Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Determination of Ammonia in Haemolymph
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spanier, E.; Lavalli, K.L.; Goldstein, J.S.; Groeneveld, J.C.; Jordaan, G.L.; Jones, C.M.; Phillips, B.F.; Bianchini, M.L.; Kibler, R.D.; Díaz, D.; et al. A concise review of lobster utilization by worldwide human populations from pre-history to the modern era. ICES Mar. Sci. 2015, 72, i7–i21. [Google Scholar] [CrossRef] [Green Version]
- Jeffs, A.G. Status and challenges for advancing lobster aquaculture. J. Mar. Biol. Assoc. India 2010, 52, 320–326. [Google Scholar]
- Pereira, G.; Josupeit, H. The world lobster market. In Globefish Research Programme; Food and Agricultural Organization: Rome, Italy, 2017; Volume 123, 41p. [Google Scholar]
- New Zealand Seafood Industry Council. Seafood New Zealand Export Database. 2021. Available online: https://seafoodnewzealand.org.nz/publications/export-information/export-statistics/ (accessed on 25 December 2021).
- Hart, G. Assessing the South-East Asian Tropical Lobster Supply and Major Market Demands; Report# FR2009-06; Australian Centre for International Agricultural Research: Canberra, Australia, 2009.
- Food and Agriculture Organization. World Fishery and Aquaculture Production Statistics Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
- The Marine Products Export Development Authority. Seafood Export Database; The Marine Products Export Development Authority of India: Kerala, India, 2020.
- Vijayakumaran, M.; Radhakrishnan, E.V. Live transport and marketing of spiny lobsters in India. Mar. Freshw. Res. 1997, 48, 823–828. [Google Scholar] [CrossRef]
- World Bank. World Integrated Trade Solutions. 2021. Available online: https://wits.worldbank.org/ (accessed on 25 December 2021).
- Fotedar, S.; Evans, L. Health management during handling and live transport of crustaceans: A review. J. Invertebr. Pathol. 2011, 106, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Oliver, S. Circulatory, respiratory and metabolic response to emersion and low temperature of Jasus edwardsii: Simulation studies of commercial shipping methods. Comp. Biochem. Physiol. A 1999, 122, 299–308. [Google Scholar] [CrossRef]
- Morris, S.; Oliver, S. Respiratory gas transport, haemocyanin function and acid-base balance in Jasus edwardsii during emersion and chilling: Simulation studies of commercial shipping methods. Comp. Biochem. Physiol. A 1999, 122, 309–321. [Google Scholar] [CrossRef]
- Ozbay, G.; Riley, J.G. The effects of calcium carbonate buffering on the haemolymph acid-base level of the American lobster (Homarus americanus): A pre-shipment conditioning technique. J. Aquat. Food Prod. Technol. 1999, 8, 21–32. [Google Scholar] [CrossRef]
- Taylor, H.H.; Paterson, B.D.; Wong, R.J.; Wells, R.M.G. Physiology and live transport of lobsters: Report from a workshop. Mar. Freshw. Res. 1997, 48, 817–822. [Google Scholar] [CrossRef]
- Stoner, A.W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 2012, 20, 111–135. [Google Scholar] [CrossRef]
- McLeese, D.W. Effects of temperature, salinity and oxygen on the survival of the American lobster. J. Fish. Res. Board Can. 1956, 13, 247–272. [Google Scholar] [CrossRef]
- Robohm, R.A.; Draxler, A.F.J.; Wieczorek, D.; Kapareiko, D.; Ritchford, S. Effects of environmental stressors on disease susceptibility in American lobsters: A controlled laboratory study. J. Shellfish Res. 2005, 24, 773–779. [Google Scholar]
- Spanoghe, P.T.; Bourne, P.K. Relative influence of environmental factors and processing techniques on Panulirus cygnus morbidity and mortality during simulated live shipments. Mar. Freshw. Res. 1997, 48, 839–844. [Google Scholar] [CrossRef]
- Lorenzon, S.; Giulianini, P.G.; Martinis, M.; Ferrero, E.A. Stress effects of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus. Comp. Biochem. Physiol. A 2007, 147, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Jussila, J.; Tiitinen, V.; Fotedar, R.; Kokko, H. A simple and efficient cooling method for postharvest transport of the commercial crayfish catch. Freshw Crayfish 2013, 19, 15–19. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, J.-C. Effects of emersion on the haemolymph metabolites of the Japanese lobster, Panulirus japonicus (Decapoda, Panuliridea). Crustaceana 2001, 71, 1041–1058. [Google Scholar] [CrossRef]
- Hunter, D.A.; Uglow, R.F. Handling-induced changes in haemolymph ammonia concentration and ammonia excretion rate of Crangon crangon (L). Opheila 1993, 38, 137–147. [Google Scholar] [CrossRef]
- Young-Lai, W.; Charmantier-Daures, M.; Charmantier, G. Effect of ammonia on survival and osmoregulation in different life stages of the lobster Homarus americanus. Mar. Biol. 1991, 110, 293–300. [Google Scholar] [CrossRef]
- Taylor, E.W.; Whiteley, N.M. Oxygen transport and acid base balance in haemolymph of the lobster, Homarus gammarus, during aerial exposure and resubmersion. J. Exp. Biol. 1989, 144, 417–463. [Google Scholar] [CrossRef]
- Whiteley, N.M.; Taylor, E.W. The acid-base consequences of aerial exposure in the lobster, Homarus gammarus (L.) at 10 and 20 °C. J. Therm. Biol. 1990, 15, 47–56. [Google Scholar] [CrossRef]
- Whiteley, N.M.; Taylor, E.W. Oxygen and acid-base disturbances in the haemolymph of the lobster Homarus gammarus during commercial transport and storage. J. Crust. Biol. 1990, 12, 19–30. [Google Scholar] [CrossRef]
- Taylor, H.H.; Waldron, F.M. Respiratory responses to air-exposure in the southern rock lobster, Jasus edwardsii (Hutton) (Decapoda: Palinuridae). Mar. Freshw. Res. 1997, 48, 889–897. [Google Scholar] [CrossRef]
- Vermeer, G.K. Effects of air exposure on desiccation rate, hemolymph chemistry, and escape behavours of the spiny lobster, Panulirus argus. Fish. Bull. 1987, 85, 45–51. [Google Scholar]
- Ross, L.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Barrento, S.; Marques, A.; Vaz-Pires, P.; Leonor Nunes, M. Cancer pagurus (Linnaeus, 1758) physiological responses to simulated live transport: Influence of temperature, air exposure and AQUI-S®. J. Therm. Biol. 2011, 36, 128–137. [Google Scholar] [CrossRef]
- Coyle, S.D.; Dasgupta, S.; Tidwell, J.H.; Beavers, T.; Bright, L.A.; Yasharian, D.K. Comparative efficacy of anesthetics for the freshwater prawn Macrobrachium rosenbergii. J. World Aquac. Soc. 2005, 36, 282–290. [Google Scholar] [CrossRef]
- Coyle, S.D.; Durborow, R.M.; Tidwell, J.H. Anesthetics in Aquaculture; SRAC Publication No. 3900; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2004. [Google Scholar]
- Saydmohammed, M.; Pal, A.K. Anesthetic effect of eugenol and menthol on handling stress in Macrobrachium rosenbergii. Aquaculture 2009, 298, 162–167. [Google Scholar] [CrossRef]
- Robertson, J.D.; Delorme, N.J.; Hickey, A.; Jeffs, A.G. Assessment of the potential of the anesthetic AQUI-S for live transportation of the southern rock lobster, Jasus edwardsii. Bull. Mar. Sci. 2018, 94, 1137–1151. [Google Scholar] [CrossRef]
- Waterstrat, P.R.; Pinkham, L. Evaluation of eugenol as an anesthetic for the American lobster Homarus americanus. J. World Aquac. Soc. 2005, 36, 420–424. [Google Scholar] [CrossRef]
- Foley, D.M.; Stewart, J.E.; Holley, R.A. Isobutyl alcohol and methyl pentynol as general anesthetics for the lobster, Homarus americanus Milne Edwards. Can. J. Zool. 1966, 44, 141–143. [Google Scholar] [CrossRef]
- Food and Drug Authority. Code of Federal Regulations Title 21 Food and Drugs. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-F/section-172.515 (accessed on 25 December 2021).
- Turnbull, C.T. Pleopod cuticular morphology as an index of moult stage in the ornate rock lobster, Panulirus ornatus (Fabricius 1789). Aust. J. Mar. Freshwat. Res. 1989, 40, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Boltz, D.F.; Howell, J.A. Colorimetric Determination of Non-Metals; Wiley-Interscience: New York, NY, USA, 1978. [Google Scholar]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance; Blackwell: London, UK, 1997. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Paterson, B.D.; Grauf, S.G.; Smith, R.A. Haemolymph chemistry of tropical rock lobsters (Panulirus ornatus) brought onto a mother ship from a catching dinghy in Torres Strait. Mar. Freshw. Res. 1997, 48, 835–838. [Google Scholar] [CrossRef]
- Speed, S.R.; Baldwin, J.; Wong, R.J.; Wells, R.M.G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Physiol. B 2001, 128, 435–444. [Google Scholar] [CrossRef]
- Florkin, M. Blood chemistry. In The Physiology of Crustacea; Waterman, T.H., Ed.; Academic Press: New York, NY, USA, 1960; Volume 1, pp. 141–159. [Google Scholar]
- McKenzie, J.D.; Calow, P.; Clyde, J.; Miles, A.; Dickinson, R.; Lieb, W.R.; Franks, N.P. Effects of temperature on the anaesthetic potency of halothane, enflurane and ethanol in Daphnia magna (Cladocera: Crustacea). Comp. Biochem. Physiol. C 1992, 101, 15–19. [Google Scholar] [CrossRef]
- Forgan, L.G.; Tuckey, N.P.L.; Cook, D.; Jerret, A. Temperature effects on metabolic rate and cardiorespiratory physiology of the spiny rock lobster (Jasus edwardsii) during rest, emersion and recovery. J. Comp. Physiol. B 2014, 184, 437–447. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozhoth, J.; Jeffs, A. Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species. Fishes 2022, 7, 40. https://doi.org/10.3390/fishes7010040
Pozhoth J, Jeffs A. Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species. Fishes. 2022; 7(1):40. https://doi.org/10.3390/fishes7010040
Chicago/Turabian StylePozhoth, Jayagopal, and Andrew Jeffs. 2022. "Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species" Fishes 7, no. 1: 40. https://doi.org/10.3390/fishes7010040
APA StylePozhoth, J., & Jeffs, A. (2022). Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species. Fishes, 7(1), 40. https://doi.org/10.3390/fishes7010040