Nonstationary Responses of Demersal Fishes to Environmental Variations in Temperate Waters of the Northwestern North Pacific under a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biological, Environmental, and Climatic Data
2.3. Data Analyses
3. Results
3.1. State Shifts of Demersal Fishes and SST Variability
3.2. Nonstationary Responses of Demersal Fishes to SST Variability
3.3. Nonstationary Effects of Climate Drivers on SST
4. Discussion
4.1. Effects of Warming on Demersal Fishes
4.2. Changing Major Climate Drivers for the SST in Temperate Waters of the NWP
4.3. Impacts of Fishing and Implications for Fishery Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Litzow, M.A.; Ciannelli, L.; Cunningham, C.J.; Johnson, B.; Puerta, P. Nonstationary effects of ocean temperature on pacific salmon productivity. Can. J. Fish. Aquat. Sci. 2019, 76, 1923–1928. [Google Scholar] [CrossRef]
- Litzow, M.A.; Ciannelli, L.; Puerta, P.; Wettstein, J.J.; Rykaczewski, R.R.; Opiekun, M. Non-stationary climate-salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 2018, 285, 2018185. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.R. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Cook, B.I.; McLauchlan, K.K.; Davies, T.J. Temporal ecology in the Anthropocene. Ecol. Lett. 2014, 17, 1365–1379. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Tian, Y.; Fu, C.; Yu, H.; Li, J.; Liu, Y.; Cheng, J.; Wan, R.; Watanabe, Y. Climate-induced nonlinearity in pelagic communities and non-stationary relationships with physical drivers in the Kuroshio ecosystem. Fish. Fish. 2020, 22, 1–17. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Williams, J.W.; Bateman, B.L.; Burke, K.D.; Carter, S.K.; Childress, E.S.; Cromwell, K.J.; Gratton, C.; Hasley, A.O.; Kraemer, B.M.; et al. The rise of novelty in ecosystems. Ecol. Appl. 2015, 25, 2051–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolmogorov, A.N. A Simplified Proof of the Birkoff- Khinchin Ergodic Theorem; Springer: Dordrecht, The Netherlands, 1991; pp. 271–276. [Google Scholar]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding enso diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Wang, S.Y.; L’heureux, M.; Yoon, J.H. Are greenhouse gases changing ENSO precursors in the Western North Pacific? J. Clim. 2013, 26, 6309–6322. [Google Scholar] [CrossRef]
- Litzow, M.A.; Ciannelli, L.; Puerta, P.; Wettstein, J.J.; Rykaczewski, R.R.; Opiekun, M. Nonstationary environmental and community relationships in the North Pacific Ocean. Ecology 2019, 100, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerta, P.; Ciannelli, L.; Rykaczewski, R.R.; Opiekun, M.; Litzow, M.A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate? Prog. Oceanogr. 2019, 175, 161–170. [Google Scholar] [CrossRef]
- Tian, Y.; Kidokoro, H.; Fujino, T. Interannual-decadal variability of demersal fish assemblages in the Tsushima Warm Current region of the Japan Sea: Impacts of climate regime shifts and trawl fisheries with implications for ecosystem-based management. Fish. Res. 2011, 112, 140–153. [Google Scholar] [CrossRef]
- Tian, Y.; Kidokoro, H.; Watanabe, T.; Iguchi, N. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms. Prog. Oceanogr. 2008, 77, 127–145. [Google Scholar] [CrossRef]
- Kun Jung, H.; Rahman, S.M.M.; Kang, C.-K.; Park, S.-Y.; Heon Lee, S.; Je Park, H.; Kim, H.-W.; Lee, C.I. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2017, 143, 110–120. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y. Comparison of fluctuations in fish communities and trophic structures of ecosystems from three currents around Japan: Synchronies and differences. ICES J. Mar. Sci. ICES 2014, 71, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M.; et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Ma, S.; Tian, Y.; Li, J.; Yu, H.; Cheng, J.; Sun, P.; Fu, C.; Liu, Y.; Watanabe, Y. Climate Variability Patterns and Their Ecological Effects on Ecosystems in the Northwestern North Pacific. Front. Mar. Sci. 2020, 7, 546882. [Google Scholar] [CrossRef]
- Tian, Y.; Kidokoro, H.; Watanabe, T. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Prog. Oceanogr. 2006, 68, 217–237. [Google Scholar] [CrossRef]
- Pak, G.; Yeh, S.W.; Nam, S.H.; Park, Y.H.; Kim, Y.H. Major Driver Leading to Winter SST Variability in the Kuroshio Recirculation Gyre Region and Its Decadal Changes: Refreshening Versus Spring-Initiated Reemergence Processes. Geophys. Res. Lett. 2019, 46, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Yatsu, A.; Chiba, S.; Yamanaka, Y.; Ito, S.I.; Shimizu, Y.; Kaeriyama, M.; Watanabe, Y. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 2013, 70, 922–933. [Google Scholar] [CrossRef] [Green Version]
- Fisheries Agency and Fisheries Research Agency. Marine Fisheries Stock Assessment and Evaluation for Japanese Waters; Fisheries Agency and Fisheries Research and Education Agency of Japan: Tokyo, Japan, 2017. (In Japanese) [Google Scholar]
- Pope, J.G. An investigation of the accuracy of virtual population analysis using cohort analysis. Int. Comm. Northwest. Atl. Fish. Res. Bull. 1972, 9, 65–74. [Google Scholar]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Fredston-Hermann, A.; Selden, R.; Pinsky, M.; Gaines, S.D.; Halpern, B.S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Chang. Biol. 2020, 26, 2908–2922. [Google Scholar] [CrossRef]
- Xing, Q.; Yu, H.; Ito, S.-i.; Ma, S.; Yu, H.; Wang, H.; Tian, Y.; Sun, P.; Liu, Y.; Li, J.; et al. Using a larval growth index to detect the environment-recruitment relationships and its linkage with basin-scale climate variability: A case study for Japanese anchovy (Engraulis japonicus) in the Yellow Sea. Ecol. Indic. 2021, 122, 107301. [Google Scholar] [CrossRef]
- O’Connor, M.I.; Bruno, J.F.; Gaines, S.D.; Halpern, B.S.; Lester, S.E.; Kinlan, B.P.; Weiss, J.M. Temperature control of larval dis- persal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA 2007, 104, 1266–1271. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, N.; Munday, P. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Cheng, J.; Li, J.; Liu, Y.; Wan, R.; Tian, Y. Interannual to decadal variability in the catches of small pelagic fishes from China Seas and its responses to climatic regime shifts. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2019, 159, 112–129. [Google Scholar] [CrossRef]
- Ma, S.; Liu, Y.; Li, J.; Fu, C.; Ye, Z.; Sun, P.; Yu, H.; Cheng, J.; Tian, Y. Climate-induced long-term variations in ecosystem structure and atmosphere-ocean-ecosystem processes in the Yellow Sea and East China Sea. Prog. Oceanogr. 2019, 175, 183–197. [Google Scholar] [CrossRef]
- Lehodey, P.; Bertrand, A.; Hobday, A.J.; Kiyofuji, H.; McClatchie, S.; Menkès, C.E.; Pilling, G.; Polovina, J.; Tommasi, D. ENSO Impact on Marine Fisheries and Ecosystems. In El Niño Southern Oscillation in a Changing Climate; McPhaden, M.J., Santoso, A., Cai, W., Eds.; American Geophysical Union: Washington, DC, USA, 2020; pp. 429–451. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Luo, X.; Yang, Y.M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.W.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, J.; Kim, H.J.; Webster, P.J.; Yim, S.Y.; Xiang, B. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Fu, X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 3, 1517–1536. [Google Scholar] [CrossRef]
- Zuur, A.F.; Fryer, R.J.; Jolliffe, I.T.; Dekker, R.; Beukema, J.J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 2003, 14, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.A.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Core Team R. R: A Language and Environment for Statistical Computing (Vol. 3.4.3); R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.r-project.org/ (accessed on 10 January 2021).
- Goodrich, B.; Gabry, J.; Ali, I.; Brilleman, S. Rstanarm: Bayesian Applied Regression Modeling via Stan. 2018. Available online: http://mc-stan.org/ (accessed on 10 January 2021).
- Litzow, M.A.; Hunsicker, M.E.; Ward, E.J.; Anderson, S.C.; Gao, J.; Zador, S.G.; Batten, S.; Dressel, S.C.; Duffy-Anderson, J.; Fergusson, E.; et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 2020, 186, 102393. [Google Scholar] [CrossRef]
- Ellis, N.; Smith, S.J.; Pitcher, C.R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 2012, 93, 156–168. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Sunday, J.M.; Pecl, G.T.; Frusher, S.; Hobday, A.J.; Hill, N.; Holbrook, N.J.; Edgar, G.J.; Stuart-Smith, R.; Barrett, N.; Wernberg, T.; et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 2015, 18, 944–953. [Google Scholar] [CrossRef]
- Morley, J.W.; Buckel, J.A.; Lankford, T.E., Jr. Relative con- tribution of spring-and summer-spawned bluefish cohorts to the adult population: Effects of size-selective winter mortality, over-winter growth, and sampling bias. Can. J. Fish. Aquat. Sci. 2013, 70, 233–244. [Google Scholar] [CrossRef]
- Clark, N.J.; Kerry, J.T.; Fraser, C.I. Rapid winter warming could disrupt coastal marine fish community structure. Nat. Clim. Chang. 2020, 10, 862–867. [Google Scholar] [CrossRef]
- Hufnagl, M.; Peck, M.A.; Nash, R.D.M.; Dickey-Collas, M. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study. Prog. Oceanogr. 2015, 138, 486–503. [Google Scholar] [CrossRef]
- Hurst, T.P. Causes and consequences of winter mortality in fishes. J. Fish. Biol. 2007, 71, 315–345. [Google Scholar] [CrossRef]
- Robbins, P. Marine Science. Encycl. Environ. Soc. 2014, 71, 2416–2428. [Google Scholar] [CrossRef]
- Morley, J.W.; Batt, R.D.; Pinsky, M.L. Marine assemblages respond rapidly to winter climate variability. Glob. Chang. Biol. 2017, 23, 2590–2601. [Google Scholar] [CrossRef]
- Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Ecology: Climate change and distribution shifts in marine fishes. Science 2005, 308, 1912–1915. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Nihira, A. Regime shift and demersal fish resources. In Regime Shift: Climate Changes and Manage- ments of Biological Resources; Kawasaki, T., Hanawa, K., Taniuchi, A., Nihira, A., Eds.; Seisandou: Tokyo, Janpan, 2007; pp. 157–173. (In Japanese) [Google Scholar]
- Carpenter, J.H. Measurements in Pure and of Oxygen Solubility. Limnol. Oceanogr. 1966, 11, 264–277. [Google Scholar] [CrossRef]
- Free, C.M.; Thorson, J.T.; Pinsky, M.L.; Oken, K.L.; Wiedenmann, J.; Jensen, O.P. Impacts of historical warming on marine fisheries production. Science 2019, 363, 979–983. [Google Scholar] [CrossRef]
- Harris, L.A.; Duarte, C.M.; Nixon, S.W. Allometric laws and prediction in estuarine and coastal ecology. Estuaries Coasts 2006, 29, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J. Gulf of Mexico hypoxia, a.k.a. “The dead zone”. Annu. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- Gamo, T. Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophys. Res. Lett. 1999, 26, 3137–3140. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Izumi, T.; Sampe, T. Interannual and decadal modulations recently observed in the Pacific storm track activity and èast Asian winter monsoon. J. Clim. 2002, 15, 1855–1874. [Google Scholar] [CrossRef]
- Panagiotopoulos, F.; Shahgedanova, M.; Hannachi, A.; Stephenson, D.B. Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Clim. 2005, 18, 1411–1422. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.H.; Yoon, J.H.; Youn, Y.H.; Vivier, F. Recent warming in the western north pacific in relation to rapid changes in the atmospheric circulation of the Siberian high and aleutian low systems. J. Clim. 2012, 25, 3476–3493. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Nĩo in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, Z.; Li, J. Reexamining the relationship of La Niña and the East Asian Winter Monsoon. Clim. Dyn. 2019, 53, 779–791. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Cobb, K.M.; Furtado, J.C.; Schneider, N.; Anderson, B.T.; Bracco, A.; Alexander, M.A.; Vimont, D.J. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci. 2010, 3, 762–765. [Google Scholar] [CrossRef]
- Doak, D.F.; Estes, J.A.; Halpern, B.S.; Jacob, U.; Lindberg, D.R.; Lovvorn, J.; Monson, D.H.; Tinker, M.T.; Williams, T.M.; Wootton, J.T.; et al. Understanding and predicting ecological dynamics: Are major surprises inevitable. Ecology 2008, 89, 952–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litzow, M.A.; Malick, M.J.; Bond, N.A.; Cunningham, C.J.; Gosselin, J.L.; Ward, E.J. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 2020, 47, e2020GL087972. [Google Scholar] [CrossRef]
- Foley, M.M.; Martone, R.G.; Fox, M.D.; Kappel, C.V.; Mease, L.A.; Erickson, A.L.; Halpern, B.S.; Selkoe, K.A.; Taylor, P.; Scarborough, C. Using Ecological Thresholds to Inform Resource Management: Current Options and Future Possibilities. Front. Mar. Sci. 2015, 2, 95. [Google Scholar] [CrossRef] [Green Version]
Order | Common Name | Scientific Name | Thermal Preference | Spawning Season | Population Process | Source | Years |
---|---|---|---|---|---|---|---|
TS1 | Pacific cod | Gadus macrocephalus | Cold | January–March | Catch | ARCSFA | 1956–2015 |
TS2 | Walleye pollock | Theragra chalcogramma | Cold | December–March | Catch | ARCSFA | 1956–2015 |
TS3 | Largehead hairtail | Trichiurus japonicus | Warm | April–October | Catch | ARCSFA | 1956–2015 |
TS4 | Blackhead seabream | Acanthopagrus schlegelii | Warm | Winter–Spring | Catch | ARCSFA | 1956–2015 |
TS5 | Japanese sandfish | Arctoscopus japonicus | Cold | December–January | Catch | ARCSFA | 1956–2015 |
TS6 | Biomass | SARJ | 1972–2015 | ||||
TS7 | Broadbanded thornyhead | Sebastolobus macrochir | Cold | March–April | Catch | ARCSFA | 1956–2015 |
TS8 | Biomass | SARJ | 1972–2015 | ||||
TS9 | Deepsea smelt | Glossanodon semifasciatus | Warm | Spring–Autumn | Catch | ARCSFA | 1956–2015 |
TS10 | Biomass | SARJ | 1975–2015 | ||||
TS11 | Silver seabream | Pagrus major | Warm | April–July | Catch | ARCSFA | 1956–2015 |
TS12 | Biomass | SARJ | 1970–2015 | ||||
TS13 | Flathead flounder | Hippoglossoides dubius | Cold | February–April | Biomass | SARJ | 1972–2015 |
TS14 | Pointhead flounder | Cleisthenes pinetorum | Warm | January–April | Biomass | SARJ | 1966–2014 |
TS15 | Roundnose flounder | Eopsetta grigorjewi | Cold | January–April | Biomass | SARJ | 1966–2015 |
TS16 | Roughscale sole | Clidoderma asperrimum | Cold | February–April | Biomass | SARJ | 1972–2015 |
TS17 | Yellow goosefish | Lophius litulon | Warm | February–May | Biomass | SARJ | 1973–2015 |
TS18 | Daggertooth pike conger | Muraenesox cinereus | Warm | June–October | Catch | Sea Around Us | 1956–2015 |
TS19 | Bastard halibut | Paralichthys olivaceus | Warm | March–June | Catch | Sea Around Us | 1956–2015 |
TS20 | Large yellow croaker | Larimichthys crocea | Warm | March–June | Catch | Sea Around Us | 1957–2015 |
TS21 | Small yellow croaker | Larimichthys polyactis | Warm | March–June | Catch | Sea Around Us | 1956–2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Ma, S.; Xing, Q.; Zhang, W.; Yu, H.; Ye, Z. Nonstationary Responses of Demersal Fishes to Environmental Variations in Temperate Waters of the Northwestern North Pacific under a Changing Climate. Fishes 2021, 6, 22. https://doi.org/10.3390/fishes6030022
He Q, Ma S, Xing Q, Zhang W, Yu H, Ye Z. Nonstationary Responses of Demersal Fishes to Environmental Variations in Temperate Waters of the Northwestern North Pacific under a Changing Climate. Fishes. 2021; 6(3):22. https://doi.org/10.3390/fishes6030022
Chicago/Turabian StyleHe, Qingsong, Shuyang Ma, Qinwang Xing, Wenchao Zhang, Haiqing Yu, and Zhenjiang Ye. 2021. "Nonstationary Responses of Demersal Fishes to Environmental Variations in Temperate Waters of the Northwestern North Pacific under a Changing Climate" Fishes 6, no. 3: 22. https://doi.org/10.3390/fishes6030022
APA StyleHe, Q., Ma, S., Xing, Q., Zhang, W., Yu, H., & Ye, Z. (2021). Nonstationary Responses of Demersal Fishes to Environmental Variations in Temperate Waters of the Northwestern North Pacific under a Changing Climate. Fishes, 6(3), 22. https://doi.org/10.3390/fishes6030022