Comparative Proteomic Profiling of a Virulent Wild-Type Nocardia seriolae and Its Attenuated Vaccine Strain
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Bacterial Strains and Culture Conditions [17]
2.3. Virulence Evaluation of Wild-Type Strain LY20810 F1 and Attenuated Strain LY20810 F110 [17]
2.4. Total Protein Extraction [18]
2.5. Protein Assay
2.6. Proteolytic Digestion [19]
2.7. LC-MS Analysis in Data-Independent Acquisition (DIA) Mode
2.8. Data Analysis
2.9. Functional Analysis of Proteins and DEPs
3. Results
3.1. The Virulence of LY20810 F110 Strain Significantly Attenuated Compared to Its Parental Wild-Type LY20810 F1strain in Largemouth Bass
3.2. Global Proteomic Profiling Reveals Widespread Changes in the Attenuated LY20810 F110 Strain
3.3. GO Enrichment Analysis Reveals Metabolic Reprogramming in the Attenuated Strain
3.4. KEGG Pathway Analysis Showed Significant Enrichment in Metabolic Pathways and ABC Transporter Pathways
3.5. In-Depth Analysis of Key DEPs Reveals Potential Molecular Basis of Faster Growth and Attenuation
4. Discussion
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- St Leger, J.A.; Begeman, L.; Fleetwood, M.; Frasca, S.; Garner, M.M.; Lair, S.; Trembley, S.; Linn, M.J.; Terio, K.A. Comparative pathology of nocardiosis in marine mammals. Vet. Pathol. 2009, 46, 299–308. [Google Scholar] [CrossRef]
- Wang, P.C.; Chen, S.D.; Tsai, M.A.; Weng, Y.J.; Chu, S.Y.; Chern, R.S.; Chen, S.C. Nocardia seriolae infection in the three striped tigerfish, Terapon jarbua (Forsskal). J. Fish Dis. 2009, 32, 301–310. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Bai, S.J.; He, J.; Xiong, Q.X.; Zhong, Z.D.; Lu, C.W.; Kuang, L.F.; Jian, Z.R.; Gu, J.L.; Liu, M.Z.; et al. Pathogenicity, ultrastructure and genomics analysis of Nocardia seriolae isolated from largemouth bass (Micropterus salmoides). Microb. Pathog. 2025, 205, 107715. [Google Scholar] [CrossRef]
- Yasuike, M.; Nishiki, I.; Iwasaki, Y.; Nakamura, Y.; Fujiwara, A.; Shimahara, Y.; Kamaishi, T.; Yoshida, T.; Nagai, S.; Kobayashi, T.; et al. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species. PLoS ONE 2017, 12, e0173198. [Google Scholar] [CrossRef]
- Juan-Salles, C.; Martinez-Chavarria, L.C.; Montesinos, A.; Giner, J.; Valls, X.; Bermudez, J.; Hernandez-Castro, R.; Ardiaca, M.; Gonzalez, V.; Villora, J.; et al. Nocardiosis in domestic ferrets (Mustela putorius furo). J. Comp. Pathol. 2025, 217, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Santana, P.; Fernandez, A.; Diaz-Delgado, J.; Vela, A.I.; Dominguez, L.; Suarez-Santana, C.; Puig-Lozano, R.; Fernandez-Maldonado, C.; Sierra, E.; Arbelo, M. Nocardiosis in Free-Ranging Cetaceans from the Central-Eastern Atlantic Ocean and Contiguous Mediterranean Sea. Animals 2022, 12, 434. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Dong, J.J.; Ke, X.L.; Yi, M.M.; Cao, J.M.; Gao, F.Y.; Wang, M.; Ye, X.; Lu, M.X. Isolation, identification, and pathogenic characteristics of Nocardia seriolae in largemouth bass Micropterus salmoides. Dis. Aquat. Org. 2022, 149, 33–45. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Dong, Z.; Wang, W. Molecular Identification of Nocardia seriolae and Comparative Analysis of Spleen Transcriptomes of Hybrid Snakehead (Channa maculata Female x Channa argus Male) with Nocardiosis Disease. Front. Immunol. 2022, 13, 778915. [Google Scholar] [CrossRef]
- Lei, X.; Zhao, R.; Geng, Y.; Wang, K.; Yang, P.O.; Chen, D.; Huang, X.; Zuo, Z.; He, C.; Chen, Z.; et al. Nocardia seriolae: A serious threat to the largemouth bass Micropterus salmoides industry in Southwest China. Dis. Aquat. Org. 2020, 142, 13–21. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Y.; Tan, A.; Zhao, F.; Chang, O.; Wang, F.; Lai, Y.; Huang, Z. Intracellular behavior of Nocardia seriolae and its apoptotic effect on RAW264.7 macrophages. Front. Cell. Infect. Microbiol. 2023, 13, 1138422. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Chen, G.Q.; Xia, L.Q.; Lu, Y.S. A review on the pathogenic bacterium: Aetiology, pathogenesis, diagnosis and vaccine development. Rev. Aquacult. 2022, 15, 14–34. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Yang, H.; Sirimanapong, W.; Huang, T.; Chen, J.; Xia, L. Construction of Heme-Binding Protein Deleted Strain and Using It as an Attenuated Vaccine Against Nocardia seriolae in Hybrid Snakehead (Channa maculata female symbol x Channa argus male symbol). J. Fish Dis. 2025, 48, e14090. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current status and development prospects of aquatic vaccines. Front. Immunol. 2022, 13, 1040336. [Google Scholar] [CrossRef]
- Cho, T.; Khatchadourian, C.; Nguyen, H.; Dara, Y.; Jung, S.; Venketaraman, V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum. Vaccines Immunother. 2021, 17, 2454–2470. [Google Scholar] [CrossRef]
- Gonzalez-Carrillo, C.; Millan-Sauceda, C.; Lozano-Garza, H.G.; Ortiz-Lopez, R.; Elizondo-Gonzalez, R.; Welsh, O.; Ocampo-Candiani, J.; Vera-Cabrera, L. Genomic Changes Associated with the Loss of Nocardia brasiliensis Virulence in Mice after 200 In Vitro Passages. Infect. Immun. 2016, 84, 2595–2606. [Google Scholar] [CrossRef]
- Yang, N.; Huang, L.; Lin, L.Y.; Yao, J.Y.; Chen, J.; Liu, Y.H.; Chen, X.L.; Wan, Y.W.; Shen, J.Y.; Pan, X.Y. Characteristics and Immunoprotective Effects of Attenuated Nocardia seriolae from Largemouth Bass Induced by Continuous Passaging. Acta Hydrobiol. Sin. 2024, 48, 1120–1129. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, K.; Huang, L.; Yang, N.; Lin, L.; Chen, L.; Yao, J.; Dong, M.; Shen, J.; Pan, X. Biological characteristics and pathogenicity comparison of Nocardia seriolae isolated from Micropterus salmoides and Channa argus. Front. Vet. Sci. 2024, 11, 1367066. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, E.; Wang, W.; Scali, M.; Cresti, M. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat. Protoc. 2014, 9, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, T.; Zhang, Z.; Payne, S.H.; Zhang, B.; McDermott, J.E.; Zhou, J.Y.; Petyuk, V.A.; Chen, L.; Ray, D.; et al. Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell 2016, 166, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Huang, L.J.; Huang, L.; Yang, N.; Lin, L.Y.; Yao, J.Y.; Chen, J.; Shen, J.Y.; Gao, Y.L.; Pan, X.Y. Effects of Attenuated Nocardia seriolae Strain on the Head Kidney Transcriptome of Largemouth Bass (Micropterus salmoides). J. Guandong Ocean Univ. 2025, 45, 43–50. [Google Scholar] [CrossRef]
- Meirelles, L.A.; Vayena, E.; Debache, A.; Schmidt, E.; Rossy, T.; Distler, T.; Hatzimanikatis, V.; Persat, A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat. Microbiol. 2024, 9, 3284–3303. [Google Scholar] [CrossRef]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, e8126. [Google Scholar] [CrossRef] [PubMed]
- Gillet, L.C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. MCP 2012, 11, O111.016717. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Skyberg, J.A.; Cao, L.; Clapp, B.; Thornburg, T.; Pascual, D.W. Progress in Brucella vaccine development. Front. Biol. 2013, 8, 60–77. [Google Scholar] [CrossRef] [PubMed]






| Time | Flow Rate (μL/min) | Mobile Phase A (%) | Mobile Phase B (%) |
|---|---|---|---|
| 0 | 2.5 | 96 | 4 |
| 0.2 | 1.3 | 96 | 4 |
| 0.3 | 0.8 | 92 | 8 |
| 0.5 | 0.8 | 92 | 8 |
| 14.2 | 0.8 | 77.5 | 22.5 |
| 21.1 | 0.8 | 65 | 35 |
| 21.5 | 2.5 | 45 | 55 |
| 21.5 | Column Wash | ||
| 21.9 | 2.5 | 1 | 99 |
| 22.6 | 2.5 | 1 | 99 |
| 22.6 | Stop Run | ||
| Protein Accession Number | Protein Description | Gene Name | Expression Change (F110 vs. F1 log2FC) | F110 vs. F1 p Value | Functional Category |
|---|---|---|---|---|---|
| BAW05740.1 | nitrate ABC transporter substrate_binding protein | ABD336_RS34045 | 4.880955323 | 0.018432235 | Membrane transport protein: ABC transporter substrate-binding protein |
| WP_045439554.1 | ABC transporter ATP_binding protein | ABD336_RS34035 | 4.630647062 | 0.006971817 | Nucleotide-binding component of membrane transport complex |
| WP_033091013.1 | hotdog fold domain_containing protein | / | 3.545209505 | 0.000136113 | Putative functional protein containing hotdog fold domain |
| BAW04373.1 | RNA polymerase sigma factor SigD | ABD336_RS17090 | 3.222058862 | 0.000235671 | Transcriptional regulator: RNA polymerase sigma factor |
| BAW06905.1 | conserved hypothetical protein | / | 3.18805415 | 0.007784124 | Unknown |
| BAW05994.1 | conserved hypothetical protein | ABD336_RS32705 | 2.969458295 | 0.005961309 | Unknown |
| BAW10015.1 | porin | ABD336_RS06910 | 2.862505681 | 0.042029066 | Membrane channel protein |
| BAW03642.1 | conserved hypothetical protein | ABD336_RS12800 | 2.858626811 | 0.025546165 | Unknown |
| BAW06576.1 | short_chain dehydrogenase | ABD336_RS24875 | 2.833804529 | 0.023852958 | Enzyme: short-chain dehydrogenase/reductase |
| BAW04633.1 | DoxX family protein | ABD336_RS18460 | 2.784196996 | 0.0104461 | Unknown |
| BAW10706.1 | mycolyltransferase | / | 2.772012858 | 0.002059663 | Enzyme: transferase involved in cell wall biosynthesis |
| BAW07436.1 | copper metallochaperone, bacterial analog of Cox17 protein | ABD336_RS27205 | 2.717880445 | 0.004789525 | Metallochaperone for copper ion homeostasis |
| BAW09217.1 | diaminobutyrate-2-oxoglutarate aminotransferase | / | 2.629886239 | 0.005965204 | Enzyme: aminotransferase in amino acid metabolism |
| WP_033091627.1 | carboxylating nicotinate_nucleotide diphosphorylase | / | 2.598304936 | 0.000789681 | Bifunctional Enzyme: carboxylase and diphosphorylase |
| BAW10013.1 | porin | / | 2.589154828 | 6.39732513038013 × 10−5 | Membrane channel protein |
| BAW10411.1 | long_chain fatty acid__CoA ligase | ABD336_RS08800 | 2.504619371 | 0.000987043 | Enzyme: Ligase in fatty acid activation |
| BAW09857.1 | iron hydroxylase | / | 2.493769771 | 0.003941618 | Enzyme: Iron-dependent hydroxylase |
| BAW04046.1 | conserved hypothetical protein | / | 2.443083082 | 0.018334785 | Unknown |
| BAW04523.1 | membrane protein | ABD336_RS17860 | 2.38606592 | 0.00734971 | Unknown |
| BAW07230.1 | dynein regulation protein LC7 | ABD336_RS28250 | 2.299582837 | 0.001752702 | Putative Regulatory Protein for Dynein Function |
| Protein Accession Number | Protein Description | Gene Name | Expression Change (F110 vs. F1 log2FC) | F110 vs. F1 p Value | Functional Category |
|---|---|---|---|---|---|
| WP_143837562.1 | hypothetical protein | ABD336_RS03950 | −4.731012499 | 0.027911079 | Unknown |
| BAW09453.1 | conserved hypothetical protein | ABD336_RS04545 | −4.55670715 | 0.027277394 | Unknown |
| BAW04061.1 | conserved hypothetical protein | / | −4.465229063 | 0.026648019 | Unknown |
| BAW05380.1 | conserved hypothetical protein | / | −4.409605943 | 0.00365664 | Unknown |
| BAW03922.1 | protease HtpX | / | −4.316375145 | 2.12635818639845 × 10−6 | Metalloprotease involved in proteolysis and stress response |
| BAW04837.1 | tryptophan halogenase | ABD336_RS19490 | −3.976565687 | 0.004856378 | Halogenase catalyzing halogenation in secondary metabolism |
| BAW03620.1 | cytochrome P450 | ABD336_RS12685 | −3.974805433 | 4.86000873124622 × 10−5 | Monooxygenase involved in oxidation of various substrates |
| BAW07925.1 | conserved hypothetical protein | ABD336_RS34595 | −3.850308544 | 0.005174559 | Unknown |
| BAW10644.1 | conserved hypothetical protein | ABD336_RS09980 | −3.777860959 | 0.045645277 | Unknown |
| BAW06593.1 | conserved hypothetical protein | ABD336_RS24960 | −3.741468076 | 0.009054214 | Unknown |
| BAW07924.1 | conserved hypothetical protein | ABD336_RS34590 | −3.683777042 | 0.034258765 | Unknown |
| BAW04900.1 | serine_threonine protein phosphatase | ABD336_RS19805 | −3.647756186 | 0.034875963 | Phosphatase regulating signal transduction pathways |
| BAW06497.1 | lipoprotein | / | −3.624025565 | 0.012987108 | Lipoprotein typically localized to the cell membrane |
| BAW08777.1 | esterase | ABD336_RS00785 | −3.515788862 | 0.030710041 | Esterase catalyzing hydrolysis of ester bonds |
| BAW10789.1 | conserved hypothetical protein | ABD336_RS10760 | −3.358542107 | 0.013110265 | Unknown |
| BAW04835.1 | conserved hypothetical protein | / | −3.29335588 | 0.016946536 | Unknown |
| BAW10346.1 | conserved hypothetical protein | / | −3.257493497 | 0.03839441 | Unknown |
| BAW04204.1 | conserved hypothetical protein | ABD336_RS16245 | −3.082401982 | 0.025421238 | Unknown |
| BAW04742.1 | MFS transporter permease | / | −3.062697464 | 0.006861867 | Transmembrane transporter activity |
| BAW05476.1 | acetyltransferase | ABD336_RS22790 | −3.035309273 | 0.000367783 | Transferase catalyzing acetyl group transfer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yao, Y.; He, W.; Wu, L.; Huang, L.; Li, C.; Tao, Y.; Pan, X.; Shu, J.; He, Y.; Yao, J.; et al. Comparative Proteomic Profiling of a Virulent Wild-Type Nocardia seriolae and Its Attenuated Vaccine Strain. Fishes 2026, 11, 42. https://doi.org/10.3390/fishes11010042
Yao Y, He W, Wu L, Huang L, Li C, Tao Y, Pan X, Shu J, He Y, Yao J, et al. Comparative Proteomic Profiling of a Virulent Wild-Type Nocardia seriolae and Its Attenuated Vaccine Strain. Fishes. 2026; 11(1):42. https://doi.org/10.3390/fishes11010042
Chicago/Turabian StyleYao, Yao, Weimei He, Li Wu, Lei Huang, Chengying Li, Yingying Tao, Xiaoyi Pan, Jianhong Shu, Yulong He, Jiayun Yao, and et al. 2026. "Comparative Proteomic Profiling of a Virulent Wild-Type Nocardia seriolae and Its Attenuated Vaccine Strain" Fishes 11, no. 1: 42. https://doi.org/10.3390/fishes11010042
APA StyleYao, Y., He, W., Wu, L., Huang, L., Li, C., Tao, Y., Pan, X., Shu, J., He, Y., Yao, J., & Feng, H. (2026). Comparative Proteomic Profiling of a Virulent Wild-Type Nocardia seriolae and Its Attenuated Vaccine Strain. Fishes, 11(1), 42. https://doi.org/10.3390/fishes11010042

