Multispecies Fresh Water Algae Production for Fish Farming Using Rabbit Manure
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Seeding, Identification and Counting of Phytoplankton
2.3. Monitoring of Physico-Chemical and Trophic Parameters
2.4. Statistical Analyses
3. Results
3.1. Abiotic Parameters
3.2. Biotic Parameters
3.2.1. Chlorophyll-a Concentrations
3.2.2. Phytoplankton Diversity
3.2.3. Phytoplankton Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sipaúba-Tavares, L.H.; Pereira, A.M.L. Large scale laboratory cultures of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergei Korinek, 1981 (Cladocera). Braz. J. Biol. 2008, 68, 875–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, T. A review of on-farm feed management practices for North African catfish (Clarias gariepinus) in sub-Saharan Africa. In On-Farm Feeding and Feed Management in Aquaculture; Hasan, M.R., New, M.B., Eds.; FAO Fisheries and Aquaculture Technical Paper: Rome, Italy, 2013; Volume 583, pp. 463–479. [Google Scholar]
- Djissou, A.S.M.; Tossavi, E.C.; Vodounnou, J.D.; Toguyeni, A.; Fiogbe, E.D. Valorization of agro-alimentary waste for aproduction of maggots like source of proteins in the animal feeds. Int. J. Agron. Agric. Res. 2015, 7, 42–46. [Google Scholar]
- Adandé, R.; Bokossa, H.K.J.; Liady, M.N.D.; Fiogbe, E.D. Valorization of various sources of rabbit manure in agro- piscicultural system in Benin (West Africa): Dynamics and effect of mineralization upon quality of fresh water. Int. J. Recycl. Org. Agric. Waste 2017, 6, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Saint-Jean, L.; Bonou, C.A.; Pagano, M. Développement et croissance en poids de Moina (cf) micrura et de Mesocyclops ogunnus dans un milieu saumâtre tropical: Les étangs de pisciculture de Layo (Côte d’Ivoire). Rev. Hydrobiol. Trop. 1994, 24, 287–303. [Google Scholar]
- Dalme, D.K.; Chari, M.S. Performance evaluation of different animal wastes on culture of Daphnia Sp. J. Fish. Aquat. Sc. 2011, 6, 57–61. [Google Scholar] [CrossRef]
- Gobler, C.J.; Renaghan, M.J.; Buck, N.J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Limnol. Oceanogr. 2002, 47, 129–141. [Google Scholar] [CrossRef]
- Akodogbo, H.H.; Bonou, C.A.; Adande, R.; Sossou, D.S.; Fiogbe, E.D. Optimization of zooplankton production from pig dung optimal dose: Renewed medium. Agric. Adv. 2015, 4, 15–21. [Google Scholar] [CrossRef]
- Adandé, R.; Liady, M.N.D.; Bokossa, H.K.J.; Djidohokpin, G.; Zouhir, F.; Mensah, G.A.; Fiogbe, E.D. Utilisation rationnelle de fertilisants organiques pour la production de macroinvertébrés benthiques d’eau douce en pisciculture. Biotechnol. Agron. Soc. Environ. 2018, 22, 12. [Google Scholar]
- Sander, K.; Murthy, G.S. Life cycle analysis of algae biodiesel. Int. J. Life Cycle Assess 2010, 15, 704. [Google Scholar] [CrossRef]
- Agadjihouèdé, H.; Bonou, A.C.; Montchowui, E.; Laleye, P. Recherche de la dose optimale de fiente de volaille pour la production spécifique de zooplancton à des fins piscicoles. Cah. Agric. 2011, 20, 247–260. [Google Scholar]
- Arun, K.M.; Padmavati, G.; Anandavelu, I. Biochemical composition and calorific value of zooplankton from the coastal waters of South Andaman. Proceed. Inter. Acad. Ecol. Environ. Sci. 2013, 3, 278–287. [Google Scholar]
- Nandini, S.; Ortiz, A.R.N.; Sarma, S.S.S. Elaphoidella grandidieri (Harpacticoida: Copepoda): Demographic characteristics and possible use as live prey in aquaculture. J. Environ. Biol. 2011, 32, 505–511. [Google Scholar] [PubMed]
- Adandé, R.; Adjahouinou, D.C.; Liady, M.N.D.; FIOGBE, E.D. Alimentation des lapins (Oryctolagus cuniculus L.) à base de Azolla filiculoïdes, Elaeis guineensis, Ipomoea aquatica et Panicum maximum: Effet sur la croissance des lapins et potentiel nutritif des crottes pour l’aquaculture. Int. J. Biol. Chem. Sci. 2017, 11, 2914–2923. [Google Scholar]
- Santeiro, M.R.; Ricardo Motta, P.-C.; Sipaúba-Tavares, L.H.D. variation of zooplankton biochemical composition and biomass in plankton production tanks Acta Scientiarum. Biol. Sci. 2006, 28, 103–108. [Google Scholar]
- Agadjihouèdé, H.; Bonou, C.A.; Chikou, A.; Lalèyè, P. Production comparée de zooplancton en bassins fertilisés avec la fiente de volaille et la bouse de vache. Int. J. Biol. Chem. Sci. 2010, 4, 432–442. [Google Scholar] [CrossRef]
- Adjahouinou, D.C.; Liady, N.D.; Fiogbe, E.D. Diversité phytoplanctonique et niveau de pollution des eaux du collecteur de Dantokpa (Cotonou-Bénin). Int. J. Biol. Chem. Sci. 2012, 6, 1938–1949. [Google Scholar] [CrossRef]
- Bourrelly, P. Les Algues d’Eau Douce: Algues Jaunes et Brunes (Tome 2); Edition Boubée N et Cie: Paris, France, 1981; p. 521. [Google Scholar]
- Bourrelly, P. Les Algues d’Eau Douce: Algues Bleues et Rouges (Tome 3); Edition Boubée N. et Cie: Paris, France, 1985; p. 608. [Google Scholar]
- Bourrelly, P. Les Algues d’Eau Douce:Algues Vertes (Tome 1); Edition Boubée N. et Cie: Paris, France, 1990; p. 576. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. II- Cyanophycées. Cah. Orstom Série Hydrobiol. 1974, 8, 165–198. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. III- Rhodophycées, Euglénophycées, Cryptophycées, Dinophycées, Chrysophycées, Xanthophycées. Cah. Orstom. Série Hydrobiol. 1975, 9, 167–192. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. IV- Diatomophycées. Cah. Orstom. Série Hydrobiol. 1975, 9, 203–290. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. V- Chorophycophytes 1èrre partie. Cah. Orstom. Série Hydrobiol. 1976, 10, 77–118. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. VI- Chorophycophytes 2e partie: Ulotrichophycées, Zygnématacées. Cah. Orstom. Série Hydrobiol. 1976, 10, 135–164. [Google Scholar]
- Compère, P. Algues de la région du lac Tchad. VII- Chorophycophytes 3e partie: Desrnidiées. Cah. Orstom. Série Hydrobiol. 1977, 11, 77–177. [Google Scholar]
- Durand, J.R.; Lévêque, C. Flore et Faune Aquatiques de l’Afrique Sahélo- Soudanienne (Tome I); Durand, J.R., Lévêque, C., Eds.; Éditions ORSTOM, Collection Initiations Initiations-Documentations Techniques: Paris, France, 1980; Volume 44, pp. 9–61. [Google Scholar]
- Guiry, M.D. Algae Base. Worldwide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 25 June 2017).
- Bouali, M.; Zrafi, I.; Mouna, F.A. Bakhrouf, Pilot study of constructed wetlands for tertiary wastewater treatment using duckweed and immobilized microalgae. Africa. J. Microbiol. Res. 2012, 31, 6066–6074. [Google Scholar]
- Rodier, J.B.L.; Merlet, N. Coll. Analyse de l’eau; Paris, France, 2012; p. 20225. [Google Scholar]
- Zhu, C.J.; Lee, Y.K.; Chao, T.M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 1997, 9, 451–457. [Google Scholar] [CrossRef]
- Vargas, S.; Leslie, K.; Vacek, P.; Socinski, M.; Weaver, D. Estrogen-receptor-related protein p29 in primary nonsmall cell lung carcinoma: Pathologic and prognostic correlations. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998, 82, 1495–1500. [Google Scholar] [CrossRef]
- Liady, M.N.D.; Kpèhouénou, O.B.; Adandé, R.; Noumavo, A.D.P.; Kouadio, L.A.; Aïna, M.P.; Fiogbe, E.D. Valorisation of the supernatant of brewery effluent in plankton production for fish farming: An alternative for environment protection in southern countries. Biotec. Agron. Soc. Environ. 2020, 24, 235–239. [Google Scholar]
- Tahiri, M.; Benider, A.; Belkoura, M.; Dauta, A. Caractérisation biochimiques de l’algue verte Scenedesmus abundans: Influence des conditions de culture. In Annales de Limnologie-International Journal of Limnology; EDP Sciences: Ulis, France, 2000. [Google Scholar]
- Oswald, W.J. Micro-algae and wastewater treatment. In Micro-algal Biotech; Bor-owitzka, M.A., Borowitzka, L.J., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 305–328. [Google Scholar]
- Muñoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef]
- Shen, G.; Xu, J.; Hu, S.; Zhao, Q.; Liu, Y. Nitrogen removal pathways in shallow-water duckweed-based wastewater treatment systems. J. Ecol. Rural Environ. 2006, 22, 42–47. [Google Scholar]
- Hodaifa, G.M.; Martínez, E.; Sánchez, S. Influence of pH on the Culture of Scenedesmus obliquus in Olive-mill Wastewater. Biotechnol. Bioprocess Eng. 2009, 14, 854–860. [Google Scholar] [CrossRef]
- Zimmo, O.R.; Van, D.N.P.; Gijzen, H.J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Res. 2004, 38, 913–920. [Google Scholar] [CrossRef]
- Hamaidi, M.S.; Hamaidi, F.; Zoubiri, A.; Benouaklil, F.; Dhan, Y. Etude de la dynamique des populations phytoplanctoniques et résultats préliminaires sur les blooms toxiques a cyanobacteries dans le barrage de Ghrib (Ain Defla-Algérie). Europ. J. Sci. Res. 2009, 32, 369–380. [Google Scholar]
- Toyub, M.A.; Miah, M.I.; Habib, M.A.B.; Rahman, M.M. Growth performance and nutritional value of Scenedesmus obliquus cultured in different concentrations of sweetmeat factory waste media Bang. J. Anim. Sci. 2008, 37, 86–93. [Google Scholar]
- Boyd, C.E. Water Quality Management for Pond Fish Culture; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1982; p. 318. [Google Scholar]
- Schlumberger, O.; Bouretz, N. Réseaux trophiques et production piscicole en étangs fertilisés (Dordogne, France). J. Water Sci. 2002, 15, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Barbe, J.; Schlumberger, O.; Bouretz, N. Evaluation de la production piscicole potentielle des étangs. IRSTEA 2000, 49–62, hal-00464073. [Google Scholar]
- Reynolds, C.S. The ecology of freshwater phytoplancton. In Cambridge Studies in Ecology; Beck, E., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1984. [Google Scholar]
- Moussa, M.; Baccar, L.; Ben, K.R. La lagune de Ghar El Melh: Diagnostic écologique et perspectives d’aménagement hydraulique. J. Water Sci. 2005, 18, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Benzha, F.; Taoufik, M.; Dafir, J.E.; Kemmou, S.; Loukili, L. Qualité physico-chimique des eaux du réservoir Daourat; impact de la vidange sur son fonctionnement. J. Water Sci. 2005, 18, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Canovas, S.; Casellas, C.; Picot, B.; Pena, G.; Bontoux, J. Evolution annuelle du peuplement zooplanctonique dans un lagunage à haut rendement et incidence du temps de séjour. J. Water Sci. 1991, 4, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Marciniak, J.; Villaverde, S.; Garcia-Encina, P.A.; Munoz, R. Microalgal-based processes for the degradation of pre-treated piggery wastewaters. Appl. Microbiol. Biotech. 2008, 80, 891–898. [Google Scholar] [CrossRef]
- Ignacio, G.; Virginia, A.V.; Saul, B.; Maria, C.; Roberto, S.; Pedro, A.; Eloy, B.; Raul, M.A. Comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour. Technol. 2010, 101, 5150–5158. [Google Scholar]
- Pourriot, R.; Meybeck, M. Limnologie Générale; Masson: Paris, France, 1995. [Google Scholar]
- Rawat, I.; Ranjith, K.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass for sustainable biofuels production. Appl. Energ. 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Rusten, B.; Sahu, A.K. Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Sci. Technol. 2011, 64, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
Parameters | T0 | T1 | T2 | T3 | T4 | T5 | F |
---|---|---|---|---|---|---|---|
T°C | 33.74 ± 1.70 | 34.02 ± 1.81 | 34.30 ± 1.70 | 34.34 ± 1.87 | 34.48 ± 1.86 | 34.51 ± 1.78 | F(5, 12) =12.63 |
Cond (µs/cm) | 37.66 ± 23.17 c | 597.82 ± 34.10 b | 604.50 ± 23.17 b | 607.19 ± 22.12 b | 625.58 ± 36.08 ab | 664.45 ± 50.63 a | F(5,12) = 41.86 |
pH | 6.87 ± 0.94 b | 7.29 ± 0.79 a | 7.33 ± 0.94 a | 7.12 ± 0.92 a | 7.09 ± 1.05 a | 7.16 ± 1.05 a | F(5,12) = 5.53 |
DO (mg/L) | 3.81 ± 0.72 d | 7.48 ± 1.95 c | 9.42 ± 0.72 a | 8.58 ± 2.40 a | 8.99 ± 2.95 a | 9.66 ± 3.33 a | F(5, 12) = 59.40 |
Sal (mg/L) | 0.08 ± 0.01 c | 0.31 ± 0.02 b | 0.32 ± 0.01 b | 0.32 ± 0.01 b | 0.33 ± 0.01 ab | 0.36 ± 0.03 a | F(5, 12) = 9.33 |
TDS | 64.60 ± 8.77 c | 296.92 ± 17.07 b | 302.56 ± 8.77 b | 303.43 ± 7.47 b | 318.76 ± 16.81 ab | 338.61 ± 27.11 a | F(5, 12) = 7.88 |
Transp (cm) | 27.91 ± 0.37 a | 22.50 ± 1.13 b | 16.85 ± 1.51 ce | 17.63 ± 1.41 de | 14.43 ± 1.38 fh | 12.98 ± 1.50 gh | F(5, 12) = 17.69 |
Phylum | Classes | Families | Genuses and Species |
---|---|---|---|
Bacillariophytes | Coscinodiscophyceae | Melosiraceae | Melosira italica |
Melosira sp | |||
Bacillariophyceae | Pinnulariaceae | Pinnularia viridis | |
Pinnularia sp | |||
Naviculaceae | Navicula sp | ||
Charophytes | Conjugatophyceae | Closteriaceae | Closterium sp |
Desmidiaceae | Staurastrum margaritaceum | ||
Staurastrum pinnatum | |||
Chlorophyceae | Scenedesmaceae | Coelastrum sp | |
Scenedesmus javanensis | |||
Scenedesmus apiculatus | |||
Scenedesmus quadricauda | |||
Palmellopsidaceae | Asterococcus sp | ||
Euglenophytes | Euglenophyceae | Euglenaceae | Euglena ehrenbergii |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, A.; Nourou Dine, L.M.; Gildas, D.; Dogbè Clément, A.; Tobias Césaire, A.M.; Jean-Claude, M.; Didier Emile, F. Multispecies Fresh Water Algae Production for Fish Farming Using Rabbit Manure. Fishes 2020, 5, 35. https://doi.org/10.3390/fishes5040035
Richard A, Nourou Dine LM, Gildas D, Dogbè Clément A, Tobias Césaire AM, Jean-Claude M, Didier Emile F. Multispecies Fresh Water Algae Production for Fish Farming Using Rabbit Manure. Fishes. 2020; 5(4):35. https://doi.org/10.3390/fishes5040035
Chicago/Turabian StyleRichard, Adandé, Liady Mouhamadou Nourou Dine, Djidohokpin Gildas, Adjahouinou Dogbè Clément, Azon Mahuan Tobias Césaire, Micha Jean-Claude, and Fiogbe Didier Emile. 2020. "Multispecies Fresh Water Algae Production for Fish Farming Using Rabbit Manure" Fishes 5, no. 4: 35. https://doi.org/10.3390/fishes5040035
APA StyleRichard, A., Nourou Dine, L. M., Gildas, D., Dogbè Clément, A., Tobias Césaire, A. M., Jean-Claude, M., & Didier Emile, F. (2020). Multispecies Fresh Water Algae Production for Fish Farming Using Rabbit Manure. Fishes, 5(4), 35. https://doi.org/10.3390/fishes5040035