A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Aera
2.2. Assay Development
2.3. eDNA Collection Protocol
2.4. Fish Surveys
2.5. eDNA Extraction and qPCR
2.6. Analysis
3. Results
3.1. Assay Development
3.2. Distributional Sampling
3.3. Comparison of Survey Methods
4. Discussion
4.1. Assay Development
4.2. Distributional Sampling
4.3. Comparison of Survey Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coggins, L.G., Jr.; Bacheler, N.M.; Gwinn, D.C. Occupancy models for monitoring marine fish: A bayesian hierarchical approach to model imperfect detection with a novel gear combination. PLoS ONE 2014, 9, e108302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pregler, K.C.; Vokoun, J.C.; Jensen, T.; Hagstrom, N. Using multimethod occupancy estimation models to quantify gear differences in detection probabilities: Is backpack electrofishing missing occurrences for a species of concern? Trans. Am. Fish. Soc. 2014, 144, 89–955. [Google Scholar] [CrossRef]
- Moler, P.E.; Enge, K.M.; Tornwall, B.; Farmer, A.L.; Harris, B.B. Status and Current Distribution of the Pine Barrens Treefrog (Hyla andersonii) in Florida. Southeast. Nat. 2020, 19, 380–394. [Google Scholar] [CrossRef]
- Wolf, S.S.; Hartl, B.; Carroll, C.; Neel, M.C.; Greenwald, D.N. Beyond PVA: Why Recovery under the Endangered Species Act Is More than Population Viability. BioScience 2015, 65, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; de Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Darling, J.A.; Mahon, A.R. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 2011, 111, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Coulter, A.A.; Keller, D.; Amberg, J.J.; Bailey, E.J.; Goforth, R.R. Phenotypic plasticity in the spawning traits of bigheaded carp (Hypophthalmichthys spp.) in novel ecosystems. Freshw. Biol. 2013, 58, 1029–1037. [Google Scholar] [CrossRef]
- Olson, Z.H.; Briggler, J.T.; Williams, R.N. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water. Wildl. Res. 2012, 39, 629–636. [Google Scholar] [CrossRef]
- Baird, D.J.; Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 2012, 21, 2039–2044. [Google Scholar] [CrossRef]
- Bush, A.; Compson, Z.; Monk, W.; Porter, T.M.; Steeves, R.; Emilson, E.; Gagne, N.; Hajibabaei, M.; Roy, M.; Baird, D.J. Studying ecosystems with DNA metabarcoding: Lessons from biomonitoring of aquatic macroinvertebrates. Front. Ecol. Evoloution 2019, 7, 434. [Google Scholar] [CrossRef] [Green Version]
- Hajibabaei, M.; Baird, D.J.; Fahner, N.A.; Beiko, R.; Golding, G.B. A new way to contemplate Darwin’s tangled bank: How DNA barcodes are reconnecting biodiversity science and biomonitoring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150330. [Google Scholar] [CrossRef] [PubMed]
- Keck, F.; Vasselon, V.; Tapolczai, K.; Rimet, F.; Bouchez, A. Freshwater biomonitoring in the Information Age. Front. Ecol. Environ. 2017, 15, 266–274. [Google Scholar] [CrossRef]
- Harper, L.R.; Handley, L.L.; Hahn, C.; Boonham, N.; Rees, H.C.; Gough, K.C.; Lewis, E.; Adams, I.P.; Brotherton, P.; Phillips, S.; et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 2018, 8, 6330–6341. [Google Scholar] [CrossRef]
- Klymus, K.K.; Richter, C.; Chapman, D.; Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 2015, 183, 77–84. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, N.T.; Olds, B.P.; Renshaw, M.A.; Turner, C.R.; Li, Y.; Jerde, C.L.; Mahon, A.R.; Pfrender, M.E.; Lamberti, G.A.; Lodge, D.M. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 2016, 16, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, R.P.; Port, J.A.; Yamahara, K.M.; Crowder, L.B. Using Environmental DNA to Census Marine Fishes in a Large Mesocosm. PLoS ONE 2014, 9, e86175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillotson, M.D.; Kelly, R.P.; Duda, J.J.; Hoy, M.; Kralj, J.; Quinn, T.P. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Evans, N.T.; Lamberti, G.A. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fish. Res. 2018, 197, 60–66. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinger, L.; Bonin, A.; Alsos, I.G.; Bálint, M.; Bik, H.; Boyer, F.; Chariton, A.A.; Creer, S.; Coissac, E.; Deagle, B.E.; et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 2019, 28, 1857–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflieger, W.L. The Fishes of Missouri; Missouri Department of Conservation: Jefferson City, MO, USA, 1997; 372p. [Google Scholar]
- Robison, H.W.; Cashner, R.C.; Raley, M.E.; Near, T.J. A New Species of Darter from the Ouachita Highlands in Arkansas Related to Percina nasuta (Percidae: Etheostomatinae). Bull. Peabody Mus. Nat. Hist. 2014, 55, 237–252. [Google Scholar] [CrossRef]
- Robison, H.W.; Buchanan, T.M. Fishes of Arkansas, 2nd ed.; The University of Arkansas Press: Fayetteville, AR, USA, 2020; 959p. [Google Scholar]
- Jelks, H.L.; Walsh, S.; Burkhead, N.M.; Contreras-Balderas, S.; Diaz-Pardo, E.; Hendrickson, D.A.; Lyons, J.; Mandrak, N.E.; McCormick, F.; Nelson, J.S.; et al. Conservation Status of Imperiled North American Freshwater and Diadromous Fishes. Fisheries 2008, 33, 372–407. [Google Scholar] [CrossRef]
- Wright, K.; Ludwig, E.; Westhoff, J. Extirpation Status of Longnose Darter Percina nasuta in the upper White River Drainage of Missouri; Internal Report; Missouri Department of Conservation: Columbia, MO, USA, 2019; 12p. [Google Scholar]
- Mattingly, H.T.; Galat, D.L. Distributional patterns of the threatened Niangua Darter, Etheostoma nianguae, at three spatial scales, with implications for species conservation. Copeia 2002, 2002, 573–585. [Google Scholar] [CrossRef]
- Coons, A.L. Multi-scale habitat associations of Longnose Darters (Percina nasuta) in the St. Francis River, Missouri. Master’s Thesis, Tennessee Technological University, Cookeville, TN, USA, 2021. [Google Scholar]
- Albanese, B.; Owers, K.A.; Weiler, D.A.; Pruitt, W. Estimating Occupancy of Rare Fishes using Visual Surveys, with a Comparison to Backpack Electrofishing. Southeast. Nat. 2011, 10, 423–442. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Boone, M. St. Francis River Watershed Inventory and Assessment; Missouri Department of Conservation: Cape Girardeau, MO, USA, 2001; 80p. [Google Scholar]
- Near, T.J. Phylogenetic Relationships of Percina (Percidae: Etheostomatinae). Copeia 2002, 2002, 1–14. [Google Scholar] [CrossRef]
- Riaz, T.; Shehzad, W.; Viari, A.; Pompanon, F.; Taberlet, P.; Coissac, E. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011, 39, e145. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Klymus, K.K.E.; Merkes, C.M.; Allison, M.J.; Goldberg, C.S.; Helbing, C.C.; Hunter, M.E.; Jackson, C.A.; Lance, R.F.; Mangan, A.M.; Monroe, E.M.; et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 2020, 2, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Merkes, C.M.; Klymus, K.E.; Allison, M.J.; Goldberg, C.; Helbing, C.C.; Hunter, M.E.; Richter, C. Code to Analyze Multi-lab LOD/LOQ Study Data, R Script. U.S.; Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, D.L.; Nichols, J.D.; Royle, J.A.; Pollok, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 2nd ed.; Academic Press: London, UK, 2018; 641p. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, R.R.A.; Van Nynatten, A.; Crookes, S.; Ellender, B.R.; Heath, D.D.; MacIsaac, H.J.; Mandrak, N.E.; Weyl, O.L.F. Detecting native freshwater fishes using novel non-invasive methods. Front. Environ. Sci. 2020, 8, 29. [Google Scholar] [CrossRef]
- Herzog, D.P.; Ostendorf, D.E.; Hrabik, R.A.; Barko, V.A. The mini-missouri trawl: A useful methodology for sampling small-bodied fishes in small and large river systems. J. Freshw. Ecol. 2009, 24, 103–108. [Google Scholar] [CrossRef]
- Nichols, J.D.; Bailey, L.L.; O’Connell, A.F., Jr.; Talancy, N.W.; Campbell Grant, E.H.; Gilbert, A.T.; Annand, E.M.; Husband, T.P.; Hines, J.E. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 2008, 45, 1321–1329. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; 488p. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; 372p. [Google Scholar]
- McArdle, B.H. When are rare species not there? Oikos 1990, 57, 276. [Google Scholar] [CrossRef]
- Moore, M.J.; Orth, D.; Frimpong, E.A. Occupancy and detection of clinch dace using two gear types. J. Fish Wildl. Manag. 2017, 8, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Langlois, V.S.; Allison, M.J.; Bergman, L.C.; To, T.A.; Helbing, C.C. The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environ. DNA 2021, 3, 519–527. [Google Scholar] [CrossRef]
- Furlan, E.E.M.; Gleeson, D.; Wisniewski, C.; Yick, J.; Duncan, R.P. eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia. J. Appl. Ecol. 2019, 56, 2505–2517. [Google Scholar] [CrossRef]
- Robson, H.H.L.A.; Noble, T.H.; Saunders, R.; Robson, S.; Burrows, D.W.; Jerry, D. Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol. Ecol. Resour. 2016, 16, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Lesperance, M.L.; Allison, M.J.; Bergman, L.C.; Hocking, M.D.; Helbing, C.C. A statistical model for calibration and computation of detection and quantification limits for low copy number environmental DNA samples. Environ. DNA 2021, 3, 970–981. [Google Scholar] [CrossRef]
- Rice, C.J.; Larson, E.R.; Taylor, C.A. Environmental DNA detects a rare large river crayfish but with little relation to local abundance. Freshw. Biol. 2018, 63, 443–455. [Google Scholar] [CrossRef]
- Montgomery, W.L.; McCormick, S.D.; Naiman, R.J.; Whoriskey, F.G., Jr.; Black, G.A. Spring migratory synchrony of salmonid, catostomid, and cyprinid fishes in Rivière a là Truite, Québec. Can. J. Zool. 1983, 61, 2495–2502. [Google Scholar] [CrossRef]
- Ryon, M.G. The Life History and Ecology of Etheostoma trisella (Pisces: Percidae). Am. Midl. Nat. 1986, 115, 73. [Google Scholar] [CrossRef]
- Eisenhour, D.J.; Washburn, B.A. Long-Distance Movements of Six Darters (Teleostei: Percidae) in the Red River, Kentucky. J. Ky. Acad. Sci. 2016, 77, 19–24. [Google Scholar] [CrossRef]
- Roberts, J.H.; Rosenberger, A.E.; Albanese, B.W.; Angermeier, P.L. Movement patterns of endangered Roanoke logperch (Percina rex). Ecol. Freshw. Fish 2008, 17, 374–381. [Google Scholar] [CrossRef]
- Harrison, J.B.; Sunday, J.M.; Rogers, S.M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B Boil. Sci. 2019, 286, 20191409. [Google Scholar] [CrossRef] [PubMed]
- Hinlo, R.; Lintermans, M.; Gleeson, D.; Broadhurst, B.; Furlan, E. Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biol. Invasions 2018, 20, 3079–3093. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 2013, 70, 1123–1130. [Google Scholar] [CrossRef]
- Strickland, G.J.; Roberts, J.H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats. Hydrobiologia 2019, 826, 129–144. [Google Scholar] [CrossRef]
- Bonneau, J.J.L.; Thurow, R.E.; Scarnecchia, D.L. Capture, marking, and enumeration of juvenile bull trout and cutthroat trout in small, low-conductivity streams. N. Am. J. Fish. Manag. 1995, 15, 563–568. [Google Scholar] [CrossRef]
- Hillman, T.T.W.; Mullan, J.W.; Griffith, J.S. Accuracy of Underwater Counts of Juvenile Chinook Salmon, Coho Salmon, and Steelhead. N. Am. J. Fish. Manag. 1992, 12, 598–603. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors–occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Ulibarri, R.R.M.; Bonar, S.A.; Rees, C.; Amberg, J.; Ladell, B.; Jackson, C. Comparing efficiency of american fisheries society standard snorkeling techniques to environmental dna sampling techniques. N. Am. J. Fish. Manag. 2017, 37, 644–651. [Google Scholar] [CrossRef]
- Wilcox, T.T.M.; Carim, K.J.; Young, M.K.; McKelvey, K.S.; Franklin, T.; Schwartz, M.K. Comment: The importance of sound methodology in environmental DNA sampling. N. Am. J. Fish. Manag. 2018, 38, 592–596. [Google Scholar] [CrossRef]
- Amberg, J.J.; Bonar, S.A.; Perez, C.; Rees, C.B.; Jackson, C.; Ulibarri, R.M. The importance of sound methodology in environmental DNA sampling: Response to comment. N. Am. J. Fish. Manag. 2018, 38, 597–600. [Google Scholar] [CrossRef]
- Evans, N.T.; Shirey, P.D.; Wieringa, J.G.; Mahon, A.R.; Lamberti, G.A. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 2017, 42, 90–99. [Google Scholar] [CrossRef]
- Near, T.J.; Porterfield, J.C.; Page, L.M. Evolution of cytochrome b and the molecular systematics of Ammocrypta (Percidae: Etheostomatinae). Copeia 2000, 2000, 701–711. [Google Scholar] [CrossRef]
Site | Date | eDNA Detection History | Visual Detection History (Number Observed) | # qPCR Reps (# Positive) | Wetted Width (m) | Area (m2) | Turbidity (NTU) | Secchi (cm) | % Pool | % Run or Glide | Darter Species Richness | Filter Size (µm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 August | 010 | 00 | 9 (1) | 40 | 2000 | 7.25 | 90 | 20 | 80 | 6 | 1.2 |
2 | 31 July | 101 | 11 (12) | 18 (5) | 25 | 2000 | 4.62 | 120 | 10 | 80 | 5 | 1.2 |
3 | 24 July | 111 | .. | 18 (4) | - | 965 | 8.5 | 60 | 30 | 4 | 3 | |
4 | 23 July | 001 | .. | 9 (1) | 2 | 100 | 7.32 | 30 | 1 | 3 | ||
5 | 1 August | 001 | 11 (4) | 18 (1) | 20 | 500 | 6.5 | 110 | 10 | 60 | 6 | 1.2 |
7 | 25 July | 000 | 01 (2) | 18 (0) | 25 | 2000 | 5.3 | 140 | 100 | 6 | 3 | |
8 | 25 July | 000 | 00 | 9 (0) | - | 965 | 4.9 | 90 | 7 | 3 | ||
9 | 30 July | 000 | 00 | 18 (0) | 30 | 2400 | 9.5 | 90 | 80 | 4 | 3 | |
10 | 23 July | 001 | .. | 18 (1) | 15 | 600 | 7.86 | 50 | 50 | 3 | 3 | |
11 | 1 August | 111 | 11 (13) | 18 (8) | 17 | 1190 | 4.9 | 70 | 20 | 80 | 5 | 1.2 |
12 | 31 July | 000 | 01 (1) | 18 (0) | 15 | 1050 | 6.32 | 90 | 90 | 7 | 1.2 | |
13 | 23 July | 000 | .. | 18 (0) | 20 | 1200 | 7.66 | 70 | 30 | 2 | 3 | |
14 | 24 July | 011 | .. | 18 (5) | 15 | 1050 | 11.7 | 80 | 3 | 3 | ||
15 | 1 August | 111 | 11 (14) | 18 (12) | 10 | 750 | 4.49 | 140 | 90 | 6 | 1.2 | |
16 | 2 August | 111 | 00 | 18 (6) | 40 | 2000 | 5.65 | 130 | 6 | 1.2 | ||
17 | 31 July | 111 | 11 (2) | 18 (1) | 10 | 600 | 5.69 | 90 | 100 | 6 | 1.2 | |
18 | 31 July | 111 | 11 (5) | 12 (9) | 12 | 540 | 3.77 | 120 | 90 | 8 | 3 | |
19 | 30 July | 000 | 00 | 9 (0) | 10 | 500 | 4.75 | 1.4 | 80 | 4 | 3 | |
21 D | 31 July | 111 | 00 | 9 (3) | 15 | 750 | 1.7 | 300+ | 90 | 10 | 5 | 1.2 |
22 U | 31 July | 110 | 00 | 12 (2) | 10 | 300 | 1.7 | 300+ | 30 | 70 | 6 | 1.2 |
23 U | 25 July | 000 | .. | 9 (0) | 25 | 1000 | 4.4 | 300+ | 100 | 3 | 3 | |
24 D | 24 July | 000 | 00 | 9 (0) | 4 | 240 | 1.6 | 300 | 70 | 7 | 3 | |
25 U | 31 July | 000 | 00 | 9 (0) | 25 | 1000 | 1.27 | 300+ | 90 | 10 | 4 | 1.2 |
26 D | 31 July | 000 | 00 | 9 (0) | 11 | 440 | 0.55 | 300+ | 60 | 40 | 5 | 1.2 |
27 U | 2 August | 000 | 00 | 9 (0) | 20 | 800 | 1.96 | 300 | 30 | 5 | 1.2 | |
28 D | 25 July | 000 | 00 | 9 (0) | 10 | 700 | 1.06 | 300+ | 10 | 60 | 8 | 3 |
29 U | 25 July | 000 | 00 | 9 (0) | 8 | 480 | 1 | 300+ | 30 | 50 | 3 | 3 |
Model | AICc | ΔAICc | AIC Weight | Model Likelihood | # Parameters | −2 × LogLikelihood |
---|---|---|---|---|---|---|
psi(·), theta(·), p(·) | 82.11 | 0 | 0.5833 | 1 | 3 | 74.26 |
psi(·), theta(·), p(method) | 84.26 | 2.15 | 0.1991 | 0.3413 | 4 | 72.93 |
psi(·), theta(·), p(method × width) | 85.78 | 3.67 | 0.0931 | 0.1596 | 4 | 74.45 |
psi(·), theta(·), p(method × NTU) | 86.35 | 4.24 | 0.07 | 0.12 | 4 | 75.02 |
psi(·), theta(·), p(method × area) | 86.85 | 4.74 | 0.0545 | 0.0935 | 4 | 75.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westhoff, J.T.; Berkman, L.K.; Klymus, K.E.; Thompson, N.L.; Richter, C.A. A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri. Fishes 2022, 7, 70. https://doi.org/10.3390/fishes7020070
Westhoff JT, Berkman LK, Klymus KE, Thompson NL, Richter CA. A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri. Fishes. 2022; 7(2):70. https://doi.org/10.3390/fishes7020070
Chicago/Turabian StyleWesthoff, Jacob T., Leah K. Berkman, Katy E. Klymus, Nathan L. Thompson, and Catherine A. Richter. 2022. "A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri" Fishes 7, no. 2: 70. https://doi.org/10.3390/fishes7020070
APA StyleWesthoff, J. T., Berkman, L. K., Klymus, K. E., Thompson, N. L., & Richter, C. A. (2022). A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri. Fishes, 7(2), 70. https://doi.org/10.3390/fishes7020070