Sensitivity of Zebrafish Embryogenesis to Risk of Fotemustine Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solutions Preparation
2.2. Zebrafish Maintenance and Breeding
2.3. Zebrafish Embryo Toxicity (ZFET) Assay
- (a)
- Embryo coagulation—could also occur within a few hours of the start of exposure and indicated a generic acute toxic effect;
- (b)
- Lack of somite formation—somite should be visible 12 h after fertilization; if absent, the embryo would not develop further; thus, causing its death;
- (c)
- Nondetachment of the tail—detachment of the tail from the yolk could be observed 24 h after fertilization, indicating normal growth of the embryo;
- (d)
- Absence of heartbeat—the heartbeat was easily detectable 30 h after fertilization, its absence indicated the death of the embryo; embryo coagulation and absence of heartbeat were focused on as endpoints of mortality.
2.4. Total RNA Extraction and RT-PCR
2.5. Histopathological Analysis
2.6. Data Analysis
3. Results
3.1. Survival and Hatching Rate
3.2. Malformation Scores and Body Length
3.3. Histological Analysis
3.4. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Toolaram, A.P.; Kümmerer, K.; Schneider, M. Environmental risk assessment of anti-cancer drugs and their transformation products: A focus on their genotoxicity characterization-state of knowledge and short comings. Mutat. Res. Mutat. Res. 2014, 760, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Guichard, N.; Guillarme, D.; Bonnabry, P.; Fleury-Souverain, S. Antineoplastic drugs and their analysis: A state of the art review. Analyst 2017, 142, 2273–2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brock, N. Oxazaphosphorine cytostatics: Past-present-future. Seventh Cain Memorial Award lecture. Cancer Res. 1989, 49, 1–7. [Google Scholar] [PubMed]
- Česen, M.; Kosjek, T.; Laimou-Geraniou, M.; Kompare, B.; Širok, B.; Lambropolou, D.; Heath, E. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes. Sci. Total Environ. 2015, 527–528, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Catastini, C.; Mullot, J.-U.; Boukari, S.; Mazellier, P.; Lévi, Y.; Cervantes, P.; Ormsby, J.-N. Identification de molécules anticancéreuses dans les effluents hospitaliers. Eur. J. Water Qual. 2008, 39, 171–180. [Google Scholar] [CrossRef]
- Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; et al. Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Sci. Total Environ. 2016, 548–549, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Steger-Hartmann, T.; Kümmerer, K.; Schecker, J. Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by twostep solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 1996, 726, 179–184. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Liu, H.; Schlenk, D.; Mu, J.; Lacorte, S.; Ying, G.-G.; Xie, L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. Environ. Int. 2021, 153, 106543. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.W.-P.; Lin, Y.-C.; Wang, Y.-H.; Guo, Y.L.; Lin, A.Y.-C. Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters. Water Air Soil Pollut. 2018, 229, 249. [Google Scholar] [CrossRef]
- Buerge, I.J.; Buser, H.-R.; Poiger, T.; Müller, M.D. Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters. Environ. Sci. Technol. 2006, 40, 7242–7250. [Google Scholar] [CrossRef] [PubMed]
- Busetti, F.; Linge, K.; Heitz, A. Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 5807–5818. [Google Scholar] [CrossRef]
- De Rossi, A.; Rossi, L.; Laudisi, A.; Sini, V.; Toppo, L.; Marchesi, F.; Tortorelli, G.; Leti, M.; Turriziani, M.; Aquino, A.; et al. Focus on Fotemustine. J. Exp. Clin. Cancer Res. 2006, 25, 461. [Google Scholar]
- Raymond, E.; Boaziz, C.; Coste, M. Logistic regression model of fotemustine toxicity combining independent phase II studies. Cancer 1996, 78, 1980–1987. [Google Scholar] [CrossRef]
- Schallreuter, K.U.; Gleason, F.K.; Wood, J.M. The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase. Biochim. Biophys. Acta 1990, 1054, 14–20. [Google Scholar] [CrossRef]
- Boutin, J.A.; Norbeck, K.; Moldeus, P.; Genton, A.; Paraire, M.; Bizzari, J.-P.; Lavielle, G.; Cudennec, C.A. Effects of the new nitrosourea derivative, fotemustine, on the glutathione reductase activity in rat tissues in vivo and in isolated rat hepatocytes. Eur. J. Cancer Clin. Oncol. 1989, 25, 1311–1316. [Google Scholar] [CrossRef]
- Vermeulen, N.; Commandeur, J.; Groot, E.; Wormhoudt, L.; Ramnatshing, S.; Li, Q.; Brakenhoff, J. Toxicity of fotemustine in rat hepatocytes and mechanism-based protection against it. Chem. Interact. 1998, 110, 139–158. [Google Scholar] [CrossRef]
- Lee, M.S. Oxidative conversion by rat liver microsomes of 2-naphthyl isothiocyanate to 2-naphthyl isocyanate, a genotoxicant. Chem. Res. Toxicol. 1992, 5, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Jeevaratnam, K.; Vaidyanathan, C.S. Acute toxicity of methyl isocyanate in rabbit: In vitro and in vivo effects on rabbit erythrocyte membrane. Arch. Environ. Contam. Toxicol. 1992, 22, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.; Kennedy, A.; Stock, M.; Brown, W.; Alarie, Y. Uptake and distribution of 14C during and following exposure to [14C]methyl isocyanate. Toxicol. Appl. Pharmacol. 1988, 94, 104–117. [Google Scholar] [CrossRef]
- Karol, M.H.; Jin, R. Mechanisms of immunotoxicity to isocyanates. Chem. Res. Toxicol. 1991, 4, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Pauluhn, J.; Eben, A. Altered lung function in rats after subacute exposure to n-butyl isocyanate. Arch. Toxicol. 1992, 66, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Mac, R.C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Zon, L.I.; Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 2005, 4, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.T. Discovery of therapeutic targets by phenotype-based zebrafish screens. Drug Discov. Today Technol. 2004, 1, 49–54. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test; OECD: Paris, France, 2013. [Google Scholar]
- Parenti, C.C.; Ghilardi, A.; Della Torre, C.; Magni, S.; Del Giacco, L.; Binelli, A. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects. Environ. Pollut. 2019, 254, 112947. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Liu, K.; He, Q.; Sun, C.; Han, J.; Han, L.; Tian, Q. Xiaoaiping Induces Developmental Toxicity in Zebrafish Embryos Through Activation of ER Stress, Apoptosis and the Wnt Pathway. Front. Pharmacol. 2018, 9, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, K.; Hassan, H.M.; Guo, H.; Ding, P.; Han, L.; He, Q.; Chen, W.; Hsiao, C.-D.; Zhang, L.; et al. Liver Fatty Acid Binding Protein Deficiency Provokes Oxidative Stress, Inflammation, and Apoptosis-Mediated Hepatotoxicity Induced by Pyrazinamide in Zebrafish Larvae. Antimicrob. Agents Chemother. 2016, 60, 7347–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, E.; Franzellitti, S. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environ. Toxicol. Chem. 2016, 35, 799–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaee, S.-M.; Rabbani, S.; Jovanović, B.; Mohajeri-Tehrani, M.R.; Haghpanah, V. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: A comparison between two different classes of hatching-derived variables. Ecotoxicol. Environ. Saf. 2015, 116, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; Coelhan, M.; Chan, H.M.; Ma, W.; Liu, L. Relative developmental toxicity of short-chain chlorinated paraffins in Zebrafish (Danio rerio) embryos. Environ. Pollut. 2016, 219, 1122–1130. [Google Scholar] [CrossRef]
- Ismail, A.; Yusof, S. Effect of mercury and cadmium on early life stages of Java medaka (Oryzias javanicus): A potential tropical test fish. Mar. Pollut. Bull. 2011, 63, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Papiya, S.; Kanamadi, R. Effect of mercurial fungicide Emisan®-6 on the embryonic developmental stages of zebrafish, Brachydanio (Danio) rerio. J. Adv. Zool. 2000, 21, 12–18. [Google Scholar]
- Jacquillat, C.; Khayat, D.; Banzet, P.; Weil, M.; Fumoleau, P.; Avril, M.-F.; Namer, M.; Bonneterre, J.; Kerbrat, P.; Bonerandi, J.J.; et al. Final report of the french multicenter phase II study of the nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases. Cancer 1990, 66, 1873–1878. [Google Scholar] [CrossRef]
- Bertrand, M.; Wémeau-Stervinou, L.; Gauthier, S.; Auffret, M.; Mortier, L. New toxicity of fotemustine: Diffuse interstitial lung disease. Ann. De Dermatol. Et De Venereologie 2012, 139, 277–281. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Gao, D.; Zhang, Y.; Chen, X.; Xia, Q.; Jin, M.; Sun, C.; He, Q.; Wang, R.; et al. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicol. Lett. 2021, 350, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Li, W.; Li, H.; Bao, J.; Yang, C.; Wang, A.; Wei, J.; Chen, S.; Jin, H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol. Appl. Pharmacol. 2019, 373, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Baillie, T.A.; Rettie, A.E. Role of Biotransformation in Drug-Induced Toxicity: Influence of Intra- and Inter-Species Differences in Drug Metabolism. Drug Metab. Pharmacokinet. 2011, 26, 15–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, L.; Kalgutkar, A.S.; Obach, R.S. Metabolic activation in drug-induced liver injury. Drug Metab. Rev. 2012, 44, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.; Kim, E.-A.; Kang, M.-C.; Lee, W.-W.; Lee, H.-S.; Vairappan, C.S.; Jeon, Y.-J. Assessment of anti-inflammatory effect of 5beta-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ. Toxicol. Pharmacol. 2014, 37, 110–117. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Z.; Liu, F.; Ye, Y.; Peng, T.; Fu, Z. Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol. Teratol. 2015, 48, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhu, L.; Shao, B.; Zhu, S.; Wang, J.; Xie, H.; Wang, J.; Wang, F. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers. Ecotoxicol. Environ. Saf. 2013, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tse, A.K.-W.; Chen, Y.-J.; Fu, X.-Q.; Su, T.; Li, T.; Guo, H.; Zhu, P.-L.; Kwan, H.Y.; Cheng, B.C.-Y.; Cao, H.-H.; et al. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol. 2017, 11, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Landau, G.; Kodali, V.K.; Malhotra, J.D.; Kaufman, R.J. Detection of Oxidative Damage in Response to Protein Misfolding in the Endoplasmic Reticulum. Methods Enzymol. 2013, 526, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxid. Redox Signal. 2007, 9, 2277–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, J.D.; Kaufman, R.J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 2007, 18, 716–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, W.; Li, F.; Zhang, J.; Wang, B.; Xiang, J. Cloning and expression of glucose regulated protein 78 (GRP78) in Fenneropenaeus chinensis. Mol. Biol. Rep. 2007, 36, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffenbach, K.T.; Lee, A.S. The critical role of GRP78 in physiologic and pathologic stress. Curr. Opin. Cell Biol. 2011, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Fan, Q.; Mao, H.; Liu, Y.; Hu, C. GRP78 from grass carp (Ctenopharyngodon idella) provides cytoplasm protection against thermal and Pb2+ stress. Fish Shellfish Immunol. 2013, 34, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kaufman, R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012, 197, 857–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2003, 11, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Naumann, S.C.; Roos, W.; Jöst, E.; Belohlavek, C.; Lennerz, V.; Schmidt, C.; Christmann, M.; Kaina, B. Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: Response related to MGMT, MMR, DSBs, and p53. Br. J. Cancer 2009, 100, 322–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passagne, I.; Evrard, A.; Winum, J.-Y.; Depeille, P.; Cuq, P.; Montero, J.-L.; Cupissol, D.; Vian, L. Cytotoxicity, DNA Damage, and Apoptosis Induced by New Fotemustine Analogs on Human Melanoma Cells in Relation to O6-Methylguanine DNA-Methyltransferase Expression. J. Pharmacol. Exp. Ther. 2003, 307, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinison, J.; Aguilar, J.S.; Avalos, A.; Huang, Y.; Wang, Z.; Cameron, D.J.; Hao, J. Triptonide Effectively Inhibits Wnt/beta-Catenin Signaling via C-terminal Transactivation Domain of beta-catenin. Sci. Rep. 2016, 6, 32779. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Bae, Y.-K.; Muraoka, O.; Hibi, M. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol. 2005, 279, 125–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, X.W.; Teh, C.; Korzh, V.; Wohland, T. The Secreted Signaling Protein Wnt3 Is Associated with Membrane Domains In Vivo: A SPIM-FCS Study. Biophys. J. 2016, 111, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Pandur, P.; Läsche, M.; Eisenberg, L.M.; Kühl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002, 418, 636–641. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Orientation | Nucleotide Sequence |
---|---|---|
chop | forward | 5′-CACAGACCCTGAATCAGAAG-3′ |
reverse | 5′-CCACGTGTCTTTTATCTCCC-3′ | |
caspase-3 | forward | 5′-CCGCTGCCCATCACTA-3′ |
reverse | 5′-ATCCTTTCACGACCATCT-3′ | |
bax | forward | 5′-GGCTATTTCAACCAGGGTTCC-3′ |
reverse | 5′-TGCGAATCACCAATGCTGT-3′ | |
bcl-2 | forward | 5′-TCACTCGTTCAGACCCTCAT-3′ |
reverse | 5′-ACGCTTTCCACGCACAT-3′ | |
p53 | forward | 5′-ACCACTGGGACCAAACGTAG-3′ |
reverse | 5′-CAGAGTCGCTTCTTCCTTCG-3′ | |
b-catenin | forward | 5′-CATTACAACTCTCCACAACC-3′ |
reverse | 5′-CAGATAGCACCTTCAGCAC-3′ | |
wnt3a | forward | 5′-CACCTCCCATCCCTTCCTA-3′ |
reverse | 5′-CCGTTCTGCTCAAGTGTCCT-3′ | |
wnt8a | forward | 5′-TTGTCCGCAACTAAAGTGGT-3′ |
reverse | 5′-CCTGGTAACGGTTTGAGT-3′ | |
wnt11 | forward | 5′-TTGTCCGCAACTAAAGTGGT-3′ |
reverse | 5′-TCATTTGCAGACGTATTTC-3′ | |
b-actin | forward | 5′-AGAGCTATGAGCTGCCTGACG-3′ |
reverse | 5′-CCGCAAGATTCCATACCCA-3′ | |
sod1 | forward | 5′-GGCCAACCGATAGTGTTAGA-3′ |
reverse | 5′-CCAGCGTTGCCAGTTTTTAG-3′ | |
cat | forward | 5′-AGGGCAACTGGGATCTTACA-3′ |
reverse | 5′-TTTATGGGACCAGACCTTGG-3′ | |
gstp2 | forward | 5′-CACAGACCTCGCTTTTCACAC-3′ |
reverse | 5′-GAGAGAAGCCTCACAGTCGT-3′ | |
xbp1s | forward | 5′-CAAAGGAGCAGGTTCAGGTAC-3′ |
reverse | 5′-GGAGATCAGACTCAGAGTCTG-3′ | |
perk | forward | 5′-TGGGCTCTGAAGAGTTCGAT-3′ |
reverse | 5′-TGTGAGCCTTCTCCGTCTTT-3′ | |
hspa5 | forward | 5′-CAGATCTGGCCAAAATGCGG-3′ |
reverse | 5′-GGAACAAGTCCATGTTGAGC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paola, D.; Iaria, C.; Lanteri, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; D’Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Sensitivity of Zebrafish Embryogenesis to Risk of Fotemustine Exposure. Fishes 2022, 7, 67. https://doi.org/10.3390/fishes7020067
Di Paola D, Iaria C, Lanteri G, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, et al. Sensitivity of Zebrafish Embryogenesis to Risk of Fotemustine Exposure. Fishes. 2022; 7(2):67. https://doi.org/10.3390/fishes7020067
Chicago/Turabian StyleDi Paola, Davide, Carmelo Iaria, Giovanni Lanteri, Marika Cordaro, Rosalia Crupi, Rosalba Siracusa, Ramona D’Amico, Roberta Fusco, Daniela Impellizzeri, Salvatore Cuzzocrea, and et al. 2022. "Sensitivity of Zebrafish Embryogenesis to Risk of Fotemustine Exposure" Fishes 7, no. 2: 67. https://doi.org/10.3390/fishes7020067
APA StyleDi Paola, D., Iaria, C., Lanteri, G., Cordaro, M., Crupi, R., Siracusa, R., D’Amico, R., Fusco, R., Impellizzeri, D., Cuzzocrea, S., Spanò, N., Gugliandolo, E., & Peritore, A. F. (2022). Sensitivity of Zebrafish Embryogenesis to Risk of Fotemustine Exposure. Fishes, 7(2), 67. https://doi.org/10.3390/fishes7020067