Stock Structure Analysis of the Endangered Queen Loach, Botia dario (Hamilton 1822) from Five Rivers of Northern Bangladesh by Using Morphometrics: Implications for Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Measurement of Traditional Morphometrics, Ratios (TMR), and Image-Based Truss Network Analysis (ITNA)
2.3. Data Analysis
3. Results
3.1. Traditional and Ratio Morphometric Analysis
3.2. Image-Based Truss Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanner, S.E.; Reis-Santos, P.; Cabral, H.N. Otolith chemistry in stock delineation: A brief overview, current challenges, and future prospects. Fish. Res. 2016, 173, 206–213. [Google Scholar] [CrossRef]
- Ihssen, P.E.; Booke, H.E.; Casselman, J.M.; McGlade, J.M.; Payne, N.R.; Utter, F.M. Stock identification: Materials and methods. Can. J. Fish. Aquat. Sci. 1981, 38, 1838–1855. [Google Scholar] [CrossRef]
- Begg, G.A.; Friedland, K.D.; Pearce, J.B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res. 1999, 43, 1–8. [Google Scholar] [CrossRef]
- Begg, G.A.; Waldman, J.R. An holistic approach to fish stock identification. Fish. Res. 1999, 43, 35–44. [Google Scholar] [CrossRef]
- Abaunza, P.; Murta, A.G.; Campbell, N. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 2008, 89, 196–209. [Google Scholar] [CrossRef]
- Johnson, B.M.; Carpenter, S.R. Functional and numerical responses: A framework for fish-angler interactions? Ecol. Appl. 1994, 4, 808–821. [Google Scholar] [CrossRef]
- Bagherian, A.; Rahmani, H. Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae), using a truss network. Anim. Bio. Cons. 2009, 32, 1–8. [Google Scholar]
- Clemento, A.J.; Crandall, E.D.; Garza, J.C.; Anderson, E.C. Evaluation of a single nucleotide polymorphism baseline for genetic stock identification of Chinook Salmon (Oncorhynchus tshawytscha) in the California Current large marine ecosystem. Fish. Bull. 2014, 112, 112–130. [Google Scholar] [CrossRef]
- World Wild Life (WWF). Living Planet Report. Aiming Higher; Grooten, M., Almond, R.E.A., Eds.; WWF: Gland, Switzerland, 2018. [Google Scholar]
- Schwarz, C.J. Estimation of Movement from Tagging Data. In Stock Identification Methods; Elsevier Academic Press: Oxford, UK, 2005; pp. 591–606. [Google Scholar]
- Khan, M.A.; Nazir, A. Stock delineation of the long-whiskered catfish, Sperata aor (Hamilton 1822), from River Ganga by using morphometrics. Mari. Fresh. Res. 2018, 70, 107–113. [Google Scholar] [CrossRef]
- Ramya, V.L.; Behera, B.K.; Das, B.K.; Krishna, G.; Pavankumar, A.; Pathan, M.K. Stock structure analysis of the endemic fish, Barbodes carnaticus (Jerdon 1849), for conservation in a biodiversity hotspot. Environ. Sci. Pollut. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- DeCelles, G.; Zemeckis, D. Acoustic and radio telemetry. In Stock Identification Methods; Elsevier: London, UK, 2013. [Google Scholar]
- Hart, K.M.; Hyrenbach, K.D. Satellite telemetry of marine megavertebrates: The coming of age of an experimental science. Endanger. Species. Res. 2009, 10, 9–20. [Google Scholar] [CrossRef]
- Metcalfe, J.D.; Wright, S.; Tudorache, C.; Wilson, R.P. Recent advances in telemetry for estimating the energy metabolism of wild fishes. J. Fish. Biol. 2016, 88, 284–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickhut, R.M.; Deshpande, A.D.; Cincinelli, A. Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ. Sci. Technol. 2009, 43, 8522–8527. [Google Scholar] [CrossRef] [PubMed]
- Grahl-Nielsen, O. Fatty acid profiles as natural marks for stock identification. In Stock Identification Methods; Academic Press: London, UK, 2005; pp. 247–269. [Google Scholar]
- Kerr, L.; Campana, S. Otolith elemental composition. In Stock Identification Methods; Elsevier: London, UK, 2013. [Google Scholar]
- Bhattacharya, M.; Sharma, A.R.; Patra, B.C. DNA barcoding to fishes: Current status and future directions. Mito. DNA 2016, 27, 2744–2752. [Google Scholar] [CrossRef] [PubMed]
- Cadrin, S.X. Advances in morphometric analysis of fish stock structure. Rev. Fish. Biol. Fish. 2000, 10, 91–112. [Google Scholar] [CrossRef]
- Ibáñez, A.L. Fish scale shape variation by year and by geographic location, could scales be useful to trace fish? A case study on the Gulf of Mexico. Fish. Res. 2014, 156, 34–38. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis: With Applications in R; John Wiley & Sons: London, UK, 2016. [Google Scholar]
- Ibáñez, A.L.; Hernández-Fraga, K.; Alvarez-Hernández, S. Discrimination analysis of phenotypic stocks comparing fish otolith and scale shapes. Fish. Res. 2017, 185, 6–13. [Google Scholar] [CrossRef]
- Cavalcanti, M.J.; Monteiro, L.R.; Lopes, P.R. Landmark-based morphometric analysis in selected species of serranid fishes (Perciformes: Teleostei). Zool. Stud. 1999, 38, 287–294. [Google Scholar]
- Cadrin, S.X.; Friedland, K.D. The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res. 1999, 43, 129–139. [Google Scholar] [CrossRef]
- Park, I.S.; Kim, B.S.; Lee, S.J.; Hur, J.W.; Yoo, J.S.; Song, Y.C.; Kim, Y.J. Comparative morphometric traits of hybrids between red sea bream (Pagrus major) and black sea bream (Acanthopagrus schlegelii). Fish. Aquatic. Sci. 2006, 9, 44–47. [Google Scholar] [CrossRef]
- Park, P.J.; Aguirre, W.E.; Spikes, D.A.; Miyazaki, J.M. Landmark-based geometric morphometrics: What fish shapes can tell us about fish evolution. Pro. Asso. Biol. Lab. Edu. 2013, 34, 361–371. [Google Scholar]
- Sfakianakis, D.G.; Leris, I.; Laggis, A.; Kentouri, M. The effect of rearing temperature on body shape and meristic characters in zebrafish (Danio rerio) juveniles. Environ. Biol. Fishes 2011, 92, 197–205. [Google Scholar] [CrossRef]
- Hüssy, K.; Mosegaard, H.; Albertsen, C.M.; Nielsen, E.E.; Hemmer-Hansen, J.; Eero, M. Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fish. Res. 2016, 174, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Strauss, R.E.; Bookstein, F.L. The truss: Body form reconstructions in morphometrics. Syst. Biol. 1982, 31, 113–135. [Google Scholar] [CrossRef]
- Rawat, S.; Benakappa, S.; Kumar, J.; Naik, K.; Pandey, G.; Pema, C.W. Identification of fish stocks based on Truss Morphometric: A review. J. Fish Life Sci. 2017, 2, 9–14. [Google Scholar]
- Choudhury, T.G.; Das, A.; Battacharjee, P.; Debnath, B. Length-Weight relationship and condition factor of Botia dario (Hamilton) from Gumti River of Tripura, India. Fish Technol. 2012, 49, 215–218. [Google Scholar]
- Dey, A.; Sarkar, D.; Barat, S. Spawning biology, embryonic development and captive breeding of vulnerable loach Botia dario (Hamilton). J. Ent. Zool. Stud. 2015, 3, 183–188. [Google Scholar]
- Hussain, M.; Khatun, M.; Hossain, M. On the fecundity and sex-ratio of Botia Dario (Hamilton) (Cypriniformes: Cobitidae). Rajshahi Univ. J. Sci. 2008, 26, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S. A note on the biology of necktie loach, Botia dario (Hamilton, 1822). Int. J. Res. Fish. Aqua. 2016, 6, 1–3. [Google Scholar]
- Hossain, M.Y.; Hossen, M.; Ahmed, Z.; Yahya, K.; Rahman, M.M.; Ahamed, F.; Ohtomi, J. Threatened Fishes of the World: Botia dario (Hamilton, 1822) (Cypriniformes: Cobitidae). Ribar. Croat. J. Fish. 2015, 73, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Mojumder, N.; Saha, D.; Utsa, S.; Paul, S.; Saha, D. Biology of the endangered queen loach (Botia dario) collected from wild sources in Bangladesh. AACL Bioflux 2020, 13, 2599–2609. [Google Scholar]
- Harrison, I.; Abell, R.; Darwall, W.; Thieme, M.L.; Tickner, D.; Timboe, I. The freshwater biodiversity crisis. Science 2018, 362, 1369. [Google Scholar] [CrossRef] [PubMed]
- Burkhead, N.M. Extinction Rates in North American Freshwater Fishes; University of California Press: California, CA, USA, 2012; pp. 1900–2010. [Google Scholar]
- Mueller, M.; Pander, J.; Geist, J. Comprehensive analysis of > 30 years of data on stream fish population trends and conservation status in Bavaria, Germany. Biol. Cons. 2018, 226, 311–320. [Google Scholar] [CrossRef]
- Rahman, M.Z. Botia dario. In Red List of Bangladesh Volume 5: Freshwater Fishes; IUCN, International Union for Conservation of Nature, Bangladesh Country Office: Dhaka, Bangladesh, 2015; p. 67. [Google Scholar]
- Das, M.K.; Bordoloi, S. Length-weight relationship and reproductive parameters of Botia dario (Hamilton, 1822) in Assam, India. J. Appl. Ichthyol. 2015, 31, 571–573. [Google Scholar] [CrossRef]
- Jena, D.; Jena, A.K.; Panda, A.; Parhi, J.; Biswas, P. Proximate analysis of some small indigenous fish species (SIS) of Tripura, India. J. Entomol. Zool. Stud. 2018, 6, 470–474. [Google Scholar]
- Talwar, P.K.; Jhingran, A.G. Systematic Account of Siluriformes Fishes. Inland Fishes India Adjacent Countries 1991, 2, 543–714. [Google Scholar]
- Gain, D.; Mahfuj, M.S.; Huq, K.A.; Islam, S.S.; Minar, M.H.; Goutham-Bharathi, M.P.; Das, S.K. Landmark-based morphometric and meristic variations of endangered mrigal Carp, Cirrhinus cirrhosus (Bloch 1795) from wild and hatchery stocks. Sains Malay 2017, 46, 695–702. [Google Scholar] [CrossRef]
- Samad, M.; Rahman, M.A.; Mahfuj, M.S.; Yeasmin, S.M.; Sultana, M.F.; Ahmed, F.F.; Hossain, M.Y. Life-history traits of ten commercially important small indigenous fish species (SIFS) in the Oxbow lake (Southwestern Bangladesh): Key for sound management. Env. Sci. Poll. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Rohlf, F.J. Stony Brook; tpsDig2, Version 2.1.; State University of New York: New York, NY, USA, 2006. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Elliott, N.G.; Haskard, K.; Koslow, J.A. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J. Fish. Biol. 1995, 46, 202–220. [Google Scholar] [CrossRef]
- Geladi, P.; Manley, M.; Lestander, T. Scatter plotting in multivariate data analysis. J. Chemom 2003, 17, 503–511. [Google Scholar] [CrossRef]
- Kocovsky, P.M.; Adams, J.V.; Bronte, C.R. The effect of sample size on the stability of principal components analysis of truss-based fish morphometrics. Trans. Am. Fish. Soc. 2009, 138, 487–496. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Stafford, S. Multivariate Statistics for Wildlife and Ecology Research; Springer Science & Business Media: London, UK, 2013. [Google Scholar]
- Cattell, R.B. The Scree test for the number of factors. Multivariate Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Nimalathasan, B. Determinants of key performance indicators (KPIs) of private sector banks in Sri Lanka: An application of exploratory factor analysis. Ann. Stefan. Cel. Mare. Univ. Suceava. Fac. Econ. Publ. Admin. 2009, 9, 9–17. [Google Scholar]
- AnvariFar, H.; Khyabani, A.; Farahman, H.; Vatandoust, S.; AnvariFar, H.; Jahageerdar, S. Detection of morphometric differentiation between isolated up-and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia 2011, 673, 41–52. [Google Scholar] [CrossRef]
- Mahfuj, M.S.; Samad, M.A.; Ahmed, F.F.; Alim, M.A.; Bakar, Y.; Das, S.K. Intraspecific Phenotypic Variation in Nearly Threatened Mottled Nandus, Nandus nandus (Hamilton, 1822). Sains. Malays. 2020, 49, 2609–2623. [Google Scholar] [CrossRef]
- Mir, J.I.; Sarkar, U.K.; Dwivedi, A.K.; Gusain, O.P.; Jena, J.K. Stock structure analysis of Labeo rohita (Hamilton, 1822) across the Ganga basin (India) using a truss network system. J. Appl. Ichthyol. 2013, 29, 1097–1103. [Google Scholar] [CrossRef]
- Dwivedi, A.K. Implications of Physical Barriers on Longitudinal Connectivity in the Ganga River System through Morphological Assessment of Cirrhinus mrigala (Cyprinidae) Populations. J. Ichthyol. 2021, 61, 270–279. [Google Scholar] [CrossRef]
- Azad, K.N.; Mahfuj, M.S.; Iqbal, T.; Azad, K.N.; Shafaq, M.A.I. Differentiation of intraspecific phenotypic plasticity of elongate glassy perchlet, Chanda nama: Insights into landmark-based truss morphometric and meristic variations. J. Adv. Vet. Anim. Res. 2020, 7, 585–596. [Google Scholar] [CrossRef]
- Vaisakh, G.; Chakraborty, S.K.; Jaiswar, A.K.; Sibina, M.S.; Renjith, R.K.; Sreekanth, G.B. Stock structure analysis of Nemipterus bipunctatus (Valenciennes, 1830) from three locations along the Indian coast. Indian J. Mar. Sci. 2019, 48, 1888–1895. [Google Scholar]
- Mahfuj, M.S.; Rahman, M.M.; Islam, M.; Samad, M.A.; Paul, A.K.; Adhikary, R.K. Landmark-based morphometric and meristic variations of freshwater garfish, Xenentodon cancila from four natural stocks of South-Western Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 117–124. [Google Scholar]
- Sajina, A.M.; Chakraborty, S.K.; Jaiswar, A.K.; Pazhayamadam, D.G.; Sudheesan, D. Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fish. Res. 2011, 108, 100–105. [Google Scholar] [CrossRef]
- Turan, C. A note on the examination of morphometric differentiation among fish populations: The truss system. Turk. J. Zool. 1999, 23, 259–264. [Google Scholar]
- Mahfuj, M.S.; Das, S.K.; Azad, K.N.; Paul, A.K.; Hoshan, I.; Sultana, S.; Biswas, M. Truss network based morphometric and meristic variations among south-western populations of Macrognathus aculeatus in Bangladesh. J. Environ. Biol. 2021, 42, 887–894. [Google Scholar] [CrossRef]
- Panda, A.; Jena, D.; Datta, M.K.; Parhi, J.; Kizhakke, V.R.; Pandey, P.K. Morphological and molecular divergence of Indian hill trout, Barilius bendelisis (Hamilton, 1822) stocks from different Rivers in Indo-Burma biodiversity hotspot: Does river altitude and Dam play a role? J. Appl. Ichthyol. 2019, 35, 1242–1248. [Google Scholar] [CrossRef]
- Karakousis, Y.; Peios, C.; Economidis, P.S.; Triantaphyllidis, C. Multivariate analysis of the morphological variability among Barbus peloponnesius (Cyprinidae) populations from Greece and two populations of B. meridionalis and B. meridionalis petenyi. Cybium 1993, 17, 229–240. [Google Scholar]
- Granier, C.; Aguirrezabal, L.; Chenu, K. Phenopsis, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phyto. 2006, 169, 623–635. [Google Scholar] [CrossRef]
- Haas, T.C.; Blum, M.J.; Heins, D.C. Morphological responses of a stream fish to water impoundment. Biol. Lett. 2010, 6, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.P.; Narvekar, J.; Nuncio, M. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 2010, 1331–1339. [Google Scholar]
- Poulet, N.; Reyjol, Y.; Collier, H.; Lek, S. Does fish scale morphology allow the identification of populations at a local scale? A case study for rostrum dace Leuciscus burdigalensis in River Viaur. Aquat. Sci. 2005, 67, 122–127. [Google Scholar] [CrossRef]
- Palma, J.; Andrade, J.P. Morphological study of Diplodus sargus, Diplodus puntazzo, and Lithognathus mormyrus (Sparidae) in the Eastern Atlantic and Mediterranean Sea. Fish. Res. 2002, 57, 1–8. [Google Scholar] [CrossRef]
- Tzeng, T.D. Morphological variation between populations of spotted mackerel (Scomber australasicus) off Taiwan. Fish. Res. 2004, 68, 45–55. [Google Scholar] [CrossRef]
- Sreekanth, G.B.; Chakraborty, S.K.; Jaiswar, A.K.; Nair, J.R.; Pazhayamadom, D.G.; Renjith, R.K. Site specific differences in food and feeding biology of Nemipterus japonicus (Bloch, 1791) along Indian coast. Indian J. Fish. 2012, 59, 25–31. [Google Scholar]
- Imre, I.; McLaughlin, R.L.; Noakes, D.L.G. Phenotypic plasticity in brook charr: Changes in caudal fin induced by water flow. J. Fish. Biol. 2002, 61, 1171–1181. [Google Scholar] [CrossRef]
Stocks | Sample Size (n) and (♀:♂) | Sampling Location | Geographic Coordinates | Date of Collection | Total Length (cm) | |
---|---|---|---|---|---|---|
Min-Max | Mean (SD) | |||||
Atrai River | 71 (30:41) | Naogaon | 24°55′03.99″ N, 88°44′41.12″ E | 5–8 April 2020 and 15–18 July 2020 | 7.36–10.54 | 9.08 (0.79) |
Dhorala River | 56 (26:30) | Kurigram | 25°49′07.93″ N, 89°40′08.23″ E | 16–19 April 2020 and 4–7 August 2020 | 6.21–9.46 | 7.43 (0.73) |
Danu River | 60 (28:32) | Netrokona | 24°43′02.59″ N, 91°04′54.44″ E | 10–12 April 2020 and 20–22 August 2020 | 7.42–12.03 | 9.77 (0.96) |
Jamuna River | 53 (20:33) | Sirajganj | 24°24′06.19″ N, 89°45′40.73″ E | 27–29 April 2020 and 3–5 August 2020 | 7.53–12.67 | 8.98 (1.13) |
Padma River | 50 (20:30) | Rajbari | 23°46′28.03″ N, 89°43′35.62″ E | 22–25 May 2020 and 26–29 August 2020 | 5.68–11.42 | 8.96 (1.58) |
Characters | Description |
---|---|
Total length (TL) | Distance from the tip of the upper jaw to the longest caudal-fin rays |
Fork length (FL) | Distance from the tip of the upper jaw to the endpoint of the fork of caudal fin rays |
Standard length (SL) | Distance from the tip of the upper jaw to the end of the vertebral column |
Post orbital head length (PsOL) | Distance from the posterior margin of the eye to the end of the operculum |
Pre-orbital head length (PrOL) | From the front of the upper lip to the fleshy anterior edge of the orbit |
Eye length (EL) | A horizontal gap of the eye between the anterior part and posterior part |
Trunk length (TrL) | The distance between the endpoint of the operculum and the end of the vertebral column |
Upper Caudal length (UCL) | The distance between the upper portion of the caudal fin rays and the end portion of the upper fin rays |
Lower Caudal length (LCL) | The distance between the lower portion of the caudal fin rays and the end portion of the lower fin rays |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahfuj, M.S.; Ahmed, F.F.; Hossain, M.F.; Islam, S.I.; Islam, M.J.; Alam, M.A.; Hoshan, I.; Nadia, Z.M. Stock Structure Analysis of the Endangered Queen Loach, Botia dario (Hamilton 1822) from Five Rivers of Northern Bangladesh by Using Morphometrics: Implications for Conservation. Fishes 2022, 7, 41. https://doi.org/10.3390/fishes7010041
Mahfuj MS, Ahmed FF, Hossain MF, Islam SI, Islam MJ, Alam MA, Hoshan I, Nadia ZM. Stock Structure Analysis of the Endangered Queen Loach, Botia dario (Hamilton 1822) from Five Rivers of Northern Bangladesh by Using Morphometrics: Implications for Conservation. Fishes. 2022; 7(1):41. https://doi.org/10.3390/fishes7010041
Chicago/Turabian StyleMahfuj, Md Sarower, Fee Faysal Ahmed, Md Firoj Hossain, Sk Injamamul Islam, Md Jakiul Islam, Md Ashraful Alam, Imran Hoshan, and Zubyda Mushtari Nadia. 2022. "Stock Structure Analysis of the Endangered Queen Loach, Botia dario (Hamilton 1822) from Five Rivers of Northern Bangladesh by Using Morphometrics: Implications for Conservation" Fishes 7, no. 1: 41. https://doi.org/10.3390/fishes7010041
APA StyleMahfuj, M. S., Ahmed, F. F., Hossain, M. F., Islam, S. I., Islam, M. J., Alam, M. A., Hoshan, I., & Nadia, Z. M. (2022). Stock Structure Analysis of the Endangered Queen Loach, Botia dario (Hamilton 1822) from Five Rivers of Northern Bangladesh by Using Morphometrics: Implications for Conservation. Fishes, 7(1), 41. https://doi.org/10.3390/fishes7010041