Air Exposure in Catshark (Scyliorhinus canicula) Modify Muscle Texture Properties: A Pilot Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Muscle Lactate
2.2. Muscle Water Content
2.3. Muscle Texture
3. Material and Methods
3.1. Animal
3.2. Experimental Design and Sampling
3.3. Muscle Analysis
3.4. Statistics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dent, F.; Clarke, S. State of the Global Market for Shark Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 590, p. 196. [Google Scholar]
- Addis, P.; Secci, M.; Locci, I.; Cau, A.C. Harvesting, handling practices and processing of bluefin tuna captured in the trap fishery: Possible effects on the flesh quality. Collect. Vol. Sci. Pap. ICCAT 2012, 67, 390–398. [Google Scholar]
- Bahuaud, D.; Morkore, T.; Langsrud, O.; Sinnes, K.; Veiseth, E.; Ofstad, R.; Thomassen, M.S. Effects of −1.5 °C super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor fillets: Cathepsin activity, muscle histology, texture and liquid leakage. Food Chem. 2008, 111, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Lyu, J.; Kong, C.; Song, S.; Luo, Y. The impact of stunning methods on stress conditions and quality of silver carp (Hypophthalmichthys molitrix) fillets stored at 4 °C during 72 h postmortem. Food Chem. 2017, 216, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Barat, J.M.; Gil, L.; Garcia-Breijo, E.; Aristoy, M.C.; Toldra, F.; Martinez-Manez, R.; Soto, J. Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor. Food Chem. 2008, 108, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.P.; Wu, Q.; Li, D.Y.; Pan, J.F.; Zheng, J.J.; Fu, X.X.; Qi, L.B.; Chen, G.B. Physicochemical, micro-structural, and textural properties of different parts from farmed common carp (Cyprinus carpio). Int. J. Food Prop. 2017, 20, 946–955. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Zeng, X.A.; Liu, D. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1012–1225. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Tsukada, T.; Ootaki, S.; Yamada, Y.; Inoue, M. Correspondence between food consistency and suprahyoid muscle activity, tongue pressure, and bolus transit times during the oropharyngeal phase of swallowing. J. Appl. Physiol. (1985) 2008, 105, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Hazon, N.; Henderson, I.W. Secretory dynamics of 1α-hydroxycorticosterone in the elasmobranch fish, Scyliorhinus canicula. J. Endocrinol. 1984, 103, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Armour, K.J.; O’Toole, L.B.; Hazon, N. The effect of dietary protein restriction on the secretory dynamics of 1α-hydroxycorticosterone and urea in the dogfish, Scyliorhinus canicula: A possible role for 1α-hydroxycorticosterone in sodium retention. J. Endocrinol. 1993, 138, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Iwama, G.K. Stress in fish. Ann. N. Y. Acad. Sci. 1998, 851, 304–310. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Shadwick, R.E.; Farrell, A.P.; Brauner, C. Physiology of Elasmobranch Fishes: Internal Processes; Academic Press: London, UK, 2015; Volume 34B, p. 580. [Google Scholar]
- Theoharides, T.C.; Singh, L.K.; Boucher, W.; Pang, X.; Letourneau, R.; Webster, E.; Chrousos, G. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998, 139, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.L.; Walker, T.I.; Reina, R.D. Stress-related physiological changes and post-release survival of elephant fish (Callorhinchus milii) after longlining, gillnetting, angling and handling in a controlled setting. Fish. Res. 2018, 204, 116–124. [Google Scholar] [CrossRef]
- Skrzynska, A.K.; Maiorano, E.; Bastaroli, M.; Naderi, F.; Miguez, J.M.; Martinez-Rodriguez, G.; Mancera, J.M.; Martos-Sitcha, J.A. Impact of air exposure on vasotocinergic and isotocinergic systems in gilthead sea bream (Sparus aurata): New insights on fish stress response. Front. Physiol. 2018, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Skomal, G.B.; Mandelman, J.W. The physiological response to anthropogenic stressors in marine elasmobranch fishes: A review with a focus on the secondary response. Comp. Biochem. Physiol. A 2012, 162, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Hoffmayer, E.R.; Parsons, G.R. The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Fish Physiol. Biochem. 2001, 25, 277–285. [Google Scholar] [CrossRef]
- Mandelman, J.W.; Farrington, M.A. The physiological status and mortality associated with otter trawl capture, transport, and captivity of an exploited elasmobranch, Squalus acanthias. ICES J. Mar. Sci. 2007, 64, 122–130. [Google Scholar] [CrossRef]
- Brill, R.; Bushnell, P.; Schroff, S.; Seifert, R.; Galvin, M. Effects of anaerobic exercise accompanying catch-and-release fishing on blood-oxygen affinity of the sandbar shark (Carcharhinus plumbeus, Nardo). J. Exp. Mar. Biol. Ecol. 2008, 354, 132–143. [Google Scholar] [CrossRef]
- Bahuaud, D.; Morkore, T.; Ostbye, T.K.; Veiseth-Kent, E.; Thomassen, M.S.; Ofstad, R. Muscle structure responses and lysosomal cathepsins b and l in farmed Atlantic salmon (Salmo salar L.) pre- and post-rigor fillets exposed to short and long-term crowding stress. Food Chem. 2010, 118, 602–615. [Google Scholar] [CrossRef]
- Poli, B.M.; Parisi, G.; Scappini, F.; Zampacavallo, G. Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquac. Int. 2005, 13, 29–49. [Google Scholar] [CrossRef]
- Revill, A.S.; Dulvy, N.K.; Holst, R. The survival of discarded lesser-spotted dogfish (Scyliorhinus canicula) in the western english channel beam trawl fishery. Fish. Res. 2005, 71, 121–124. [Google Scholar] [CrossRef]
- Baro, J.; Muñoz de los Reyes, I. Bottom trawl fishing yield and selectivity comparisons between square and diamond meshes (Comparación de los rendimientos pesqueros y la selectividad del arte de arrastre empleando mallas cuadradas y rómbicas en el copo). Informes Tecnicos del Instituto Español de Oceanografia 2007, 188, 1–23. [Google Scholar]
- Rodriguez-Cabello, C.; Fernandez, A.; Olaso, I.; Sanchez, F. Survival of Lesser Spotted Dogfish (Scyliorhinus canicula, L.) Discarded by Trawlers. ICES CM 2001/N 2001, 6, 1–10. [Google Scholar]
- Frick, L.H.; Walker, T.I.; Reina, R.D. Immediate and delayed effects of gill-net capture on acid-base balance and intramuscular lactate concentration of gummy sharks, Mustelus antarcticus. Comp. Biochem. Physiol. A 2012, 162, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Synnes, M.; Larssen, W.E.; Kjerstad, M. Chemical characterization and properties of five deep-sea fish species. LWT Food Sci. Technol. 2007, 40, 1049–1055. [Google Scholar] [CrossRef]
- Costas, B.; Conceicao, L.; Aragao, C.; Martos, J.A.; Ruiz-Jarabo, I.; Mancera, J.; Afonso, A. Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: Effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 2011, 316, 68–76. [Google Scholar] [CrossRef]
- Frick, L.H.; Walker, T.I.; Reina, R.D. Trawl capture of Port jackson sharks, Heterodontus portusjacksoni, and gummy sharks, Mustelus antarcticus, in a controlled setting: Effects of tow duration, air exposure and crowding. Fish. Res. 2010, 106, 344–350. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, assessment, and performance effects. Comp. Physiol. 2014, 4, 257–285. [Google Scholar]
- Herrera, M.; Aragao, C.; Hachero, I.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Mancera, J.M.; Conceicao, L. Physiological short-term response to sudden salinity change in the Senegalese sole (Solea senegalensis). Fish Physiol. Biochem. 2012, 38, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Deck, C.A.; Bockus, A.B.; Seibel, B.A.; Walsh, P.J. Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed north Pacific spiny dogfish (Squalus suckleyi). Comp. Biochem. Physiol. A 2016, 193, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rincón, L.; Castro, P.L.; Álvarez, B.; Hernández, M.D.; Álvarez, A.; Claret, A.; Guerrero, L.; HGinés, R. Differences in proximal and fatty acid profiles, sensory characteristics, texture, colour and muscle cellularity between wild and farmed blackspot seabream (Pagellus bogaraveo). Aquaculture 2016, 451, 195–204. [Google Scholar] [CrossRef]
- Moreno, H.M.; Montero, M.P.; Gomez-Guillen, M.C.; Fernandez-Martin, F.; Morkore, T.; Borderias, J. Collagen characteristics of farmed Atlantic salmon with firm and soft fillet texture. Food Chem. 2012, 134, 678–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slattery, S.L.; Cusack, A.; Nottingham, S.; Bremner, A.P.; Pender, P. Handling of two tropical Australian sharks to improve quality and to identify the cause of tough texture. J. Aquat. Food Prod. Technol. 2003, 12, 3–28. [Google Scholar] [CrossRef]
- Ocaño-Higuera, V.M.; Marquez-Ríos, E.; Canizales-Dávila, M.; Castillo-Yáñez, F.J.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.E.; García-Orozco, K.D.; Graciano-Verdugo, A.Z. Postmortem changes in cazon fish muscle stored on ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Gaarder, M.O.; Bahuaud, D.; Veiseth-Kent, E.; Morkore, T.; Thomassen, M.S. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets. Food Chem. 2012, 132, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, A.; Espe, M.; Ruohonen, K.; Morkore, T. Texture, gaping and colour of fresh and frozen Atlantic salmon flesh as affected by pre-slaughter isoeugenol or CO2 anaesthesia. Aquaculture 2004, 236, 645–657. [Google Scholar] [CrossRef]
- Erikson, U.; Misimi, E. Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage. J. Food Sci. 2008, 73, C50–C59. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Walsh, P.J.; Kajimura, M.; McClelland, G.B.; Chew, S.F. The influence of feeding and fasting on plasma metabolites in the dogfish shark (Squalus acanthias). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 155, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Kajimura, M.; Bucking, C.; Walsh, P.J. Osmoregulation, ionoregulation and acid-base regulation by the gastrointestinal tract after feeding in the elasmobranch (Squalus acanthias). J. Exp. Biol. 2007, 210, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.; Connors, R.; O’Connor, I.; Dowling, V. The physiological response and recovery of a common elasmobranch bycatch species: The lesser spotted dogfish (Scyliorhinus canicula) subject to a controlled exposure event. Biol. Environ. Proc. R. Irish Acad. 2015, 115B, 143–156. [Google Scholar] [CrossRef]
- Piiper, J.; Meyer, M.; Drees, F. Hydrogen ion balance in the elasmobranch Scyliorhinus stellaris after exhausting activity. Respir. Physiol. 1972, 16, 290–303. [Google Scholar] [CrossRef]
- Frick, L.H.; Reina, R.D.; Walker, T.I. The physiological response of Port Jackson sharks and Australian swellwahrks to sedation, gillnet capture, and repeated sampling in captivity. N. Am. J. Fish. Manag. 2009, 29, 127–139. [Google Scholar] [CrossRef]
- Vargas-Chacoff, L.; Saavedra, E.; Oyarzún, R.M.-M.E.; Pontigo, J.P.; Yáñez, A.; Ruiz-Jarabo, I.; Mancera, J.M.; Ortiz, E.; Bertrán, C. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of sub-antarctic nototheniod fish Eleginops maclovinus acclimated at different environmental salinities. Fish Physiol. Biochem. 2015, 41, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Amado, E.M.; Souza, M.M.; Freire, C.A. Do osmoregulators have lower capacity of muscle water regulation than osmoconformers? A study on decapod crustaceans. J. Exp. Zool. A 2010, 313, 80–94. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group | Time | Group × Time |
---|---|---|---|
Lactate | <0.0005 | <0.000001 | <0.0001 |
Water content | <0.05 | <0.000001 | <0.00001 |
Consistency | 0.7703 | <0.0001 | <0.0001 |
Cohesiveness | 0.5715 | 0.6419 | 0.7598 |
Crispiness | 0.7509 | 0.6896 | 0.6139 |
Firmness | 0.6939 | 0.1156 | 0.8871 |
Work of penetration | 0.6317 | 0.1452 | <0.005 |
Springiness | 0.1226 | <0.0005 | 0.2542 |
Parameter | Group | 0 h | 5 h | 24 h |
---|---|---|---|---|
Cohesiveness (N) | Control | −11.9 ± 2.6 | −11.9 ± 4.0 | −10.5 ± 1.1 |
Air | −8.8 ± 2.0 | −12.6 ± 1.6 | −9.5 ± 2.7 | |
Crispiness (no units) | Control | 199 ± 3 | 195 ± 5 | 197 ± 4 |
Air | 197 ± 2 | 198 ± 5 | 193 ± 4 | |
Firmness (N) | Control | 244 ± 2 | 246 ± 1 | 246 ± 1 |
Air | 242 ± 1 | 247 ± 2 | 245 ± 2 | |
Work of penetration (N mm) | Control | 257 ± 7 | 228 ± 12 | 280 ± 15 |
Air | 234 ± 14 | 284 ± 14 * | 260 ± 10 | |
Springiness (mm) | Control | −38.4 ± 1.9 | −36.2 ± 2.9 | −28.1 ± 2.5 |
Air | −40.4 ± 3.5 | −29.0 ± 4.2 | −20.9 ± 3.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Méndez, C.; Sánchez-García, F.; Sobrino, I.; Mancera, J.M.; Ruiz-Jarabo, I. Air Exposure in Catshark (Scyliorhinus canicula) Modify Muscle Texture Properties: A Pilot Study. Fishes 2018, 3, 34. https://doi.org/10.3390/fishes3030034
Barragán-Méndez C, Sánchez-García F, Sobrino I, Mancera JM, Ruiz-Jarabo I. Air Exposure in Catshark (Scyliorhinus canicula) Modify Muscle Texture Properties: A Pilot Study. Fishes. 2018; 3(3):34. https://doi.org/10.3390/fishes3030034
Chicago/Turabian StyleBarragán-Méndez, Cristina, Fini Sánchez-García, Ignacio Sobrino, Juan Miguel Mancera, and Ignacio Ruiz-Jarabo. 2018. "Air Exposure in Catshark (Scyliorhinus canicula) Modify Muscle Texture Properties: A Pilot Study" Fishes 3, no. 3: 34. https://doi.org/10.3390/fishes3030034
APA StyleBarragán-Méndez, C., Sánchez-García, F., Sobrino, I., Mancera, J. M., & Ruiz-Jarabo, I. (2018). Air Exposure in Catshark (Scyliorhinus canicula) Modify Muscle Texture Properties: A Pilot Study. Fishes, 3(3), 34. https://doi.org/10.3390/fishes3030034