Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Bycatch Species from the Hilsa Gillnet Fishery in Bangladesh
2.2. Selection of Productivity (P) and Susceptibility (S) Attributes for PSA
2.3. Data Collection for Attribute Scoring
2.4. Conservative Scoring and Alternative Scoring Approaches
2.5. Determination of Bycatch Stocks’ Vulnerability (V)
2.6. Comparison of Species V Score with the Exploitation Rate (E) and Catch Trend
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sumaila, U.R.; Bellmann, C.; Tipping, A. Fishing for the future: An overview of challenges and opportunities. Mar. Policy 2016, 69, 173–180. [Google Scholar] [CrossRef]
- Mace, P.M. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Can. J. Fish. Aquat. Sci. 1994, 51, 110–122. [Google Scholar] [CrossRef]
- Patrick, W.S.; Spencer, P.; Link, J.; Cope, J.; Field, J.; Kobayashi, D.; Lawson, P.; Gedamke, T.; Cortés, E.; Ormseth, O.; et al. Using productivity and susceptibility indices to assess the vulnerability of united states fish stocks to overfishing. Fish. Bull. 2010, 108, 305–322. [Google Scholar]
- Carruthers, T.R.; Kell, L.T.; Butterworth, D.D.S.; Maunder, M.N.; Geromont, H.F.; Walters, C.; McAllister, M.K.; Hillary, R.; Levontin, P.; Kitakado, T.; et al. Performance review of simple management procedures. ICES J. Mar. Sci. 2016, 73, 464–482. [Google Scholar] [CrossRef]
- Fujita, R.; Thornhill, D.J.; Karr, K.; Cooper, C.H.; Dee, L.E. Assessing and managing data-limited ornamental fisheries in coral reefs. Fish Fish. 2014, 15, 661–675. [Google Scholar] [CrossRef]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and solutions for the world’s unassessed fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2020 Sustainability in Action; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Jennings, S.; Reynolds, J.D.; Polunin, N.V. Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories. Conser. Biol. 1999, 13, 1466–1475. [Google Scholar] [CrossRef]
- Costello, C.; Ovando, D.; Clavelle, T.; Kent Strauss, C.; Hilborn, R.; Melnychuk, M.C.; Branch, T.A.; Gaines, S.D.; Szuwalski, C.S.; Cabral, R.B.; et al. Global fishery prospects under contrasting management regimes. Proc. Natl. Acad. Sci. USA 2016, 113, 5125–5129. [Google Scholar] [CrossRef] [Green Version]
- Leadbitter, D. A risk based approach for promoting management regimes for trawl fisheries in South East Asia. Asian Fish. Sci. 2013, 26, 65–78. [Google Scholar] [CrossRef]
- Hall, S.J.; Mainprize, B.M. Managing bycatch and discards: How much progress are we making and how can we do better? Fish Fish. 2005, 6, 134–155. [Google Scholar] [CrossRef]
- Hobday, A.J.; Smith, A.D.M.; Webb, H.; Daley, R.; Wayte, S.; Bulman, C.; Dowdney, J.; Williams, A.; Sporcic, M.; Dambacher, J.; et al. Ecological Risk Assessment for the Effects of Fishing: Methodology Report R04/1072 for the Australian Fisheries Management Authority; Australian Fisheries Management Authority: Canberra, Australia, 2007.
- Briscoe, D.K.; Hiatt, S.; Lewison, R.; Hines, E. Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. Endanger. Species Res. 2014, 24, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Lucena-Frédou, F.; Kell, L.; Frédou, T.; Gaertner, D.; Potier, M.; Bach, P.; Travassos, P.; Hazin, F.; Ménard, F. Vulnerability of teleosts caught by the pelagic Tuna longline fleets in South Atlantic and Western Indian Oceans. Deep. Res. Part II Top. Stud. Oceanogr. 2017, 140, 230–241. [Google Scholar] [CrossRef]
- Smith, A.D.M.; Fulton, E.J.; Hobday, A.J.; Smith, D.C.; Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 2007, 64, 633–639. [Google Scholar] [CrossRef]
- Zhou, S.; Griffiths, S.P.; Miller, M. Sustainability assessment for fishing effects (SAFE) on highly diverse and data-limited fish bycatch in a tropical prawn trawl fishery. Mar. Freshw. Res. 2009, 60, 563–570. [Google Scholar] [CrossRef]
- Lane, D.E.; Stephenson, R.L. A framework for risk analysis in fisheries decision-making. ICES J. Mar. Sci. 1998, 55, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stobutzki, I.; Miller, M.; Brewer, D. Sustainability of fishery bycatch: A process for assessing highly diverse and numerous bycatch. Environ. Conserv. 2001, 28, 167–181. [Google Scholar] [CrossRef]
- Cheung, W.W.; Pitcher, T.J.; Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserv. 2005, 124, 97–111. [Google Scholar] [CrossRef]
- Musick, J.A. Criteria to define extinction risk in marine fishes: The American Fisheries Society initiative. Fish. Mag. 1999, 24, 6–14. [Google Scholar] [CrossRef]
- Astles, K.L.; Holloway, M.G.; Steffe, A.; Green, M.; Ganassin, C.; Gibbs, P.J. An ecological method for qualitative risk assessment and its use in the management of fisheries in New South Wales, Australia. Fish. Res. 2006, 82, 290–303. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Chesson, J.; Sainsbury, K.J.; Hundloe, T.J.; Fisher, M. A flexible and practical framework for reporting on ecologically sustainable development for wild capture fisheries. Fish. Res. 2005, 71, 175–183. [Google Scholar] [CrossRef]
- Patrick, W.S.; Spencer, P.; Ormseth, O.; Cope, J.; Field, J.; Kobayashi, D.; Gedamke, T.; Cortés, E.; Bigelow, K.; Overholtz, W.; et al. Use of Productivity and Susceptibly Indices to Determine Stock Vulnerability, with Example Applications to Six U.S. Fisheries; U.S. Department of Commerce: Washington, DC, USA, 2009; pp. 1–90.
- Hobday, A.J.; Smith, A.D.M.; Stobutzki, I.C.; Bulman, C.; Daley, R.; Dambacher, J.M.; Deng, R.A.; Dowdney, J.; Fuller, M.; Furlani, D.; et al. Ecological risk assessment for the effects of fishing. Fish. Res. 2011, 108, 372–384. [Google Scholar] [CrossRef]
- Cortés, E.; Arocha, F.; Beerkircher, L.; Carvalho, F.; Domingo, A.; Heupel, M.; Holtzhausen, H.; Santos, M.N.; Ribera, M.; Simpfendorfer, C. Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquat. Living Resour. 2010, 23, 25–34. [Google Scholar] [CrossRef]
- Altuna-Etxabe, M.; Ibaibarriaga, L.; García, D.; Murua, H. Species prioritisation for the development of multiannual management plans for the Basque demersal fishery. Ocean Coast. Manag. 2020, 185, 105054. [Google Scholar] [CrossRef]
- Hordyk, A.R.; Carruthers, T.R. A quantitative evaluation of a qualitative risk assessment framework: Examining the assumptions and predictions of the Productivity Susceptibility Analysis (PSA). PLoS ONE 2018, 13, e0206575. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Wang, S.P.; Chiang, W.C.; Griffiths, S.; Yeh, H.M. Ecological risk assessment of species impacted by fisheries in waters off eastern Taiwan. Fish. Manag. Ecol. 2020, 27, 345–356. [Google Scholar] [CrossRef]
- Froese, R.; Binohlan, C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 2000, 56, 758–773. [Google Scholar] [CrossRef]
- Rahman, M.J.; Wahab, M.A.; Amin, S.M.N.; Nahiduzzaman, M.; Romano, N. Catch trend and stock assessment of Hilsa Tenualosa ilisha using digital image measured length frequency data. Mar. Coast. Fish. 2018, 10, 386–401. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.R.; Das, I.; Genevier, L.; Hazra, S.; Rahman, M.; Barange, M.; Fernandes, J.A. Biology and fisheries of Hilsa shad in Bay of Bengal. Sci. Total Environ. 2019, 651, 1720–1734. [Google Scholar] [CrossRef]
- DoF. Yearbook of Fisheries Statistics of Bangladesh, 2018–2019; Fisheries Resources Survey System (FRSS), Department of Fisheries: Dhaka, Bangladesh, 2019; Volume 36, pp. 1–135.
- Faruque, H.; Matsuda, H. Assessing the vulnerability of bycatch species from Hilsa gillnet fishing using productivity susceptibility analysis: Insights from Bangladesh. Fish. Res. 2020, 234, 105808. [Google Scholar] [CrossRef]
- McCully Phillips, S.R.; Scott, F.; Ellis, J.R. Having confidence in productivity susceptibility analyses: A method for underpinning scientific advice on skate stocks? Fish. Res. 2015, 171, 87–100. [Google Scholar] [CrossRef]
- Mejía-Falla, P.A.; Castro, E.R.; Ballesteros, C.A.; Bent-Hooker, H.; Caldas, J.P.; Rojas, A.; Navia, A.F. Effect of a precautionary management measure on the vulnerability and ecological risk of elasmobranchs captured as target fisheries. Reg. Stud. Mar. Sci. 2019, 31, 100779. [Google Scholar] [CrossRef]
- Roux, M.J.; Tallman, R.F.; Martin, Z.A. Small-scale fisheries in Canada’s Arctic: Combining science and fishers knowledge towards sustainable management. Mar. Policy 2019, 101, 177–186. [Google Scholar] [CrossRef]
- Cope, J.M.; Devore, J.; Dick, E.J.; Ames, K.; Budrick, J.; Erickson, D.L.; Grebel, J.; Hanshew, G.; Jones, R.; Mattes, L. An approach to defining stock complexes for U.S. west coast groundfishes using vulnerabilities and ecological distributions. North Am. J. Fish. Manag. 2011, 31, 589–604. [Google Scholar] [CrossRef]
- Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 1980, 39, 175–192. [Google Scholar] [CrossRef]
- Jensen, A.L. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 1980, 53, 820–822. [Google Scholar] [CrossRef]
- Reynolds, J.D.; Jennings, S.; Dulvy, N.K. Life Histories of Fishes and Population Responses to Exploitation; Reynolds, J.D., Mace, G.M., Redford, K.H., Robinson, J.G., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 147–168. [Google Scholar]
- Roff, D.A. The evolution of life history parameters in teleosts. Can. J. Fish. Aquat. Sci. 1984, 41, 989–1000. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. World Wide Web Electronic Publication. version. 2021. Available online: www.fishbase.org (accessed on 5 June 2021).
- Cresswell, J.W.; Plano Clark, V.L. Designing and Conducting Mixed Method Research; Sage Publiction: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Osio, G.C.; Orio, A.; Millar, C.P. Assessing the vulnerability of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 2015, 171, 110–121. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; De Bruyn, P.; Diaz, G.A.; Murua, H.; Chavance, P.; De Molina, A.D.; Gaertner, D.; Ariz, J.; Ruiz, J.; Kell, L.T. Productivity and susceptibility analysis for species caught in Atlantic tuna fisheries. Aquat. Living Resour. 2011, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Candelas, I.A.; Pérez-Jiménez, J.C.; Espinoza-Tenorio, A.; McClenachan, L.; Méndez-Loeza, I. Use of historical data to assess changes in the vulnerability of sharks. Fish. Res. 2020, 226, 105526. [Google Scholar] [CrossRef]
- IUCN. Red List of Bangladesh (Freshwater Fishes); International Union for Conservation of Nature, Bangladesh Country Office: Dhaka, Bangladesh, 2015; Volume 5, 360p. [Google Scholar]
- Gulland, J.A. Estimation of mortality rates. Annex to Arctic fisheries working group report. Int. Counc. Explor. Sea CM 1971, 3, 9. [Google Scholar]
- Zhou, S.; Hobday, A.J.; Dichmont, C.M.; Smith, A.D.M. Ecological risk assessments for the effects of fishing: A comparison and validation of PSA and SAFE. Fish. Res. 2016, 183, 518–529. [Google Scholar] [CrossRef]
- Rosenberg, A.A.; Acosta, A.; Babcock, E.; Harrington, J.; Hobday, A.; Mogensen, C.B.; O’Boyle, R.; Rader, D.; Swasey, J.H.; Trumble, R.J.; et al. Use of Productivity-Susceptibility Analysis (PSA) in Setting Annual Catch Limits for US Fisheries: A Workshop Report; U.S. Department of Commerce: Washington, DC, USA, 2009; pp. 1–18.
- Parvez, M.S.; Nabi, M.R. Population dynamics of Coilia ramcarati from the estuarine set bagnet fishery of Bangladesh. Walailak J. Sci. Technol. 2015, 12, 539–552. [Google Scholar] [CrossRef]
- Sarker, M.N.; Humayun, M.; Rahman, M.A.; Uddin, M.S. Population dynamics of Bombay Duck Harpodon nehereus (Hamilton, 1822) of the Bay of Bengal along Bangladesh coast. Bangladesh J. Zool. 2017, 45, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.K.A.; Kabir, S.M.H.; Ahmad, M.; Ahmed, A.T.A.; Ahmed, Z.U.; Begum, Z.N.T.; Hassan, M.A.; Khondker, M. Encyclopedia of Flora and Fauna of Bangladesh; Asiatic Society of Bangladesh: Dhaka, Bangladesh, 2009; Volume 24, 485p. [Google Scholar]
- Mustafa, M.G.; Ahmed, I.; Ilyas, M. Population dynamics of five important commercial fish species in the Sundarbans ecosystem of Bangladesh. J. Appl. Life Sci. Int. 2019, 22, 1–13. [Google Scholar] [CrossRef]
- Early-Capistrán, M.M.; Sáenz-Arroyo, A.; Cardoso-Mohedano, J.G.; Garibay-Melo, G.; Peckham, S.H.; Koch, V. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: The East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish Fish. 2018, 19, 57–77. [Google Scholar] [CrossRef]
- Sáenz-Arroyo, A.; Revollo-Fernández, D. Local ecological knowledge concurs with fishing statistics: An example from the abalone fishery in Baja California, Mexico. Mar. Policy 2016, 71, 217–221. [Google Scholar] [CrossRef]
Scientific Name | FAO Species Code | Common Name | Family | Order | Environment Preference |
---|---|---|---|---|---|
Clupisoma garua | LUG | River catfish | Ailiidae | Siluriformes | Freshwater, brackish |
Coilia ramcarati | ZZU | Ramcarat grenadier anchovy | Engraulidae | Clupeiformes | Marine, brackish |
Harpadon nehereus | BUC | Bombay-duck | Synodontidae | Aulopiformes | Marine, brackish |
Ilisha filigera | PIF | Coromandel ilisha | Pristigasteridae | Clupeiformes | Marine, freshwater, brackish |
Lates calcarifer | GIP | Giant perch | Centropomidae | Carangiformes | Marine, freshwater, brackish |
Lepturacanthus savala | SVH | Savalani hairtail | Trichiuridae | Scombriformes | Marine, brackish |
Megalaspis cordyla | HAS | Torpedo scad | Carangidae | Carangiformes | Marine, brackish |
Mystus gulio | BMG | Long whiskers catfish | Bagridae | Siluriformes | Freshwater, brackish |
Nemipterus japonicus | NNJ | Japanese threadfin bream | Nemipteridae | Perciformes | Marine |
Netuma thalassinus | AUX | Giant catfish | Ariidae | Siluriformes | Marine, freshwater, brackish |
Otolithoides pama | OTD | Pama croaker | Sciaenidae | Perciformes | Marine, freshwater, brackish |
Pampus argenteus | SIP | Silver pomfret | Stromatidae | Scombriformes | Marine |
Pampus chinensis | CPO | Chinese silver pomfret | Stromatidae | Scombriformes | Marine, brackish |
Parastromateus niger | POB | Black pomfret | Carangidae | Carangiformes | Marine, brackish |
Pennahia argentata | CRV | Silver croaker | Sciaenidae | Perciformes | Marine |
Polynemus paradiseus | ONU | Paradise threadfin | Polynemidae | Carangiformes | Marine, freshwater, brackish |
Pomadasys argenteus | GRL | Silver grunt | Haemulidae | Perciformes | Marine, freshwater, brackish |
Rastrelliger kanagurta | RAG | Indian mackerel | Scombridae | Scombriformes | Marine |
Rhinomugil corsula | RIC | Corsula mullet | Mugilidae | Mugiliformes | Freshwater, brackish |
Scoliodon laticaudus | SLA | Spadenose shark | Carcharhinidae | Carcharhiniformes | Marine, brackish |
Scomberomorus guttatus | GUT | Indo-Pacific king mackerel | Scombridae | Scombriformes | Marine, brackish |
Productivity Attributes | Low Risk (3) | Moderate Risk (2) | High Risk (1) |
---|---|---|---|
Maximum age (tmax, year) | <4 | 4–8 | >8 |
Maximum size (Lmax, cm) | <38 | 38–85 | >85 |
Von Bertalanffy growth coefficient (k, yr-1) | >0.78 | 0.33–0.78 | <0.33 |
Estimated natural mortality (M, yr-1) | >1.21 | 0.74–1.21 | <0.74 |
Measured fecundity (MF) | >64136 | 10663–64136 | <10,663 |
Breeding strategy (BS) | Release eggs into the water column | Lay eggs in a nest and guard those eggs until hatching | Internal fertilization (/Livebearer) mouth brooding or other strategies that involve full parental care |
Age at first maturity (tmat, years) | <1.0 | 1–2 | >2 |
Mean trophic level (MTL) | <3.50 | 3.50–3.90 | >3.90 |
Size at first maturity (Lmat, cm) | <19 | 19–38 | >38 |
Breeding cycle (female) | Annual cycle with protracted breeding season | Annual cycle with a seasonal peak | Bi/Triennial |
tmat/tmax | <0.25 | 0.25–0.30 | >0.30 |
Lmat/Lmax | <0.52 | 0.52–0.59 | >0.59 |
Susceptibility Attributes | High Risk (3) | Moderate Risk (2) | Low Risk (1) |
---|---|---|---|
Areal overlap | >50% of the stock occurs in the area fished | Between 25% and 50% of the stock occurs in the area fished | <25% of stock occurs in the area fished |
Vertical overlap | >50% of the stock occurs in the depths fished | Between 25% and 50% of the stock occurs in the depths fished | <25% of stock occurs in the depths fished |
Seasonal migrations | Seasonal migrations increase overlap with the fishery | Seasonal migrations do not substantially affect the overlap with the fishery | Seasonal migrations decrease overlap with the fishery |
Schooling, aggregation, and other behavioral responses | Behavioral responses increase the catchability of the gear | Behavioral responses do not substantially affect the catchability of the gear | Behavioral responses decrease the catchability of the gear |
Morphological characteristics affecting capture | Species shows high selectivity to the fishing gear (e.g., torpedo-shaped or bilaterally flattened with deeper girth fishes) | Species shows moderate selectivity to the fishing gear (e.g., elongated body shaped fishes) | Species shows low selectivity to the fishing gear (e.g., flatfishes) |
Management strategy | Stocks do not have input and/or output control measures, and target and bycatch species are not monitored | Stocks have input and/or output control measures, and measures in place to conserve the stocks occasionally monitored and enforced | Stocks have input and/or output control measures, and measures in place to conserve the stocks regularly monitored and enforced by balancing carrots and sticks |
Survival after capture and release | Probability of survival <33% | Between 33% and 67% probability of survival | Probability of survival >67% |
Market value of fish (USD / kg) | >3.5 | 1.5–3.5 | <1.5 |
Market demand for fish | High | Moderate | Low |
Fishing rate relative to natural mortality | >1 | 0.5–1.0 | <0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faruque, H.; Matsuda, H. Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh. Fishes 2021, 6, 33. https://doi.org/10.3390/fishes6030033
Faruque H, Matsuda H. Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh. Fishes. 2021; 6(3):33. https://doi.org/10.3390/fishes6030033
Chicago/Turabian StyleFaruque, Hasan, and Hiroyuki Matsuda. 2021. "Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh" Fishes 6, no. 3: 33. https://doi.org/10.3390/fishes6030033
APA StyleFaruque, H., & Matsuda, H. (2021). Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh. Fishes, 6(3), 33. https://doi.org/10.3390/fishes6030033