22.630 ** | [0.020] | Single | 14.700 ** | [0.043] |
Double | 13.130 | [0.180] | Double | 8.020 | [0.310] |
Triple | 2.460 | [0.900] | Triple | 24.020 | [0.280] |
Factor(s) | Culture Area | Fry Stocking Density | Culture Survival | Outputs | Gross Revenue | Net Profit | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | |
Threshold of stocking density (SD) | 1.59 | 0.208 | 1.81 | 0.180 | 75.57 ** | 0.000 | 32.98 ** | 0.000 | 2.73 * | 0.097 | 0.23 | 0.629 |
Threshold of feed cost (FC) | 8.81 ** | 0.003 | 2.94 * | 0.088 | 0.25 | 0.618 | 0.65 | 0.420 | 0.01 | 0.948 | 2.36 | 0.125 |
SD × FC | 2.20 | 0.139 | 2.15 | 0.144 | 0.18 | 0.673 | 0.10 | 0.747 | 0.09 | 0.768 | 0.11 | 0.736 |
Factor(s) | Seed Cost | Feed Cost | Labor Cost | Others Cost | Capital Costs | Total Costs | ||||||
F value | Pr > F | F value | Pr > F | F value | Pr > F | F value | Pr > F | F value | Pr > F | F value | Pr > F | |
Threshold of stocking density (SD) | 1.90 | 0.169 | 0.34 | 0.558 | 1.80 | 0.181 | 0.29 | 0.588 | 0.50 | 0.481 | 0.90 | 0.342 |
Threshold of feed cost (FC) | 3.00 * | 0.084 | 6.81 ** | 0.009 | 3.75 * | 0.054 | 3.32 * | 0.069 | 3.30 * | 0.077 | 4.18 ** | 0.042 |
SD × FC | 0.05 | 0.815 | 0.32 | 0.569 | 0.11 | 0.737 | 0.01 | 0.930 | 0.54 | 0.464 | 0.02 | 0.877 |
Stocking Density ≤ 1,087,870 (inds/ha) [Standard Deviation] | Stocking Density > 1,087,870 (inds/ha) [Standard Deviation] | Feed Cost ≤13,889 (NTD/ha) [Standard Deviation] | Feed Cost > 13,889 (NTD/ha) [Standard Deviation] | |
---|---|---|---|---|
No. of farms | 23 | 196 | 23 | 196 |
Variables | ||||
Outputs (kg/ha) | ||||
Hard clam | 5155 (1332) | 9807 (4933) | 6892 (4726] | 9255 (5314) |
Inputs (NTD/ha) | ||||
Seed costs | 85,268 (62,330) | 150,888 (171,149) | 72,547 (73,614) | 152,381 (170,002) |
Feed costs | 33,293 (26,189) | 52,870 (57,072) | 10,234 (4132) | 55,655 (56,115) |
Other costs | 127,052 (107,897) | 171,235 (232,050) | 124,056 (59,106) | 178,546 (231,529) |
Labor costs | 73,266 (44,767) | 111,444 (105,491) | 60,124 (46,555) | 112,986 (104,732) |
Capital costs | 26,699 (24,943) | 31,042 (37,441) | 26,254 (30,995) | 32,083 (36,663) |
Costs, Returns, and Profitability (NTD/ha) | ||||
Total costs | 345,578 (253,131) | 517,479 (578,539) | 293,215 (163,683) | 531,651 (575,581) |
Gross revenue | 663,321 (424,063) | 937,821 (530,634) | 746,348 (453,285) | 916,334 (534,899) |
Net profit | 317,743 (518,851) | 420,342 (728,837) | 453,133 (403,817) | 384,683 (733,371) |
Average cost (NTD/kg) | 67.04 (18.2) | 52.77 (88.34) | 42.54 (34.50) | 57.44 (62.57) |
Technical and Farmer Characteristics | ||||
Culture area (ha) | 2.05 (1.89) | 1.80 (1.45) | 2.61 (2.02) | 1.73 (1.40) |
Fry stocking density (inds/ha) | 1,124,730 (26,189) | 1,174,170 (57,072) | 1,098,656 (4,132) | 1,177,229 (56,115) |
Culture survival | 0.31 (0.07) | 0.59 (0.20) | 0.45 (0.28) | 0.55 (0.24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-M.; Chen, S.-H.; Lee, Y.-C.; Huang, J.-F.; Schafferer, C.; Yeh, C.-Y.; Kung, T.-W. Optimizing Hard Clam Production in Taiwan by Accounting for Nonlinear Effects of Stocking Density and Feed Costs on Farm Output of Clams. Fishes 2022, 7, 160. https://doi.org/10.3390/fishes7040160
Lee J-M, Chen S-H, Lee Y-C, Huang J-F, Schafferer C, Yeh C-Y, Kung T-W. Optimizing Hard Clam Production in Taiwan by Accounting for Nonlinear Effects of Stocking Density and Feed Costs on Farm Output of Clams. Fishes. 2022; 7(4):160. https://doi.org/10.3390/fishes7040160
Chicago/Turabian StyleLee, Jie-Min, Sheng-Hung Chen, Yi-Chung Lee, Jung-Fu Huang, Christian Schafferer, Chun-Yuan Yeh, and Ti-Wan Kung. 2022. "Optimizing Hard Clam Production in Taiwan by Accounting for Nonlinear Effects of Stocking Density and Feed Costs on Farm Output of Clams" Fishes 7, no. 4: 160. https://doi.org/10.3390/fishes7040160
APA StyleLee, J. -M., Chen, S. -H., Lee, Y. -C., Huang, J. -F., Schafferer, C., Yeh, C. -Y., & Kung, T. -W. (2022). Optimizing Hard Clam Production in Taiwan by Accounting for Nonlinear Effects of Stocking Density and Feed Costs on Farm Output of Clams. Fishes, 7(4), 160. https://doi.org/10.3390/fishes7040160