Assessment of the Scales of Gilthead Seabream (Sparus aurata L.) by Image Analysis and Atomic Force Microscopy
Abstract
:1. Introduction
2. Results
2.1. Study of Scales from Different Regions with Light Microscope
2.2. Study of Scales with Atomic Force Microscopy
3. Discussion
4. Materials and Methods
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2014; FAO: Rome, Italy, 2014; pp. 1–228. [Google Scholar]
- Groff, J.M. Cutaneous biology and diseases of fish. Vet. Clin. N. Am. 2001, 4, 321–411. [Google Scholar] [CrossRef]
- Magnadottir, B. Immunological control of fish diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.G. The Laboratory Fish; Otrander, G.K., Ed.; Academic Press: Millbrae, CA, USA, 2000; pp. 271–306. [Google Scholar]
- Vernerey, F.J.; Barthelat, F. Skin and scales of teleost fish: Simple structure but high performance and multiple functions. J. Mech. Phys. Solids 2014, 68, 66–76. [Google Scholar] [CrossRef]
- Vernerey, F.J.; Barthelat, F. On the mechanics of fish scale structures. Int. J. Solids Struct. 2010, 47, 2268–2275. [Google Scholar] [CrossRef]
- Hawkes, J.W. The structure of fish skin. I. General organization. Cell Tissue Res. 1974, 149, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Ebensteina, D.; Calderon, C.; Troncoso, O.P.; Torres, F.G. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure. J. Mech. Behav. Biomed. Mater. 2015, 45, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sire, J.Y. From ganoid to elasmoid scales in the actinopterygian fishes. Neth. J. Zool. 1990, 40, 75–92. [Google Scholar] [CrossRef]
- Sire, J.Y.; Huysseune, A. Formation of dermal skeletal and dental tissues in fish: A comparative and evolutionary approach. Biol. Rev. 2013, 78, 219–249. [Google Scholar] [CrossRef]
- Yang, W.; Chen, I.H.; Gludovatz, B.; Zimmermann, E.A.; Ritchie, R.O.; Meyers, M.A. Natural Flexible Dermal Armor. Adv. Mater. 2013, 25, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Bräger, Z.; Moritz, T. A scale atlas for common Mediterranean teleost fishes. Vertebr. Zool. 2016, 66, 275–386. [Google Scholar]
- Bartlett, J.D. Dental enamel development: Proteinases and their enamel matrix substrates. ISRN Dent. 2013, 2013, 684607. [Google Scholar] [CrossRef] [PubMed]
- Huysseune, A.; Sire, J.Y. Evolution of patterns and processes in teeth and tooth-related tissues in nonmammalian vertebrates. Eur. J. Oral Sci. 1998, 106, 437–481. [Google Scholar] [CrossRef] [PubMed]
- Sire, J.Y.; Akimenko, M.A. Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int. J. Dev. Biol. 2004, 48, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, D.K.; Lauder, G.V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. Zoology 2016, 119, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Fauquet, B.M. Estructura y características de las escamas de Mullus barbatus (Linnaeus 1758) y Mullus surmuletus (Linnaeus 1758). Estudio al microscopio electrónico de barrido. Investig. Pesq. 1983, 47, 203–218. [Google Scholar]
- Szedlmayer, S.T.; Able, K.W.; Musick, J.A.; Weinstein, M.P. Are scale circuli deposited daily in juvenile weakfish, Cynoscion regalis? Environ. Biol. Fishes 1991, 31, 87–94. [Google Scholar] [CrossRef]
- Cerda-Reverter, J.M.; Haitina, T.; Schiöth, H.B.; Peter, R.E. Gene structure of the goldfish agouti-signaling protein: A putative role in the dorsal-ventral pigment pattern of fish. Endocrinology 2005, 146, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Lazado, C.C.; Caipang, C.M. Probiotics-pathogen interactions elicit differential regulation of cutaneous immune responses in epidermal cells of Atlantic cod Gadus morhua. Fish Shellfish Immunol. 2014, 36, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Cordero, H.; Mauro, M.; Cuesta, A.; Cammarata, M.; Esteban, M.A. In vitro cytokine profile revealed differences from dorsal and ventral skin susceptibility to pathogen-probiotic interaction in gilthead seabream. Fish Shellfish Immunol. 2016, 56, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Cordero, H.; Ceballos-Francisco, D.; Cuesta, A.; Esteban, M.A. Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparusaurata). PLoS ONE 2017, 12, e0180438. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Chiang, Y.-W.; Yang, C.-H.; Liou, J.-W. Atomic force microscopy in biology and biomedicine. Tzu Chi Med. J. 2012, 24, 162–169. [Google Scholar] [CrossRef]
- Ushiki, T. Atomic Force Microscopy and Its Related Techniques in Biomedicine. Arch. Ital. Anat. Embriol. 2001, 106, 3–8. [Google Scholar]
- Combined AFM and Fluorescence Imaging of Cells. JPK Instruments Application Note. Available online: www.jpk.com/app-technotes-img/AFM/pdf/jpk-app-microtubules.14-2.pdf (accessed 10 January 2018).
- Gholami, Z.; Teimori, A.; Esmaeili, H.R.; Schulz-Mirbach, T.; Reichenbacher, B. Scale surface microstructure and scale size in the tooth-carp genus Aphanius (Teleostei, Cyprinodontidae) from endorheic basins in Southwest Iran. Zootaxa 2013, 3619, 467–490. [Google Scholar] [CrossRef] [PubMed]
- Louise Meyer, R.; Zhou, X.; Tang, L.; Arpanaei, A.; Kingshott, P.; Besenbacher, F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 2010, 110, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, R.; Luckham, P.; Winlove, P. Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochim. Biophys. Acta Biomembr. 2001, 1514, 170–176. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2016; FAO: Rome, Italy, 2016; pp. 1–200. [Google Scholar]
- Vieira, F.A.; Gregorio, S.F.; Ferraresso, S.; Thorne, M.A.; Costa, R.; Milan, M.; Bargelloni, L.; Clark, M.S.; Canário, A.V.; Power, D.M. Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus. BMC Genom. 2011, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronald, J.R. Fish Pathology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–581. [Google Scholar]
- Hernandez, K.; Copeland, T.; Wright, K. Quantitative Assessment of Scale Resorption in Migrating and Spawning Steelhead of the Snake River Basin. Trans. Am. Fish. Soc. 2014, 143, 1562–1568. [Google Scholar] [CrossRef]
- Bibler, B. Mechanism and Occurrence of Focal Scale Resorption among Chum Salmon (Oncorhynchus keta) of the North Pacific Ocean. Can. J. Fish. Aquat. Sci. 1989, 46, 1147–1153. [Google Scholar]
- Bereiter-Hahn, J.; Zylberberg, L. Regeneration of teleost fish scale. Comp. Biochem. Physiol. 1993, 105A, 625–641. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Sanchez-Jerez, J.P.; Bayle-Sempere, D.T.; Sfakianakis, G.; Somarakis, S. Discriminating farmed gilthead sea bream Sparusaurata and European sea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J. Fish Biol. 2012, 80, 2159–2175. [Google Scholar] [CrossRef] [PubMed]
- Yedier, S.; Kontas, S.; Bostanci, D.; Polat, N. Otolith and scale morphologies of doctor fish (Garra rufa) inhabiting Kangal Balikli Cermik thermal spring (Sivas, Turkey). Iran. J. Fish. Sci. 2016, 15, 1593–1608. [Google Scholar]
- Poletti, G.; Orsini, F.; Lenardi, C.; Barborini, E. A comparative study between AFM and SEM imaging on human scalp hair. J. Microsc. 2003, 211, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Ebrahimi, H.; Vaziri, A. Non-ideal effects in bending response of soft substrates covered with biomimetic scales. J. Mech. Behav. Biomed. Mater. 2017, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Szewciw, L.; Vernerey, F.; Barthelat, F. Puncture resistance of the scaled skin from striped bass: Collective mechanisms and inspiration for new flexible armor designs. J. Mech. Behav. Biomed. Mater. 2013, 23, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Vernerey, F.; Barthelat, F.; Musiket, K. Mechanics of fish skin: A computational approach for bio-inspired flexible composites. Int. J. Solids Struct. 2014, 51, 274–283. [Google Scholar] [CrossRef]
- Alves, R.M.; Pereira, B.F.; Pitol, D.L.; Senhorini, J.A.; Alcântara-Rocha, R.C.G.; Caetano, F.H. Scale morphology of Prochilodus lineatus with emphasis on the scale epithelium. Braz. J. Biol. 2012, 73, 44. [Google Scholar] [CrossRef] [PubMed]
- Arechavala-Lopez, P.; Fernandez-Jover, D.; Black, K.D.; Ladoukakis, E.; Bayle-Sempere, J.T.; Sanchez-Jerez, P.; Dempster, T. Differentiating the wild or farmed origin of Mediterranean fish: A review of tools for sea bream and sea bass. Rev. Aquac. 2013, 5, 137–157. [Google Scholar] [CrossRef]
- Izquierdo-Gómez, D.; Arechavala-Lopez, P.; Bayle-Sempere, J.T.; Sánchez-Jerez, P. Assessing the influence of gilthead sea bream escapees in landings of Mediterranean fisheries through a scale-based methodology. Fish. Manag. Ecol. 2017, 24, 62–72. [Google Scholar] [CrossRef]
- Rotllant, J.; Redruello, B.; Guerreiro, P.M.; Fernandes, H.; Canario, A.V.M.; Power, D.M. Calcium mobilization from fish scales is mediated by parathyroid hormone related protein via the parathyroid hormone type 1 receptor. Regul. Pept. 2005, 132, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Metz, J.R.; Ampe, B.; Decostere, A.; Flik, G.; De Saeger, S. Scales Tell a Story on the Stress History of Fish. PLoS ONE 2015, 10, e0123411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, I.R. Uptake of 4C-Glycine by Scales as an Index of Fish Growth: Effect of Fish Acclimation Temperature. Trans. Am. Fish. Soc. 1980, 109, 187–194. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado, F.; Casado, S.; Ceballos-Francisco, D.; Esteban, M.Á. Assessment of the Scales of Gilthead Seabream (Sparus aurata L.) by Image Analysis and Atomic Force Microscopy. Fishes 2018, 3, 9. https://doi.org/10.3390/fishes3010009
Casado F, Casado S, Ceballos-Francisco D, Esteban MÁ. Assessment of the Scales of Gilthead Seabream (Sparus aurata L.) by Image Analysis and Atomic Force Microscopy. Fishes. 2018; 3(1):9. https://doi.org/10.3390/fishes3010009
Chicago/Turabian StyleCasado, Francisco, Santiago Casado, Diana Ceballos-Francisco, and María Ángeles Esteban. 2018. "Assessment of the Scales of Gilthead Seabream (Sparus aurata L.) by Image Analysis and Atomic Force Microscopy" Fishes 3, no. 1: 9. https://doi.org/10.3390/fishes3010009
APA StyleCasado, F., Casado, S., Ceballos-Francisco, D., & Esteban, M. Á. (2018). Assessment of the Scales of Gilthead Seabream (Sparus aurata L.) by Image Analysis and Atomic Force Microscopy. Fishes, 3(1), 9. https://doi.org/10.3390/fishes3010009