Gastrointestinal Microbiota of Spiny Lobster: A Review
Abstract
:1. Introduction
2. Overview of GI Microbiota in Spiny Lobsters
3. Development of GI Microbiota in Spiny Lobsters
4. Composition of GI Microbiota in Spiny Lobsters
Lobster | Country | Bacteria | References |
---|---|---|---|
Homarus americanus | Canada | Micrococcus, Sarcina, Candida, Brevibacterium, Bacillus, Paracolon, Flavobacterium, Achromobacter, Pseudomonas, and Vibrio | [23] |
Panulirus japonicus | Japan | Streptococcus | [24] |
Panulirus japonicus | Japan | Vibrio spp., Pseudomonas spp., Staphylococcus spp., and Coryneforms spp. | [16] |
Panulirus japonicus | Japan | Vibrio, Pseudomonas, Flavobacterium, Micrococcus, Staphylococcus, Corynebacterium, Streptococcus, and Bacteroidaceae | [25] |
Panulirus homarus | India | Pseudomonas Aeruginosa, Vibrio parahaemolyticus, Bacillus circulans, Escherichia coli, Photobacterium damselae, Flavobacterium columnare, and Micrococcus luteus | [14] |
Panulirus ornatus | Australia | Vibrio, Photobacterium, and Pseudomonas | [35] |
Panulirus ornatus | Australia | Mollicutes, Gammaproteobacteria, Alphaproteobacteria, Saprospirae, Bacteroidia, Deltaproteobacteria, Antinobacteria, and Flavobacteria | [38] |
Panulirus homarus | India | Enterobacter, Acinetobacter, Bacillus, Vibrio, Pseudomonas, Micrococcus, and Moraxella | [15] |
Homarus gammarus | Cornwall, UK | Vibrio, Synechococcus, Spongiimonas, Spirochaeta, Shewanella, Roseovarius, Psychromonas, Psychrilyobacter, Photobacterium, Kiloniella, Candidatu, Arcobacter, Allofrancisella, and Aliivibrio | [44] |
Panulirus argus | Mexico | Vibrio, Sphingomonas, Cetobacterium, Candidatus Hepatoplasma, and Candidatus | [63] |
5. Role of GI Microbiota in Spiny Lobsters
5.1. Role of GI Microbiota in Digestion
5.2. Role of GI Microbiota in Nutrition
5.3. Role of GI Microbiota in Immune System
6. Factors Influencing GI Microbiota in Spiny Lobsters
6.1. Environmental Factors
6.2. Dietary Factor
7. Application of Gastrointestinal Microbiota
8. Conclusion and Future Prospect
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The Gut Microbiota of Marine Fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.D.; Balcázar, J.L. A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunol. Med. Microbiol. 2008, 52, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; Connor, M.P.O. Environmental and ecological factors that shape the gut 2 bacterial communities of fish: A meta-analysis-Supplementary. Pub. Med. Cent. 2012, 21, 1–16. [Google Scholar]
- Rajilić-Stojanović, M.; De Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2018, 10, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Cahill, M.M. Bacterial flora of fishes: A review. Microb. Ecol. 1990, 19, 21–41. [Google Scholar] [CrossRef]
- Ringø, E.; Strøm, E.; Tabachek, J.-A. Intestinal microflora of salmonids: A review. Aquac. Res. 1995, 26, 773–789. [Google Scholar] [CrossRef]
- Zhou, Z.; Yao, B.; Romero, J.; Waines, P.; Ringø, E.; Emery, M.; Liles, M.R.; Merrifield, D.L. Methodological approaches used to assess fish gastrointestinal communities. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D.L., Ringø, E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 101–127. [Google Scholar]
- Dawood, M.; Koshio, S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Esteban, M.Á.; Cuesta, A.; Sun, Y.-Z. Prebiotics and Fish Immune Response: A Review of Current Knowledge and Future Perspectives. Rev. Fish. Sci. Aquac. 2015, 23, 315–328. [Google Scholar] [CrossRef]
- Romero, J.; Navarrete, P. 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microb. Ecol. 2006, 51, 422–430. [Google Scholar] [CrossRef]
- Harris, J.M.; Seiderer, L.J.; Lucas, M.I. Gut microflora of two saltmarsh detritivore thalassinid prawns, Upogebia africana and Callianassa kraussi. Microb. Ecol. 1991, 21, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.M. The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis. Microb. Ecol. 1993, 25, 195–231. [Google Scholar] [CrossRef]
- Immanuel, G.; Raj, P.I.; Raj, P.E.; Palavesam, A. Intestinal bacterial diversity in live rock lobster Panulirus homarus (Linnaeus) (Decapoda, Pleocyemata, Palinuridae) during transportation process. Pan-Am. J. Aquat. Sci. 2006, 1, 69–73. [Google Scholar]
- Mathew, A.; Joseph, I. Characterization of functionally diverse intestinal bacterial flora of Panulirus homarus (Linnaeus, 1758) along the southwest coast of India. J. Mar. Biol. Assoc. India 2019, 61, 38–43. [Google Scholar] [CrossRef]
- Sugita, H.; Ueda, R.; Berger, L.R.; Deguchi, Y. Microflora in the gut of Japanese coastal crustacea. Nippon. Suisan Gakkaishi 1987, 53, 1647–1655. [Google Scholar] [CrossRef]
- Yasuda, K.; Kitao, T. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate. Aquaculture 1980, 19, 229–234. [Google Scholar] [CrossRef]
- Bourne, D.; Hoj, L.; Webster, N.; Payne, M.; Skindersøe, M.; Givskov, M.; Hall, M. Microbiological aspects of phyllosoma rearing of the ornate rock lobster Panulirus ornatus. Aquaculture 2007, 268, 274–287. [Google Scholar] [CrossRef]
- Mongkol, P.; Bunphimpapha, P.; Rungrassamee, W.; Arayamethakorn, S.; Klinbunga, S.; Menasveta, P.; Chaiyapechara, S. Bacterial community composition and distribution in different segments of the gastrointestinal tract of wild-caught adultPenaeus monodon. Aquac. Res. 2018, 49, 378–392. [Google Scholar] [CrossRef]
- Omont, A.; Elizondo-Gonzalez, R.; Quiroz-Guzmán, E.; Escobedo-Fregoso, C.; Hernández-Herrera, R.; Peña-Rodríguez, A. Digestive microbiota of shrimp Penaeus vannamei and oyster Crassostrea gigas co-cultured in integrated multi-trophic aquaculture system. Aquaculture 2020, 521, 735059. [Google Scholar] [CrossRef]
- Sun, P.; Jin, M.; Ding, L.; Lu, Y.; Ma, H.; Yuan, Y.; Zhou, Q. Dietary lipid levels could improve growth and intestinal microbiota of juvenile swimming crab, Portunus trituberculatus. Aquaculture 2018, 490, 208–216. [Google Scholar] [CrossRef]
- Egidius, E. On the internal bacteria flora of the European lobster (Homarus vulgaris L.) and its susceptibility of gaffkaemia. Aquaculture 1972, 1, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.E.; Zwicker, B.M. Natural and induced bactericidal activities in the hemolymph of the lobster, Homarus americanus: Products of hemocyte–plasma interaction. Can. J. Microbiol. 1972, 18, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Sugita, H.; Ueda, R.; Deguchi, Y. An anaerobic bacterium isolated from Japanese spiny lobster Panulirus japonicus. Food Microbiol. 1986, 3, 379–385. [Google Scholar] [CrossRef]
- Ueda, R.; Sugita, H.; Deguchi, Y. The intestinal microflora of the Japanese spiny lobster and other coastal animals. Crustaceana 1995, 68, 170–173. [Google Scholar]
- Bourne, D.G.; Young, N.; Webster, N.; Payne, M.; Salmon, M.; Demel, S.; Hall, M. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture 2004, 242, 31–51. [Google Scholar] [CrossRef]
- Daniels, C.L.; Merrifield, D.L.; Boothroyd, D.P.; Davies, S.J.; Factor, J.R.; Arnold, K.E. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 2010, 304, 49–57. [Google Scholar] [CrossRef]
- Daniels, C.L.; Merrifield, D.; Ringø, E.; Davies, S.J. Probiotic, prebiotic and synbiotic applications for the improvement of larval European lobster (Homarus gammarus) culture. Aquaculture 2013, 416–417, 396–406. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Pham, T.T.; Nguyen, T.H.T.; Hoj, L. Screening of marine bacteria with bacteriocin-like activities and probiotic potential for ornate spiny lobster (Panulirus ornatus) juveniles. Fish. Shellfish. Immunol. 2014, 40, 49–60. [Google Scholar] [CrossRef]
- Harper, R.E.; Talbot, P. Analysis of the epibiotic bacteria of lobster (Homarus) eggs and their influence on the loss of eggs from the pleopods. Aquaculture 1984, 36, 9–26. [Google Scholar] [CrossRef]
- Johnson, P.W.; Sieburth, J.M.; Sastry, A.; Arnold, C.R.; Doty, M.S. Leucothrix Mucor Infestation of Benthic Crustacea, Fish Eggs, and Tropical Algae1. Limnol. Oceanogr. 1971, 16, 962–969. [Google Scholar] [CrossRef]
- Nilson, E.H.; Fisher, W.S.; Shleser, R.A. Filamentous Infestations Observed on Eggs and Larvae of Cultured Crustaceans1. Proc. Annu. Meet.-World Maric. Soc. 2009, 6, 367–375. [Google Scholar] [CrossRef]
- Gil-Turnes, M.S.; Fenical, W. Embryos of Homarus americanus are Protected by Epibiotic Bacteria. Biol. Bull. 1992, 182, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Deep, K.; Poddar, A.; Das, S.K. Photobacterium panuliri sp. nov., an Alkalitolerant Marine Bacterium Isolated from Eggs of Spiny Lobster, Panulirus penicillatus from Andaman Sea. Curr. Microbiol. 2014, 69, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.S.; Hall, M.R.; Sly, L.; Bourne, D.G. Microbial Diversity within Early-Stage Cultured Panulirus ornatus Phyllosomas. Appl. Environ. Microbiol. 2007, 73, 1940–1951. [Google Scholar] [CrossRef] [Green Version]
- Payne, M.; Høj, L.; Wietz, M.; Hall, M.; Sly, L.; Bourne, D.; Hoj, L. Microbial diversity of mid-stage Palinurid phyllosoma from Great Barrier Reef waters. J. Appl. Microbiol. 2008, 105, 340–350. [Google Scholar] [CrossRef]
- Spanggaard, B.; Huber, I.; Nielsen, J.; Nielsen, T.; Appel, K.; Gram, L. The microflora of rainbow trout intestine: A comparison of traditional and molecular identification. Aquaculture 2000, 182, 1–15. [Google Scholar] [CrossRef]
- Ooi, M.C.; Goulden, E.F.; Smith, G.G.; Nowak, B.F.; Bridle, A.R. Developmental and gut-related changes to microbiomes of the cultured juvenile spiny lobster Panulirus ornatus. FEMS Microbiol. Ecol. 2017, 93, 159. [Google Scholar] [CrossRef] [Green Version]
- Meziti, A.; Kormas, K. Comparison of the Norway lobster (Nephrops norvegicus) gut bacterial communities using 16S rDNA clone libraries and pyrosequencing. Anaerobe 2013, 23, 9–11. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Rodiles, A. The fish microbiome and its interactions with mucosal tissues. In Mucosal Health in Aquaculture; Academic Press: Cambridge, MA, USA, 2015; pp. 273–295. [Google Scholar]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef]
- Holt, C.C.; Bass, D.; Stentiford, G.D.; van der Giezen, M. Understanding the role of the shrimp gut microbiome in health and disease. J. Invertebr. Pathol. 2020, 186, 107387. [Google Scholar] [CrossRef]
- Ooi, M.C.; Goulden, E.F.; Smith, G.; Bridle, A. Haemolymph microbiome of the cultured spiny lobster Panulirus ornatus at different temperatures. Sci. Rep. 2019, 9, 1677. [Google Scholar] [CrossRef]
- Holt, C.C.; van der Giezen, M.; Daniels, C.L.; Stentiford, G.D.; Bass, D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). ISME J. 2020, 14, 531–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.G.; Baskar, B.; Santhanakumar, J.; Vinithkumar, N.V.; Vijayakumaran, M.; Kirubagaran, R. Diversity and func-tional properties of intestinal microbial flora of the spiny lobster Panulirus versicolor (Latreille, 1804). J. Mar. Biol. Ass. India 2010, 52, 282–285. [Google Scholar]
- Hyde, K.D.; Jones, E.G.; Leaño, E.; Pointing, S.B.; Poonyth, A.D.; Vrijmoed, L.L. Role of fungi in marine ecosystems. Biodivers. Conserv. 1998, 7, 1147–1161. [Google Scholar] [CrossRef]
- Magray, A.R.; Lone, S.A.; Ganai, B.A.; Ahmad, F.; Dar, G.J.; Dar, J.S.; Rehman, S. Comprehensive, classical and molecular characterization methods of Saprolegnia (Oomycota; Stramnipila), an important fungal pathogen of fish. Fungal Biol. Rev. 2019, 33, 166–179. [Google Scholar] [CrossRef]
- Raghukumar, S. Fungi in Coastal and Oceanic Marine Ecosystems: Marine Fungi, 1st ed.; Springer: New York, NY, USA, 2017; 364p, ISBN 978-3-319-54303-1. [Google Scholar]
- Hatai, K. Diseases of Fish and Shellfish Caused by Marine Fungi. In Progress in Molecular and Subcellular Biology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 53, pp. 15–52. [Google Scholar] [CrossRef]
- Yap, S.Y.; Hamasaki, K.; Maran, B.A.V.; Tuzan, A.D.; Ch’Ng, C.L.; Lal, T.M. First report of plant fungal pathogen Zasmidium musae associated with moribund eggs of ornate spiny lobster (Panulirus ornatus) in Sabah. Aquac. Rep. 2020, 18, 100500. [Google Scholar] [CrossRef]
- Wang, C.; Tang, S.; Cao, S. Antimicrobial compounds from marine fungi. Phytochem. Rev. 2021, 20, 85–117. [Google Scholar] [CrossRef]
- Amend, A. From Dandruff to Deep-Sea Vents: Malassezia-like Fungi Are Ecologically Hyper-diverse. PLoS Pathog. 2014, 10, e1004277. [Google Scholar] [CrossRef] [Green Version]
- Spatz, M.; Richard, M.L. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front. Cell. Infect. Microbiol. 2020, 10, 201. [Google Scholar] [CrossRef]
- Zaky, A.S.; Tucker, G.A.; Daw, Z.Y.; Du, C. Marine yeast isolation and industrial application. FEMS Yeast Res. 2014, 14, 813–825. [Google Scholar] [CrossRef]
- Kutty, S.N.; Philip, R. Marine yeasts—A review. Yeast 2018, 35, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Gatesoupe, F. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 2007, 267, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Volz, P.A.; Jerger, D.E.; Wurzburger, A.J.; Hiser, J.L. A preliminary survey of yeasts isolated from marine habitats at Abaco Island, The Bahamas. Mycopathol. Mycol. Appl. 1974, 54, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Mojica, K.D.A.; Brussaard, C.P.D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 2014, 89, 495–515. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.E.; Steenhuis, P.; De Moraes, K.R.; Van Der Meer, J.; Thieltges, D.W.; Brussaard, C.P.D. Marine virus predation by non-host organisms. Sci. Rep. 2020, 10, 5221–5229. [Google Scholar] [CrossRef]
- Behringer, D.C.; Iv, M.J.B.; Shields, J.D. A review of the lethal spiny lobster virus PaV1. Proc. Annu. Gulf. Caribb. Fish. Inst. 2009, 62, 370–375. [Google Scholar]
- Ross, E.P.; Behringer, D.C.; Bojko, J. White spot syndrome virus and the Caribbean spiny lobster, Panulirus argus: Susceptibility and behavioral immunity. J. Invertebr. Pathol. 2019, 162, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Shields, J.; Small, H.; Reece, K.; Hartwig, C.; Cooper, R.; Ratzlaff, R. Detection of Panulirus argus Virus 1 (PaV1) in the Caribbean spiny lobster using fluorescence in situ hybridization (FISH). Dis. Aquat. Org. 2006, 72, 185–192. [Google Scholar] [CrossRef]
- Zamora-Briseño, J.A.; Cerqueda-García, D.; Hernández-Velázquez, I.M.; Rivera-Bustamante, R.; Huchín-Mian, J.P.; Briones-Fourzán, P.; Lozano-Álvarez, E.; Rodríguez-Canul, R. Alterations in the gut-associated microbiota of juvenile Caribbean spiny lobsters Panulirus argus (Latreille, 1804) infected with PaV1. J. Invertebr. Pathol. 2020, 176, 107457. [Google Scholar] [CrossRef]
- Clark, K.F.; Greenwood, S.J.; Acorn, A.R.; Byrne, P.J. Molecular immune response of the American lobster (Homarus americanus) to the White Spot Syndrome Virus. J. Invertebr. Pathol. 2013, 114, 298–308. [Google Scholar] [CrossRef]
- Shields, J. Diseases of spiny lobsters: A review. J. Invertebr. Pathol. 2011, 106, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Musthaq, S.S.; Sudhakaran, R.; Balasubramanian, G.; Hameed, A.S. Experimental transmission and tissue tropism of white spot syndrome virus (WSSV) in two species of lobsters, Panulirus homarus and Panulirus ornatus. J. Invertebr. Pathol. 2006, 93, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Kawato, S.; Shitara, A.; Wang, Y.; Nozaki, R.; Kondo, H.; Hirono, I. Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus. J. Virol. 2019, 93, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, D.C. Gastrointestinal microflora in mammalian nutrition. Ann. Rev. Nutr. 1986, 6, 155–178. [Google Scholar] [CrossRef]
- Wostmann, B.S. The Germfree Animal in Nutritional Studies. Annu. Rev. Nutr. 1981, 1, 257–279. [Google Scholar] [CrossRef]
- Burr, G.; Gatlin, D.; Ricke, S. Microbial Ecology of the Gastrointestinal Tract of Fish and the Potential Application of Prebiotics and Probiotics in Finfish Aquaculture. J. World Aquac. Soc. 2005, 36, 425–436. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Hold, G.L.; Smith, M.; Grange, C.; Watt, E.R.; El-Omar, E.M.; Mukhopadhya, I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J. Gastroenterol. 2014, 20, 1192–1210. [Google Scholar] [CrossRef]
- Rogers, A.B. Distance burning: How gut microbes promote extraintestinal cancers. Gut Microbes 2011, 2, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chang, E.B. Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis. 2014, 1, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Vuong, H.E.; Hsiao, E.Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol. Psychiatry 2017, 81, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Smith, G.; Hall, M. Patterns of larval growth, lipid composition and fatty acid deposition during early to mid stages of development in Panulirus ornatus phyllosoma. Aquaculture 2012, 330–333, 63–73. [Google Scholar] [CrossRef]
- Tzuc, J.T.; Escalante, D.R.; Herrera, R.R.; Cortés, G.G.; Ortiz, M.L.A. Microbiota from Litopenaeus vannamei: Digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). Springer Plus 2014, 3, 280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Sun, Y.; Chen, K.; Yu, N.; Zhou, Z.; Chen, L.; Du, Z.; Li, E. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 2014, 434, 449–455. [Google Scholar] [CrossRef]
- Rahman, F.; Ismiati, I.; Nurhasanah, A. Distribusi Bakteri Penghasil Enzim Ekstraseluler Pada Saluran Pencernaan Lobster Mutiara (Panulirus ornatus). J. SAINS Teknol. Lingkung. 2019, 5, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Bernardet, J.-F.; Bowman, J.P. The Genus Flavobacterium. Prokaryotes 2006, 7, 481–531. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Irzykowska, L. Flavobacterium spp.–Characteristics, Occurrence, and Toxicity. Encycl. Food Microbiol. 2014, 1, 938–942. [Google Scholar] [CrossRef]
- Williams, K.C. Nutritional requirements and feeds development for post-larval spiny lobster: A review. Aquaculture 2007, 263, 1–14. [Google Scholar] [CrossRef]
- Jones, J.; Dibattista, J.D.; Stat, M.; Bunce, M.; Boyce, M.; Fairclough, D.; Travers, M.J.; Huggett, M.J. The Microbiome of the Gastrointestinal Tract of a Range-Shifting Marine Herbivorous Fish. Front. Microbiol. 2018, 9, 2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Suegara, N.; Siegel, J.E.; Savage, D.C. Determinants in microbial colonisation of the murine gastrointestinal tract: pH, temperature, and energy-yielding metab-olism of Torulopsis pintolopesii. Infect. Immun. 1979, 37, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Kunstýř, I. Some Quantitative and Qualitative Aspects of the Stomach Microflora of the Conventional Rat and Hamster. Zent. Für Veterinärmedizin Reihe A 2010, 21, 553–561. [Google Scholar] [CrossRef]
- Collinder, E.; Björnhag, G.; Cardona, M.; Norin, E.; Rehbinder, C.; Midtvedt, T. Gastrointestinal Host–Microbial Interactions in Mammals and Fish: Comparative Studies in Man, Mice, Rats, Pigs, Horses, Cows, Elks, Reindeers, Salmon and Cod. Microb. Ecol. Health Dis. 2003, 15, 66–78. [Google Scholar] [CrossRef]
- Ray, A.; Ghosh, K.; Ringø, E. Enzyme-producing bacteria isolated from fish gut: A review. Aquac. Nutr. 2012, 18, 465–492. [Google Scholar] [CrossRef]
- Sugita, H.; Miyajima, C.; Deguchi, Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 1991, 92, 267–276. [Google Scholar] [CrossRef]
- Tsuchiya, C.; Sakata, T.; Sugita, H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett. Appl. Microbiol. 2007, 46, 43–48. [Google Scholar] [CrossRef]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.M.; Mittge, E.; Kuhlman, J.; Baden, K.N.; Cheesman, S.E.; Guillemin, K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 2006, 297, 374–386. [Google Scholar] [CrossRef]
- Zhang, M.; Shan, C.; Tan, F.; Limbu, S.M.; Chen, L.; Du, Z.-Y. Gnotobiotic models: Powerful tools for deeply understanding intestinal microbiota-host interactions in aquaculture. Aquaculture 2020, 517, 734800. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanisavljević, S.; Lukic, J.; Momčilović, M.; Miljkovic, M.; Jevtić, B.; Kojic, M.; Golić, N.; Stojković, M.M.; Miljković, Đ. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis. Benef. Microbes 2016, 7, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Mazmanian, S.K. Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? Science 2010, 330, 1768–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada, N.; Seo, S.-U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Pollard, M.; Sharon, N. Responses of the Peyer’s Patches in Germ-Free Mice to Antigenic Stimulation. Infect. Immun. 1970, 2, 96–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hapfelmeier, S.; Lawson, M.A.E.; Slack, E.; Kirundi, J.K.; Stoel, M.; Heikenwalder, M.; Cahenzli, J.; Velykoredko, Y.; Balmer, M.L.; Endt, K.; et al. Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science 2010, 328, 1705–1709. [Google Scholar] [CrossRef] [Green Version]
- Macpherson, A.J.; Uhr, T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004, 303, 1662–1665. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.A.; McNulty, N.P.; Guruge, J.L.; Gordon, J.I. IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis. Cell Host Microbe 2007, 2, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Woof, J.M.; Kerr, M.A. The function of immunoglobulin A in immunity. J. Pathol. 2006, 208, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Salinas, I. The Mucosal Immune System of Teleost Fish. Biology 2015, 4, 525–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.-Z.; Tu, X.; Zha, J.-W.; Huang, A.-G.; Wang, G.-X.; Ling, F. Immunosuppression-induced alterations in fish gut microbiota may increase the susceptibility to pathogens. Fish. Shellfish Immunol. 2019, 88, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Salgado, J.L.; Pereyra, M.A.; Alpuche-Osorno, J.J.; Zenteno, E. Pattern recognition receptors in the crustacean immune response against bacterial infections. Aquaculture 2021, 532, 735998. [Google Scholar] [CrossRef]
- Abbas, M.N.; Kausar, S.; Cui, H. The biological role of peroxiredoxins in innate immune responses of aquatic invertebrates. Fish. Shellfish Immunol. 2019, 89, 91–97. [Google Scholar] [CrossRef]
- Nyholm, S.V.; Graf, J. Knowing your friends: Invertebrate innate immunity fosters beneficial bacterial symbioses. Nat. Rev. Genet. 2012, 10, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Hauton, C. The scope of the crustacean immune system for disease control. J. Invertebr. Pathol. 2012, 110, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ren, Q. Research progress in innate immunity of freshwater crustaceans. Dev. Comp. Immunol. 2020, 104, 103569. [Google Scholar] [CrossRef]
- Radhakrishnan, E.V.; Phillips, B.F.; Achamveetil, G. Lobsters: Biology, Fisheries and Aquaculture; Springer: Singapore, 2019. [Google Scholar]
- Tepaamorndech, S.; Chantarasakha, K.; Kingcha, Y.; Chaiyapechara, S.; Phromson, M.; Sriariyanun, M.; Kirschke, C.P.; Huang, L.; Visessanguan, W. Effects of Bacillus aryabhattai TBRC8450 on vibriosis resistance and immune enhancement in Pacific white shrimp, Litopenaeus vannamei. Fish. Shellfish Immunol. 2019, 86, 4–13. [Google Scholar] [CrossRef]
- Fan, P.; Bian, B.; Teng, L.; Nelson, C.D.; Driver, J.; Elzo, M.A.; Jeong, K.C. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J. 2020, 14, 302–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senghor, B.; Sokhna, C.; Ruimy, R.; Lagier, J.-C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 7–8, 1–9. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Jin, X.; Liu, C.; Fan, C.; Guo, L.; Liang, Y.; Zheng, J.; Peng, N. Developmental, Dietary, and Geographical Impacts on Gut Microbiota of Red Swamp Crayfish (Procambarus clarkii). Microorganisms 2020, 8, 1376. [Google Scholar] [CrossRef] [PubMed]
- Rungrassamee, W.; Klanchui, A.; Maibunkaew, S.; Chaiyapechara, S.; Jiravanichpaisal, P.; Karoonuthaisiri, N. Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus monodon). PLoS ONE 2014, 9, e91853. [Google Scholar] [CrossRef] [Green Version]
- Giatsis, C.; Sipkema, D.; Smidt, H.; Heilig, H.G.H.J.; Benvenuti, G.; Verreth, J.; Verdegem, M. The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci. Rep. 2015, 5, 18206. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Wang, Y.; Wang, C.; Zhang, L.; Tu, K.; Zheng, Z. Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment. Aquaculture 2019, 507, 196–202. [Google Scholar] [CrossRef]
- Tzeng, T.D.; Pao, Y.Y.; Chen, P.C.; Weng, F.C.H.; Jean, W.D.; Wang, D. Effects of host phylogeny and habitats on gut mi-crobiomes of oriental river prawn (Macrobrachium nipponense). PLoS ONE 2015, 10, e0132860. [Google Scholar] [CrossRef] [Green Version]
- Chaiyapechara, S.; Rungrassamee, W.; Suriyachay, I.; Kuncharin, Y.; Klanchui, A.; Karoonuthaisiri, N.; Jiravanichpaisal, P. Bacterial Community Associated with the Intestinal Tract of P. monodon in Commercial Farms. Microb. Ecol. 2012, 63, 938–953. [Google Scholar] [CrossRef]
- Al-Harbi, A.; Uddin, M.N. Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture 2004, 229, 37–44. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, Y.; Zhang, R.; Ke, C.; Hong, G. Effects of dietary supplementation of probiotics on growth, immune responses, and gut microbiome of the abalone Haliotis diversicolor. Aquaculture 2018, 493, 289–295. [Google Scholar] [CrossRef]
- Hoyoux, C.; Zbinden, M.; Samadi, S.; Gaill, F.; Compère, P. Diet and gut microorganisms ofMunidopsissquat lobsters associated with natural woods and mesh-enclosed substrates in the deep South Pacific. Mar. Biol. Res. 2012, 8, 28–47. [Google Scholar] [CrossRef]
- Goulden, E.F.; Hall, M.R.; Bourne, D.G.; Pereg, L.L.; Høj, L. Pathogenicity and Infection Cycle of Vibrio owensii in Larviculture of the Ornate Spiny Lobster (Panulirus ornatus). Appl. Environ. Microbiol. 2012, 78, 2841–2849. [Google Scholar] [CrossRef] [Green Version]
- Raissy, M.; Moumeni, M.; Ansari, M.; Rahimi, E. Occurrence of Vibrio spp. in Lobster and Crab from the persian gulf. J. Food Saf. 2012, 32, 198–203. [Google Scholar] [CrossRef]
- Huu, H.D.; Jones, C.M. Effects of dietary mannan oligosaccharide supplementation on juvenile spiny lobster Panulirus homarus (Palinuridae). Aquaculture 2014, 432, 258–264. [Google Scholar] [CrossRef]
- Sang, H.M.; Fotedar, R. Effects of mannan oligosaccharide dietary supplementation on performances of the tropical spiny lobsters juvenile (Panulirus ornatus, Fabricius 1798). Fish. Shellfish Immunol. 2010, 28, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.; Koshio, S.; Abdel-Daim, M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Lara-flores, M. The use of probiotic in aquaculture: An overview. Int. Res. J. Microbiol. 2011, 2, 471–478. Available online: http://www.interesjournals.org/IRJM/ (accessed on 8 April 2022).
- Singh, B.; Bhat, T.K.; Singh, B. Exploiting Gastrointestinal Microbes for Livestock and Industrial Development-Review. Asian-Australasian J. Anim. Sci. 2001, 14, 567–586. [Google Scholar] [CrossRef]
- Sharma, S.G.; Sharma, N.R.; Sharma, M. Microbial Diversity, Interventions and Scope; Springer: Singapore, 2020. [Google Scholar]
- Bermudez-Brito, M.; Diaz, J.P.; Muñoz-Quezada, S.; Llorente, C.G.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Sreeja, V.; Prajapati, J.B. Probiotic Formulations: Application and Status as Pharmaceuticals—A Review. Probiotics Antimicrob. Proteins 2013, 5, 81–91. [Google Scholar] [CrossRef]
- Ayisi, C.L.; Apraku, A.; Afriyie, G. A Review of Probiotics, Prebiotics, and Synbiotics in Crab: Present Research, Problems, and Future Perspective. J. Shellfish Res. 2017, 36, 799–806. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, S.; Meena, D.K.; Sarkar, U.K. Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Rev. Fish. Sci. Aquac. 2016, 24, 342–368. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.-H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Raissy, M. Molecular detection of Vibrio spp. in lobster hemolymph. Afr. J. Microbiol. Res. 2011, 5, 1697–1700. [Google Scholar] [CrossRef]
- Diggles, B.K.; Moss, G.A.; Carson, J.; Anderson, C.D. Luminous vibriosis in rock lobster Jasus verreauxi (Decapoda: Palinuridae) phyllosoma larvae associated with infection by Vibrio harveyi. Dis. Aquat. Org. 2000, 43, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.; Buglione, C.; Mouriño, J.; Jatobá, A.; Martins, M.; Schleder, D.; Andreatta, E.R.; Barraco, M.; Vinatea, L. Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi. Arq. Bras. De Med. Veterinária E Zootec. 2010, 62, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Zokaeifar, H.; Babaei, N.; Saad, C.R.; Kamarudin, M.S.; Sijam, K.; Balcazar, J.L. Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish. Shellfish Immunol. 2014, 36, 68–74. [Google Scholar] [CrossRef]
- Middlemiss, K.; Daniels, C.L.; Urbina, M.A.; Wilson, R.W. Combined effects of UV irradiation, ozonation, and the probiotic Bacillus spp. on growth, survival, and general fitness in European lobster (Homarus gammarus). Aquaculture 2015, 444, 99–107. [Google Scholar] [CrossRef]
Diets | Phyla | Families | Relative Abundance % | Dominant |
---|---|---|---|---|
High-fat diet (15.1%) | Proteobacteria | Vibrionaceae | 41.8 | Vibrionaceae |
Fusobacteria | Leptotrichiaceae | 1.1 | ||
Tenericutes | Mycoplamataceae | 19.6 | ||
Medium-fat diet (9.9%) | Proteobacteria | Vibrionaceae | 67.4 | Vibrionaceae |
Fusobacteria | Leptotrichiaceae | 9.5 | ||
Tenericutes | Mycoplamataceae | 20.0 | ||
Low-fat diet (5.8) | Proteobacteria | Vibrionaceae | 7.0 | Liptotrichiaceae |
Fusobacteria | Leptotrichiaceae | 60.8 | ||
Tenericutes | Mycoplamataceae | 29.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lein, E.Y.; Mohamad Lal, M.T.; Venmathi Maran, B.A.; Ch’ng, C.L.; Hamasaki, K.; Sano, M.; Tuzan, A.D. Gastrointestinal Microbiota of Spiny Lobster: A Review. Fishes 2022, 7, 108. https://doi.org/10.3390/fishes7030108
Lein EY, Mohamad Lal MT, Venmathi Maran BA, Ch’ng CL, Hamasaki K, Sano M, Tuzan AD. Gastrointestinal Microbiota of Spiny Lobster: A Review. Fishes. 2022; 7(3):108. https://doi.org/10.3390/fishes7030108
Chicago/Turabian StyleLein, En Yao, Mohammad Tamrin Mohamad Lal, Balu Alagar Venmathi Maran, Choon Looi Ch’ng, Katsuyuki Hamasaki, Motohiko Sano, and Audrey Daning Tuzan. 2022. "Gastrointestinal Microbiota of Spiny Lobster: A Review" Fishes 7, no. 3: 108. https://doi.org/10.3390/fishes7030108
APA StyleLein, E. Y., Mohamad Lal, M. T., Venmathi Maran, B. A., Ch’ng, C. L., Hamasaki, K., Sano, M., & Tuzan, A. D. (2022). Gastrointestinal Microbiota of Spiny Lobster: A Review. Fishes, 7(3), 108. https://doi.org/10.3390/fishes7030108