Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Diets
4.2. Sampling and Preparation of Multienzymatic Extracts
4.3. Growth, Survival and Food Quality Indexes
4.4. Gene Expression
4.5. Real Time Chain Polymerase Reaction (RT-qPCR)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marquez-Couturier, G.; Álvarez-Gonzalez, C.A.; Contreras, W.M.; Hernández-Vidal, U.; Hernández-Franyutti, A.A.; Mendoza-Alfaro, R.E.; Aguilera-Gonzalez, C.; Garcia-Galano, T.; Civera-Cerecedo, R.; Goytortua-Bores, E. Avances en la alimentación y nutrición del pejelagarto Atractosteus tropicus. In Memorias de VIII Simposium Internacional de Nutrición Acuícola, Proceedings of the Avances en Nutrición Acuícola VIII. VIII Simposium Internacional de Nutrición Acuícola, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 15–17 November 2006; Cruz Suárez, L.E., Ricque Marie, D., Nieto López, M.G., Tapia Salazar, M., Villarreal Cavazos, D., Puello Cruz, A.C., García Ortega, A., Eds.; UANL: Monterrey, Nuevo León, México, 2006; pp. 446–532. [Google Scholar]
- López-Ramírez, G.; Cuenca-Soria, C.A.; Álvarez-González, C.A.; Tovar-Ramírez, D.; Ortiz-Galindo, J.L.; Perales-García, N.; Márquez-Couturier, G.; Arias-Rodríguez, L.; Indy, J.R.; Contreras-Sánchez, W.M.; et al. Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus. Fish Physiol. Biochem. 2010, 37, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-González, C.A.; Marquez-Couturier, G.; Contreras-Sánchez, W.M.; Rodríguez-Valencia, W. Strategy for the sustainable use of fisheries resources in Boca Chilapa, biosphere reserve Centla Swamp, Tabasco: Establishment of a production plant native fish: Alligator gar, Snook and Mayan cichlid. In Towards a Culture of Conservation of Biological Diversity; Halffter, G., Guevara, S., Melic, A., Eds.; Monographs millennium: Zaragoza, Spain, 2007; Volume 6, pp. 197–205. [Google Scholar]
- Frías-Quintana, C.A.; Márquez-Couturier, G.; Álvarez-González, C.A.; Tovar-Ramírez, D.; Nolasco-Soria, H.; Galaviz-Espinosa, M.A.; Martínez-García, R.; Camarillo-Coop, S.; Martínez-Yañes, R.; Gisbert, E. Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiol. Biochem. 2015, 41, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Frías-Quintana, C.A.; Dominguez-Lorenzo, J.; Alvarez-Gonzalez, C.A.; Tovar-Ramirez, D.; Martinez-Garcia, R. Uing cornstarch in microparticulate diets for larvicultured tropical gar (Atractosteus tropppicus). Fish Physiol. Biochem. 2016, 42, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Flores-Aguilar, R.A. Efecto inmunoestimulador y tecnología de producción de oligosacáridos (beta (1,3-1,6) glucanos) extraídos de algas pardas cultivadas y su evaluación en el cultivo de peces y moluscos. Comisión Nacional de Investigación en ciencia. In Proceedings of the XV Concurre de Proyectos De I+D FONDEF 2007, Santiago, Chile, 31 October 2007. [Google Scholar]
- Rodríguez, F.; Esteban, M.; Meseguer, J.; Bravo, M.; Gómez, G.; Rojas-Luna, T.; Jiménez, G.; Balcázar, J. Estrategias de control de enfermedades en Acuicultura II Congreso Iberoamericano Virtual de Acuicultura. CIVA 2003; pp. 624–654. Available online: http://www.civa2003.org (accessed on 12 March 2017).
- Dalmo, R.A.; Bogwald, J. β-glucans as conductors of immune symphonies. Review. Fish Shellfish Immunol. 2008, 25, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Pan, Y.; Luo, L.; Luo, L. Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunol. 2011, 31, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Villanueva, L.T.; Ascencio-Valle, F.; Macías-Rodríguez, M.E.; Tovar-Ramírez, D. Effects of dietary β-1, 3/1, 6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish Physiol. Biochem. 2013, 40, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Frost, P.; Miest, J.; Pionnier, N.; Irnazarow, I.; Hoole, D. Reduced inflammatory response to Aeromonas salmonicida infection un common carp (Cyprinus carpio L.) fed with β-glucan supplements. Fish Shellfish Immunol. 2012, 32, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Hayball, P.J.; Hutchinson, W.; Nowak, B.F.; Hayball, J.D. Administration of a commercial Inmunoestimulant preparation, EcoActiva as a feed supplement enhances macrophages from pink snapper (Pagrus auratus, Sparidae (Bloch and Schneider)). Fish Shellfish Immunol. 2003, 14, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Misra, C.K.; Mukherjee, S.; Pattnaik, P. Effect on long term administration of dietary β-glucan on inmunity, growth and survival of Labeo rohita fingerlings. Aquaculture 2006, 255, 82–94. [Google Scholar] [CrossRef]
- Welker, T.L.; Lim, C.; Yildrim-Aksoy, M.; Shelby, R.; Klesius, P.H. Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish Ictalurus punctatus, fed diets containing commercial whole-cell or yeast subcomponents. J. World Aquac. Soc. 2007, 38, 24–35. [Google Scholar] [CrossRef]
- Sealey, W.M.; Barrows, F.T.; Hang, A.; Johansen, K.A.; Overturf, K.; LaPatra, S.E.; Hardy, R.W. Evaluation of the ability of barley genotypes containing different amount of β- glucan to alter growth and disease resistance of rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 2008, 141, 115–128. [Google Scholar] [CrossRef]
- Selvaraj, V.; Sampath, K.; Sekar, V. Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophyla. Fish Shellfish Immunol. 2005, 19, 2293–2306. [Google Scholar] [CrossRef] [PubMed]
- Lovoll, M.; Fischer, U.; Mathisen, G.S.; Bogwald, J.; Ototake, M.; Dalmo, R.A. The C3 subtype are differentially regulated after immunostimulation in rainbow trout, but head kidney macrophages do not contribute to C3 transcription. Vet. Immunol. Immunopathol. 2007, 117, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, S.M.; Engstad, R.E.; Robertsen, B. Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast β-glucan and bacterial lipopolysaccharide. Fish Shellfish Immunol. 2001, 11, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.B.; Sharp, G.J.E.; Secombes, C.J.; Robertsen, B. Effects of a yeast-cell-wall glucan on the bactericidal activity of rainbow trout macropages. Fish Shellfish Immunol. 1993, 3, 267–277. [Google Scholar] [CrossRef]
- Kunttu, H.M.; Valtonen, E.T.; Suomalainen, L.R.; Vielma, J.; Jokinen, I.E. The efficacy of two immunostimulants against Flavobacterium columnare infection in juvenile rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2009, 26, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Del Rio-Zaragoza, O.B.; Fajer-Avila, E.J.; Almazan-Rueda, P. Influence of β-glucan on innate immunity and resistance of Lutjanus guttatus to an experimental infection of dactylogyrid monogeneans. Parasite Immunol. 2011, 33, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Miest, J.J.; Pionnier, N.; Pietretti, D.; Forlenza, M.; Wiegertjes, G.F.; Hoole, D. β-Glucan-supplemented diets increase poly (I: C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2014, 36, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Pionnier, N.; Falco, A.; Miest, J.; Shrive, A.K.; Hoole, D. Feeding common carp Cyprinus carpio with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish Shellfish Immunol. 2014, 39, 285–295. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sahoo, P.K.; Mukherjee, S.C. Effect of dietary β-1, 3 glucan on immune responses and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol. 2001, 11, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Cuesta, A.; Ortuno, J.; Esteban, M.A.; Meseguer, J. Immunostimulant properties of a cell wall-modified whole Saccharomyces cerevisiae strain administered by diet to seabream (Sparus aurata L.). Vet. Immunol. Immunopathol. 2003, 96, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Bagni, M.; Archetti, L.; Amadori, M.; Marino, G. Effect of long-term oral administration of an immunostimulant diet on innate immunity in sea bass (Dicentrarchus labrax). Zoonoses Public Health 2000, 47, 745–751. [Google Scholar] [CrossRef]
- Bagni, M.; Romano, N.; Finoia, M.G.; Abelli, L.; Scapigliati, G.; Tiscar, P.G.; Sarti, M.; Marino, G. Short-and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol. 2005, 18, 311–325. [Google Scholar] [CrossRef] [PubMed]
- El-Boshy, M.E.; Ahmed, M.; AbdelHamid, F.M.; Gadalla, H.A. Immunomodulatory effect of dietary Saccharomyces cerevisiae, β-glucan and laminarian in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2010, 28, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Ai, Q.; Mai, K.; Zhang, L.; Tan, B.; Zhang, W.; Xu, W.; Li, H. Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol. 2007, 22, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, N.T.; D’Antignana, T.; Leef, M.J.; Hayward, C.J.; Wilkinson, R.J.; Nowak, B.F. Effects of immunostimulants on ranched southern bluefin tuna Thunnus maccoyii: Immune response, health and performance. J. Fish Biol. 2011, 79, 331–355. [Google Scholar] [CrossRef] [PubMed]
- Vallejos-Vidal, E.; Reyes-López, F.; Teles, M.; MacKenzie, S. The response of fish to immunostimulant diets. Fish Shellfish Immunol. 2016, 56, 34–69. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, W.; Sun, J.; Liu, C.; Xue, Z. Application of immunostimulants in aquaculture: Current knowledge and future perspectives. Aquac. Res. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Lopez, N.; Cuzon, G.; Gaxiola, G.; Taboada, G.; Valenzuela, M.; Pascual, C.; Sanchez, A.; Rosas, C. Physiological, nutritional, and immunological role of dietary β-1, 3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 2003, 224, 223–243. [Google Scholar] [CrossRef]
- Sakai, M. Current research status of fish immunostimulants. Aquaculture 1999, 172, 63–92. [Google Scholar] [CrossRef]
- Fuchs, V.I.; Schmidt, J.; Slater, M.J.; Zentek, J.; Buck, B.H.; Steinhagen, D. The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 2015, 437, 243–251. [Google Scholar] [CrossRef][Green Version]
- Ji, L.; Sun, G.; Li, J.; Wang, Y.; Du, Y.; Li, X.; Liu, Y. Effect of dietary β-glucan on growth, survival and regulation of immune processes in rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida. Fish Shellfish Immunol. 2017, 64, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Skjermo, J.; Størseth, T.R.; Hansen, K.; Handå, A.; Oie, G. Evaluation of β-(1→ 3, 1→ 6)-glucans and High-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.). Aquaculture 2006, 261, 1088–1101. [Google Scholar] [CrossRef]
- Meena, D.K.; Das, P.; Kumar, S.; Mandal, S.C.; Prusty, A.K.; Singh, S.K.; Akhtar, M.S.; Behera, B.K.; Kumar, K.; Pal, A.K.; et al. Beta-glucan: An ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem. 2013, 39, 431–457. [Google Scholar] [CrossRef] [PubMed]
- Aramli, M.S.; Kamangar, B.; Nazari, R.M. Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol. 2015, 47, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.; Lim, C.; Klesius, P.H. Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture 2005, 248, 217–225. [Google Scholar] [CrossRef]
- Cara, C.; Moya, M.; Ballesteros, I.; Negro, M.J.; Gonzalez, A.; Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Proc. Biochem. 2007, 42, 1003–1009. [Google Scholar] [CrossRef]
- Pedrotti, F.S.; Davies, S.; Merrifield, D.L.; Marques, M.R.; Fraga, A.P.M.; Mouriño, J.L.; Fracalossi, D.F. The autochthonous microbiota of the freshwater omnivores jundia (Rhamdia quelen) and tilapia (Oreochromis niloticus) and the effect of dietary carbohydrates. Aquac. Res. 2013, 46, 472–481. [Google Scholar] [CrossRef]
- Williams, D.M.; Grubbs, B.G.; Park-Snyder, S.; Rank, R.G.; Bonewald, L.F. Activation of latent transforming growth factor beta during Chlamydia trachomatis-induced murine pneumonia. Res. Microbiol. 1996, 147, 251–262. [Google Scholar] [CrossRef]
- Netea, M.G.; Sutmuller, R.; Hermann, C.; Van der Graaf, C.A.; Van der Meer, J.W.; van Krieken, J.H.; Hartung, T.; Adema, G.; Kullberg, B.J. Toll-Like Receptor 2 Suppresses Immunity against Candida albicans through Induction of IL-10 and Regulatory T Cells. J. Immunol. 2004, 172, 3712–3718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Swain, T.; Bøgwald, J.; Dalmo, R.A.; Kumari, J. Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol. 2009, 26, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Fierro-Castro, C.; Mandiki, S.N.M.; Wakson, E.; Lluis, T.; Kestemont, P. Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2017, 63, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Dalmo, R.A.; Ingebrigtsen, K.; Bøgwald, J. Non-specific defenses mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J. Fish Dis. 1997, 20, 241–273. [Google Scholar] [CrossRef]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Neuhaus, H.; Van der Marel, M.; Caspari, N.; Meyer, W.; Enss, M.L.; Steinhagen, D. Biochemical and histochemical study on the intestinal mucosa of the common carp Cyprinus carpio L., with special consideration of mucin glycoproteins. J. Fish Biol. 2007, 70, 1523–1534. [Google Scholar] [CrossRef]
- Tsukahara, T.; Iwasaki, Y.; Nakayama, K.; Ushida, K. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J. Nutr. Sci. Vitaminol. 2003, 49, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Leforestier, G.; Blais, A.; Blachier, F.; Marsset-Baglieri, A.; Davila-Gay, A.M.; Perrin, E.; Tomé, D. Effects of galacto-oligosaccharide ingestion on the mucosa-associated mucins and sucrase activity in the small intestine of mice. Eur. J. Nutr. 2009, 48, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.O.; Tort, L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.A. Antigen uptake in the gut: Immunologic implications. Immunol. Today 1981, 2, 30–34. [Google Scholar] [CrossRef]
- Loretz, C.A. Electrophysiology of ion transport in teleost intestinal cells. Fish Physiol. 1995, 14, 25–56. [Google Scholar] [CrossRef]
- Tsukita, S.; Yamazaki, Y.; Katsuno, T.; Tamura, A.; Tsukita, S. Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 2008, 27, 6930–6938. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fei-Yu, P.; Pei, W.; Lin, F.; Wei-Dan, J.; Sheng-Yao, K.; Ling, T.; Wu-Neng, T.; Yong-An, Z.; Xiao-Qiu, Z.; Yang, L. Methionine hydroxy analogue improves intestinal immunological and physical barrier function in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 64, 122–136. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.; Liu, Y.; Li, Y.; Ai, Q.; Xu, W.; Zhang, W.; Zhang, Y.; Zhang, Y.; Mai, K. Dietary stachyose altered the intestinal microbiota profile and improved the intestinal mucosal barrier function of juvenile turbot, Scophthalmus maximus L. Aquaculture 2018, 486, 98–106. [Google Scholar] [CrossRef]
- Chasiotis, H.; Kelly, S.P. Occludin immunolocalization and protein expression in goldfish. J. Exp. Biol. 2008, 211, 1524–1534. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Frías-Quintana, C.A.; Alvarez-González, C.A.; Marquez-Couturer, G. Diseño de microdietas para el larvicultivo de pejelagarto Atractosteus tropicus, Gill 1863. Universidad y Ciencia 2010, 26, 265–282. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Walter, H.E. Proteinases: Methods with hemoglobin, casein and azocoll as substrates. In Methods of Enzymatic Analysis; Bergmeyern, H.J., Ed.; Verlag Chemie: Weinheim, Germany, 1984; Volume 1, pp. 270–277. [Google Scholar]
- Del Mar, E.G.; Largman, C.; Brodrick, J.; Geokas, M. A sensitive new substrate for chymotrypsin. Anal. Biochem. 1979, 99, 316–377. [Google Scholar] [CrossRef]
- Erlanger, B.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Maroux, S.; Louvard, D.; Baratti, J. The aminopeptidase from hog-intestinal brush border. Biochim. Biophys. Acta 1973, 321, 282–295. [Google Scholar] [CrossRef]
- Robyt, J.F.; Whelan, W. Amylases Starch and its Derivates; Readlet, J.A., Ed.; Chapman and Hall: London, UK, 1968; pp. 430–476. [Google Scholar]
- Versaw, W.K.; Cuppett, S.L.; Winters, D.D.; Williams, L.E. An Improved Colorimetric Assay for Bacterial Lipase in Nonfat Dry Milk. J. Food Sci. 1989, 54, 1557–1558. [Google Scholar] [CrossRef]
- Martinez-Burguete, T.; Peña, E.; Llera, R.; Alvarez-González, C.A. Transcriptome analysis during early ontogeny of tropical gar Atractosteus tropicus: Detecting nutrigenomic markers. In Larvi’17—Fish and Shellfish Larviculture Symposium; Hendry, C.I., Ed.; European Aquaculture Society: Ostend, Belgium, 2017; pp. 281–284. [Google Scholar]
- Bioedit. Available online: http://www.mbio.ncsu.edu/BioEdit/bioedit.html (accessed on 25 October 2017).
Treatments (β-1,3/1,6 Glucans) | ||||||
---|---|---|---|---|---|---|
Growth Parameters | 0% | 0.5% | 1.0% | 1.5% | 2.0% | |
Total length (mm) | Initial | 4.60 ± 0.11 | 4.64 ± 0.06 | 4.62 ± 0.09 | 4.64 ± 0.09 | 4.65 ± 0.06 |
Final | 12.10 ± 0.19 | 12.13 ± 0.17 | 12.35 ± 0.73 | 12.52 ± 0.87 | 12.27 ± 0.29 | |
Weight (g) | Initial | 0.47 ± 0.03 | 0.46 ± 0.06 | 0.44 ± 0.07 | 0.52 ± 0.03 | 0.52 ± 0.09 |
Final | 5.64 ± 0.49 | 5.40 ± 0.17 | 5.91 ± 1.11 | 6.14 ± 1.49 | 5.76 ± 0.29 | |
Survival (%) 1 | 96.9 ± 2.69 | 93.1 ± 1.53 | 95.3 ± 3.52 | 91.3 ± 2.90 | 95.6 ± 5.09 | |
SGR (% day−1) 2 | 4.75 ± 0.29 | 4.74 ± 0.28 | 4.99 ± 0.09 | 4.69 ± 0.33 | 4.79 ± 0.02 | |
FCR 3 | 0.31 ± 0.02 | 0.30 ± 0.01 | 0.30 ± 0.01 | 0.31 ± 0.01 | 0.30 ± 0.01 | |
K 4 | 326.4 ± 27.0 | 302.6 ± 32.3 | 313.8 ± 30.4 | 312.9 ± 26.9 | 311.8 ± 10.9 |
Treatments (β-1,3/1,6 Glucans) | |||||
---|---|---|---|---|---|
Enzymatic Activity (U mg Protein−1) | 0% | 0.5% | 1.0% | 1.5% | 2.0% |
Total alkaline proteases | 1.26 ± 0.43 | 1.34 ± 0.23 | 0.86 ± 0.23 | 1.03 ± 0.23 | 0.71 ± 0.42 |
Trypsin | 4.06 ± 0.32 | 3.76 ± 2.99 | 1.78 ± 1.13 | 2.90 ± 1.54 | 2.80 ± 1.05 |
Leucine peptidase | 5.86 ± 3.47 | 8.38 ± 2.75 | 7.18 ± 3.08 | 5.56 ± 2.19 | 5.14 ± 1.63 |
Chymotrypsin * | 1.14 ± 0.74 b | 1.12 ± 0.65 b | 8.97 ± 2.40 a | 8.03 ± 1.02 a | 1.21 ± 1.04 b |
Lipase | 2.52 ± 0.15 | 2.83 ± 0.08 | 2.78 ± 0.34 | 2.84 ± 0.25 | 2.50 ± 0.16 |
α-amylase | 0.66 ± 0.17 | 3.90 ± 2.36 | 6.78 ± 3.30 | 9.00 ± 5.44 | 7.80 ± 1.03 |
Ingredients (g 100 g Dry Matter) | |
---|---|
Feed grade Poultry by-products meal a | 42.00 |
Pork meal a | 11.60 |
Soybean meal b | 4.60 |
Corn starch c | 15.40 |
Sardine oil a | 3.00 |
Fish protein hydrolizate a | 10.00 |
Soy lecithin d | 3.60 |
Shrimp meal a | 3.00 |
Bovine blood meal a | 0.00 |
Grenetin e | 2.00 |
Vitaminic premix f | 1.00 |
Mineral premix f | 0.50 |
Vitamin C g | 0.08 |
Sorghum meal 8%–10% b | 3.09 |
Chemical composition (% dry matter, except moisture. Mean ± SD) | |
Energy (KJ g−1) | 21.549 ± 0.04 |
Crude protein (%) | 40.6 ± 0.20 |
Ether extract (%) | 16.1 ± 0.00 |
Fiber (%) | 1.1 ± 0.10 |
Ash (%) | 10.8 ± 0.00 |
NFE (%) * | 31.50 |
Moisture (%) | 4.0 ± 0.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves-Rodríguez, K.N.; Álvarez-González, C.A.; Peña-Marín, E.S.; Vega-Villasante, F.; Martínez-García, R.; Camarillo-Coop, S.; Tovar-Ramírez, D.; Guzmán-Villanueva, L.T.; Andree, K.B.; Gisbert, E. Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles. Fishes 2018, 3, 27. https://doi.org/10.3390/fishes3030027
Nieves-Rodríguez KN, Álvarez-González CA, Peña-Marín ES, Vega-Villasante F, Martínez-García R, Camarillo-Coop S, Tovar-Ramírez D, Guzmán-Villanueva LT, Andree KB, Gisbert E. Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles. Fishes. 2018; 3(3):27. https://doi.org/10.3390/fishes3030027
Chicago/Turabian StyleNieves-Rodríguez, Karen N., Carlos Alfonso Álvarez-González, Emyr S. Peña-Marín, Fernando Vega-Villasante, Rafael Martínez-García, Susana Camarillo-Coop, Dariel Tovar-Ramírez, Laura T. Guzmán-Villanueva, Karl B. Andree, and Enric Gisbert. 2018. "Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles" Fishes 3, no. 3: 27. https://doi.org/10.3390/fishes3030027