Studying Kenai River Fisheries’ Social-Ecological Drivers Using a Holistic Fisheries Agent-Based Model: Implications for Policy and Adaptive Capacity
Abstract
:1. Introduction
1.1. Identifying Socio-Ecological Drivers through Stakeholder Workshops
1.1.1. Chinook By-Catch Driver
1.1.2. Personal Use Fisheries Participation Driver
1.1.3. Run-Timing Dynamics Driver
1.1.4. ADFG Management Dynamics Driver
2. Methods
2.1. Model Summary
2.2. Studied Scenarios
2.2.1. Sockeye and Chinook Migration Scenarios
2.2.2. Set Gillnet Gear Scenarios
2.2.3. Dipnet Participation and Gear Scenarios
2.3. Scenario Analysis and Cost of Outcomes
3. Results and Discussion
3.1. Sockeye Migration Scenarios
3.2. Dipnet Gear and Effort Scenarios
3.3. Set Gillnet Gear Scenarios
3.4. Management Implications
- Reduction in set gillnet Chinook by-catch, while maintaining sockeye salmon harvest levels, is a critical system dynamic that determines which fisheries are allowed to harvest salmon. If the sockeye run timing dynamics shift earlier, they will coincide with the Chinook runs and as the set gillnet gear scenarios showed, the Chinook by-catch can significantly increase which would shutdown the commercial fisheries closures to protect the Chinook escapement while the dipnet fishery would control the escapement. The alternative management decision would be to limit the set gillnet fishery participation in the early season or regulate the gear dimensions to avoid Chinook by-catch.
- Increasing dipnet effort and sockeye harvest (Section 3.2) suggests that the dipnet fishery could be used as a sockeye escapement tool and would be especially helpful in years where Chinook escapement is low. The set gillnet fishery would be restricted to minimize the Chinook by-catch while the dipnet fishery harvest would be increased through increased participation. One way of achieving this would be to open the dipnet fishery season to correlate with and knock down the high volume peaks of the sockeye migration dynamics.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A.
Appendix A.1. Scenario ANOVA p-Values
Sockeye, Dipnet, and Set Gillnet Scenario One-Way ANOVA Analysis | |||
---|---|---|---|
Response Variable | Sockeye p-Value | Dipnet p-Value | Set Gillnet p-Value |
Dipnet Sockeye Harvest | <0.000001 | <0.000001 | 0.00428 |
Dipnet Chinook Harvest | <0.000001 | <0.000001 | 0.0885 |
Dipnet Effort | <0.000001 | <0.000001 | 0.038 |
Set Gillnet Sockeye Harvest | <0.000001 | 0.000028 | <0.000001 |
Set Gillnet Chinook Harvest | <0.000001 | 0.000706 | <0.000001 |
Set Gillnet Effort | <0.000001 | <0.000001 | <0.000001 |
Drift Gillnet Sockeye Harvest | 0.0000926 | <0.000001 | 0.629 |
Drift Gillnet Chinook Harvest | <0.000001 | 0.000333 | 0.00453 |
Drift Gillnet Effort | <0.000001 | <0.000001 | 0.89 |
Sockeye Escapement | <0.000001 | <0.000001 | 0.263 |
Chinook Escapement | <0.000001 | <0.000001 | 0.0153 |
Appendix A.2. Chinook Migration Scenarios
Appendix A.3. Impact of Scenarios on Salmon Escapement
References
- Alaska Department of Fish and Game. 2017. Available online: http://www.adfg.alaska.gov (accessed on 1 February 2017).
- Heard, W.R. Alaska salmon enhancement: A successful program for hatchery and wild stocks. In Ecology of Aquaculture Species and Enhancement of Stocks, Proceedings of the Thirtieth U.S.—Japan Meeting on Aquaculture. Sarasota, FL, USA, 3–4 December 2001; UJNR Technical Report No. 30; Mote Marine Laboratory: Sarasota, FL, USA, 2001; p. 149. [Google Scholar]
- Sechrist, K.; Rutz, J. The History of Upper Cook Inlet Salmon Fisheries A Century of Salmon. 2014. Available online: http://www.adfg.alaska.gov (accessed on 1 February 2017).
- Elison, T.B.; Salomone, P.; Brazil, C.E.; Buck, G.B.; West, F.W.; Jones, M.A.; Sands, T.; Krieg, T.; Lemons, T. 2015 Bristol Bay Area Annual Management Report; Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services: Anchorage, AK, USA, 2016. [Google Scholar]
- Hilborn, R.; Quinn, T.P.; Schindler, D.E.; Rogers, D.E. Biocomplexity and fisheries sustainability. Proc. Natl. Acad. Sci. USA 2003, 100, 6564–6568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, P.; Dupuis, A. Upper Cook Inlet Commercial Fisheries Annual Management Report, 2011–2014; Reports No. 2014:15-20, 2013:13-49, 2012:13-21, 2011:12-25; Alaska Department of Fish and Game, Division of Sport Fish Commercial Fisheries, Fishery Management: Anchorage, AK, USA, 2015. [Google Scholar]
- Shields, P.; Dupuis, A. Upper Cook Inlet Commercial Fisheries Annual Management Report, 2015; Alaska Department of Fish and Game: Anchorage, AK, USA, 2016. [Google Scholar]
- Carroll, A. What Are Escapement Goals. 2005. Available online: http://www.adfg.alaska.gov/ (accessed on 1 February 2017).
- Clark, R.; Willette, M.; Fleischman, S.; Eggers, D. Biological and Fishery-Related Aspects of Overescapement in Alaskan Sockeye Salmon Oncorhynchus Nerka. Alaska Department of Fish and Game: Anchorage, AK, USA, 2007. [Google Scholar]
- Anthony, K.; Marshall, P.A.; Abdulla, A.; Beeden, R.; Bergh, C.; Black, R.; Eakin, C.M.; Game, E.T.; Gooch, M.; Graham, N.A.; et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 2015, 21, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Oteros-Rozas, E.; Martín-López, B.; Daw, T.; Bohensky, E.L.; Butler, J.; Hill, R.; Martin-Ortega, J.; Quinlan, A.; Ravera, F.; Ruiz-Mallén, I.; et al. Participatory scenario planning in place-based social- research: Insights and experiences from 23 case studies. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
- Shearer, A.W.; Mouat, D.A.; Bassett, S.D.; Binford, M.W.; Johnson, C.W.; Saarinen, J. A Examining development-related uncertainties for environmental management: Strategic planning scenarios in Southern California. Landsc. Urban Plan. 2006, 77, 359–381. [Google Scholar] [CrossRef]
- Krupa, M.B. Who’s who in the Kenai River Fishery SES: A streamlined method for stakeholder identification and investment analysis. Mar. Policy 2016, 71, 194–200. [Google Scholar] [CrossRef]
- Trammell, J.; Krupa, M.; Powell, J.; Kitty Farnham, K.; Breest, C.; Brummer, C.; Post, L. Salmon 2050. 2019. Available online: https://www.alaska.edu/epscor/archive/phase-4/southcentral-test-case/salmon-2050/ (accessed on 1 April 2017).
- Trammell, E.J.; Krupa, M.; Powell, J.; Kliskey, A. Identifying SES threats to salmon abundance on the Kenai River, Alaska. In Preparation.
- Alaska Department of Fish and Game. The Kenai River; Technical Report; Alaska Department of Fish and Game: Anchorage, AK, USA.
- Shields, P.; Dupuis, A. Upper Cook Inlet Commercial Fisheries Annual Management Report, 2012; Technical Report; Alaska Department of Fish and Game: Anchorage, AK, USA, 2013. [Google Scholar]
- Welch, D.W.; Porter, A.D.; Winchell, P. Migration behavior of maturing sockeye (Oncorhynchus nerka) and Chinook salmon (O. tshawytscha) in Cook Inlet, Alaska, and implications for management. Anim. Biotelem. 2014, 2, 35. [Google Scholar] [CrossRef]
- Woodby, D.; Carlile, D.; Siddeek, S.; Funk, F.; Clark, J.H.; Hulbert, L. Commercial fisheries of Alaska; Special Publication; Alaska Department of Fish and Game: Anchorage, AK, USA, 2005; p. 74. [Google Scholar]
- Dunker, K.J. Upper Cook Inlet Personal Use Salmon Fisheries, 2010–2012; Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services: Anchorage, AK, USA, 2013. [Google Scholar]
- Kovach, R.P.; Ellison, S.C.; Pyare, S.; Tallmon, D.A. Temporal patterns in adult salmon migration timing across southeast Alaska. Glob. Chang. Biol. 2015, 21, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.E.; Hilborn, R.; Chasco, B.; Boatright, C.P.; Quinn, T.P.; Rogers, L.A.; Webster, M.S. Population diversity and the portfolio effect in an exploited species. Nature 2010, 465, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.G. Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob. Chang. Biol. 2008, 14, 229–235. [Google Scholar] [CrossRef]
- Barclay, A.W.; Habicht, C.; Tobias, T.; Willette, T.M.; Templin, W.D.; Hoyt, H.A.; Chenoweth, E.L. Genetic Stock Identification of Upper Cook Inlet Sockeye Salmon Harvest, 2005–2008, 2009, 2010, 2011; Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services: Anchorage, AK, USA, 2010, 2013, 2014. [Google Scholar]
- Jones, M.C.; Dye, S.R.; Pinnegar, J.K.; Warren, R.; Cheung, W.W.L. Using scenarios to project the changing profitability of fisheries under climate change. Fish Fish. 2015, 16, 603–622. [Google Scholar] [CrossRef]
- Petihakis, G.; Smith, C.J.; Triantafyllou, G.; Sourlantzis, G.; Papadopoulou, K.N.; Pollani, A.; Korres, G. Scenario testing of fisheries management strategies using a high resolution ERSEM–POM ecosystem model. ICES J. Mar. Sci. 2007, 64, 1627. [Google Scholar] [CrossRef]
- Weatherdon, L.V.; Ota, Y.; Jones, M.C.; Close, D.A.; Cheung, W.W.L. Projected Scenarios for Coastal First Nations’ Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities. PLoS ONE 2016, 11, e0145285. [Google Scholar] [CrossRef] [PubMed]
- Cenek, M.; Franklin, M. An adaptable agent-based model for guiding multi-species Pacific salmon fisheries management within a SES framework. Ecol. Model. 2017, 360, 132–149. [Google Scholar] [CrossRef]
- Cenek, M.; Franklin, M. Developing High Fidelity, Data Driven, Verified Agent Based Models Coupled Socio-Ecological Systems of Alaska Fisheries. In Agent-Based Models and Complexity Science in the Age of Geospatial Big Data; Advances in Geographic Information Science; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Cenek, M.; Franklin, M. Salmon ABM. 2017. Available online: https://salmonabm.wordpress.com/ (accessed on 1 February 2017).
- Cook Inlet Area Commercial Salmon Fishing Regulations 2014–2017. 2013. Available online: http://www.adfg.alaska.gov/ (accessed on 1 February 2017).
- Secchi, D.; Seri, R. Controlling for false negatives in agent-based models: A review of power analysis in organizational research. Comput. Math. Organ. Theory 2017, 23, 94–121. [Google Scholar] [CrossRef]
- Dowdy, S.; Wearden, S.; Chilko, D. Statistics for Research; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 512. [Google Scholar]
- Shields, P.; Dupuis, A. Upper Cook Inlet Commercial Fisheries Annual Management Report, 2016; Report No. 2016:17-05 Soldotna; Alaska Department of Fish and Game, Division of Sport Fish and Commercial Fisheries, Fishery Management: Anchorage, AK, USA, 2017. [Google Scholar]
Key Simulation Parameters | ||
---|---|---|
Parameter | Description | Default Value |
Sockeye MDMT Shift | Shift in median date of migration timing for sockeye salmon run | 0 |
Sockeye DMT Shift | Shift in duration of migration timing for sockeye salmon run | 0 |
Chinook MDMT Shift | Shift in median date of migration timing for Chinook salmon run | 0 |
Chinook DMT Shift | Shift in duration of migration timing for Chinook salmon run | 0 |
Set Depth | Depth of netting used by set gillnet fishermen (6 in. per mesh) | 45 |
Set Length (Width) | Length of netting used by set gillnet fishermen (6 ft. per fathom) | 105 |
Dipnet Width | Largest allowable width for dipnet fishing gear (ft.) | |
Dipnet Effort Adjust | Adjustment factor to participation in the dipnet fishery | |
Dipnetters per Agent | Simulation scaling of dipnetters per agent. Altered to affect dipnet effort. | 34–99 |
Sockeye Run Size | Randomly selected magnitude of sockeye run strength | 2,533,975–6,199,394 |
Chinook Run Size | Randomly selected magnitude of Chinook run strength | 19,353–75,557 |
Drift Permits | Randomly selected participation in the drift gillnet fishery | 378–496 |
Set Permits | Randomly selected participation in the set gillnet fishery | 315–385 |
Drift Depth | Depth of netting used by drift gillnet fishermen in meshes (6 in. per mesh) | 45 |
Drift Length | Length of netting used by drift gillnet fishermen in fathoms (6 ft. per fathom) | 150 |
Scenarios | Parameters Altered | Permutation Values of Parameters | Units |
---|---|---|---|
Sockeye Migration | Sockeye MDMT Shift | [−14, 0, 14] | Days |
Sockeye DMT Shift | [−14, 0, 14] | Days | |
Chinook Migration | Chinook MDMT Shift | [−14, 0, 14] | Days |
Chinook DMT Shift | [−14, 0, 14] | Days | |
Set Gillnet Gear | Set Gillnet Depth | [29, 45] | Meshes (6 in. per mesh) |
Set Gillnet Width | [70, 105, 140] | Fathoms (6 ft. per fathom) | |
Dipnet Gear and Effort | Dipnet Width | [5.0, 5.5, 6.0] | Feet |
Dipnet Effort Adjust | [1.0, 1.5, 2.0] | Constant |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, M.; Cenek, M.; Trammell, E.J. Studying Kenai River Fisheries’ Social-Ecological Drivers Using a Holistic Fisheries Agent-Based Model: Implications for Policy and Adaptive Capacity. Fishes 2019, 4, 33. https://doi.org/10.3390/fishes4020033
Franklin M, Cenek M, Trammell EJ. Studying Kenai River Fisheries’ Social-Ecological Drivers Using a Holistic Fisheries Agent-Based Model: Implications for Policy and Adaptive Capacity. Fishes. 2019; 4(2):33. https://doi.org/10.3390/fishes4020033
Chicago/Turabian StyleFranklin, Maxwell, Martin Cenek, and E. Jamie Trammell. 2019. "Studying Kenai River Fisheries’ Social-Ecological Drivers Using a Holistic Fisheries Agent-Based Model: Implications for Policy and Adaptive Capacity" Fishes 4, no. 2: 33. https://doi.org/10.3390/fishes4020033