Modeling the Hydrolysis of Soybean Flour Proteins Digested with Gastric Proteases of the Marine Fish Sparus aurata and Commercial Non-Starch Polysaccharidases
Abstract
1. Introduction
2. Materials and Methods
2.1. Enzymes and Substrates
2.2. Experimental Design
2.3. Setting Factor Levels
2.4. Protocol for Each Experimental Run
2.5. Measurement Protocols for Biochemical Variables
2.6. Validation Assays
2.7. Data Analysis
3. Results
3.1. Measurements Derived from Chemical Analysis of the Filtrate
3.1.1. Degree of Hydrolysis of Proteins Based on Amino Acids and Small Polypeptides (<10 kDa), DH(aa)
3.1.2. Degree of Hydrolysis of NSPs Based on Reducing Sugars, DH(rs)
3.1.3. Degree of Hydrolysis of NSP’s Based on Pentoses, DH(pen)
3.2. Measurements Derived from the Chemical Analysis of the Supernatant
3.2.1. Soluble Proteins According to the Bradford Assay, SProt
3.2.2. Soluble Polypeptides (>10 kDa), SPep
3.3. Measurements Derived from the Physical Analysis of the Pellet: Percentage of Solubilized and/or Hydrolyzed Dry Matter, SHDM
3.4. Validation Results
4. Discussion
4.1. Hydrolysis of Proteins by Simultaneous Action of Viscozyme L and Fish Gastric Extracts in Defatted Soybean Flour
- 1.
- The hydrolysis degree depends on the specific enzyme, protocol, and physicochemical reaction conditions, according to previous literature.
- 2.
- Adding acidic NSPases to the proteolytic reaction (as in this study) is as efficient as increasing the reaction temperature. It does not necessarily require longer processing times. This suggests dietary acidic NSPases enhance protein digestion at physiological temperatures when included in DSBF-containing aquafeeds.
4.2. Hydrolysis of NSPs by Simultaneous Action of Viscozyme L and Fish Gastric Extracts in Defatted Soybean Flour
4.3. Soluble Protein and Dry Matter Hydrolysis/Solubilization After the Simultaneous Action of Viscozyme L and Fish Gastric Extracts on Defatted Soybean Flour
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSM | Response surface methodology |
CCD | Central composite design |
DSBF | Defatted soybean flour |
NSP | Non-starch polysaccharide |
NSPases | Non-starch polysaccharidases |
FBGU | Fungal beta-glucanase unit |
DNSA | Dinitrosalycilic acid |
OPA | Ortho-phthalaldehyde |
TCA | Trichloroacetic acid |
TNBSA | Trinitrobenzenesulfonic acid |
DH | Degree of hydrolysis |
MWCO | Molecular weight cut-off |
References
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Loman, A.A.; Ju, L.-K. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects. Enzym. Microb. Technol. 2017, 106, 35–47. [Google Scholar] [CrossRef]
- Preece, K.E.; Hooshyar, N.; Zuidam, N.J. Whole soybean protein extraction processes: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 163–172. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Couto, A.; Peres, H. Replacing fish meal and fish oil in industrial fish feeds. In Feed and Feeding Practices in Aquaculture, 2nd ed.; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2022; pp. 231–268. [Google Scholar] [CrossRef]
- Aas, T.S.; Åsgård, T.; Ytrestøyl, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2020. Aquac. Rep. 2022, 26, 101316. [Google Scholar] [CrossRef]
- Aas, T.S.; Åsgård, T.; Ytrestøyl, T. Utilization of feed resources in the production of rainbow trout (Oncorhynchus mykiss) in Norway in 2020. Aquac. Rep. 2022, 26, 101317. [Google Scholar] [CrossRef]
- Porcino, N.; Genovese, L. Review on alternative meals for gilthead seabream, Sparus aurata. Aquacult. Res. 2022, 53, 2109–2145. [Google Scholar] [CrossRef]
- Mullin, W.J.; Xu, W. A study of the intervarietal differences of cotyledon and seed coat carbohydrates in soybeans. Food Res. Int. 2000, 33, 883–891. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Food matrix and processing modulate in vitro protein digestibility in soybeans. Food Funct. 2018, 9, 6326–6336. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Effect of soybean processing on cell wall porosity and protein digestibility. Food Funct. 2020, 11, 285–296. [Google Scholar] [CrossRef]
- Robaina, L.; Izquierdo, M.S.; Moyano, F.J.; Socorro, J.; Vergara, J.M.; Montero, D.; Fernández-Palacios, H. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): Nutritional and histological implications. Aquaculture 1995, 130, 219–233. [Google Scholar] [CrossRef]
- Rosset, M.; Acquaro Junior, V.R.; Beleia, A.D.P. Protein extraction from defatted soybean flour with Viscozyme L pretreatment. J. Process. Preserv. 2014, 38, 784–790. [Google Scholar] [CrossRef]
- Jodayree, S.; Smith, J.C.; Tsopmo, A. Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Res. Int. 2012, 46, 69–75. [Google Scholar] [CrossRef]
- Liepman, A.H.; Cavalier, D.M.; Lerouxel, O.; Keegstra, K. Cell Wall Structure, Biosynthesis and Assembly. In Annual Plant Reviews Volume 25: Plant Cell Separation and Adhesion; Roberts, J.A., Gonzalez-Carranza, Z., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 8–39. [Google Scholar] [CrossRef]
- Stites, W.; Weldon, A.; Reis, J.; Ito, P.; Rhodes, M.; Davis, D.A. Evaluation of a carbohydrase (xylanase and glucanase) enzyme complex in diets for Florida pompano Trachinotus carolinus. J. World Aquac. Soc. 2024, 55, e13095. [Google Scholar] [CrossRef]
- Romero García, J.M.; Acién Fernández, F.G.; Fernández Sevilla, J.M. Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour. Technol. 2012, 112, 164–170. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 825. [Google Scholar]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Multi-response optimization of process parameters in biogas production from food waste using Taguchi—Grey relational analysis. Energy Convers. Manag. 2017, 141, 429–438. [Google Scholar] [CrossRef]
- Hollebeeck, S.; Borlon, F.; Schneider, Y.-J.; Larondelle, Y.; Rogez, H. Development of a standardised human in vitro digestion protocol based on macronutrient digestion using response surface methodology. Food Chem. 2013, 138, 1936–1944. [Google Scholar] [CrossRef]
- Anson, M.L. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 1938, 22, 79–89. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 752. [Google Scholar]
- Namal Senanayake, S.P.J.; Shahidi, F. Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: Optimization using response surface methodology. Food Chem. 2002, 77, 115–123. [Google Scholar] [CrossRef]
- Nikolopoulou, D.; Moutou, K.A.; Fountoulaki, E.; Venou, B.; Adamidou, S.; Alexis, M.N. Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 158, 406–414. [Google Scholar] [CrossRef]
- Munilla-Morán, R.; Saborido-Rey, F. Digestive enzymes in marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 113, 395–402. [Google Scholar] [CrossRef]
- Alarcón, F.J.; Díaz, M.; Moyano, F.J.; Abellán, E. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol. Biochem. 1998, 19, 257–267. [Google Scholar] [CrossRef]
- Kır, M. Thermal tolerance and standard metabolic rate of juvenile gilthead seabream (Sparus aurata) acclimated to four temperatures. J. Therm. Biol. 2020, 93, 102739. [Google Scholar] [CrossRef]
- Grabner, M.; Hofer, R. Stomach digestion and its effect upon protein hydrolysis in the intestine of rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. A Physiol. 1989, 92, 81–83. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. J. Chem. Tech. Biotechnol. 1984, 34, 215–222. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Eberts, T.J.; Sample, R.H.; Glick, M.R.; Ellis, G.H. A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin. Chem. 1979, 25, 1440–1443. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef]
- Daliri, E.B.-M.; Ofosu, F.K.; Chelliah, R.; Park, M.H.; Kim, J.-H.; Oh, D.-H. Development of a soy protein hydrolysate with an antihypertensive effect. Int. J. Mol. Sci. 2019, 20, 1496. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, H.D.; Lee, C.-H. Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour. Food Res. Int. 2001, 34, 217–222. [Google Scholar] [CrossRef]
- Álvarez, A.; García, B.G.; Valverde, J.C.; Giménez, F.A.; Hernández, M.D. Gastrointestinal evacuation time in gilthead seabream (Sparus aurata) according to the temperature. Aquacult. Res. 2010, 41, 1101–1106. [Google Scholar] [CrossRef]
- Deguara, S.; Jauncey, K.; Agius, C. Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J. Fish Biol. 2003, 62, 1033–1043. [Google Scholar] [CrossRef]
- de Figueiredo, V.R.G.; Yamashita, F.; Vanzela, A.L.L.; Ida, E.I.; Kurozawa, L.E. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. J. Food Sci. Technol. 2018, 55, 1508–1517. [Google Scholar] [CrossRef]
- Ouhida, I.; Pérez, J.F.; Gasa, J. Soybean (Glycine max) cell wall composition and availability to feed enzymes. J. Agric. Food Chem. 2002, 50, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Tavares, E.Q.P.; De Souza, A.P.; Buckeridge, M.S. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. J. Exp. Bot. 2015, 66, 4133–4143. [Google Scholar] [CrossRef] [PubMed]
- Qing, Q.; Yang, B.; Wyman, C.E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 2010, 101, 9624–9630. [Google Scholar] [CrossRef]
- Maurer, S.A.; Bedbrook, C.N.; Radke, C.J. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate. Langmuir 2012, 28, 14598–14608. [Google Scholar] [CrossRef]
- Morales, G.A.; Sáenz de Rodrigánez, M.; Márquez, L.; Díaz, M.; Moyano, F.J. Solubilisation of protein fractions induced by Escherichia coli phytase and its effects on in vitro fish digestion of plant proteins. Anim. Feed Sci. Technol. 2013, 181, 54–64. [Google Scholar] [CrossRef]
- Champagne, E.T.; Phillippy, B.Q. Effects of pH on calcium, zinc, and phytate solubilities and complexes following in vitro digestions of soy protein isolate. J. Food Sci. 1989, 54, 587–592. [Google Scholar] [CrossRef]
- Powell, D.A.; Morris, E.R.; Gidley, M.J.; Rees, D.A. Conformations and interactions of pectins: II. Influence of residue sequence on chain association in calcium pectate gels. J. Mol. Biol. 1982, 155, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Coscueta, E.R.; Amorim, M.M.; Voss, G.B.; Nerli, B.B.; Picó, G.A.; Pintado, M.E. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 2016, 198, 36–44. [Google Scholar] [CrossRef] [PubMed]
Variables | DH(aa) | DH(rs) | DH(pen) | Sprot | SPep | SHDM |
---|---|---|---|---|---|---|
DH(aa) | - | |||||
DH(rs) | 0.445 (0.018) | - | ||||
DH(pen) | 0.394 (0.038) | 0.560 (0.002) | - | |||
SProt | −0.510 (0.006) | −0.722 (<0.001) | −0.152 (0.441) | - | ||
SPep | 0.747 (<0.001) | 0.151 (0.444) | -0.126 (0.524) | −0.411 (0.030) | - | |
SHDM | 0.406 (0.032) | 0.657 (<0.001) | 0.313 (0.105) | −0.686 (<0.001) | 0.265 (0.173) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, Ó.; Márquez, L.; Moyano, F.J.; Díaz, M. Modeling the Hydrolysis of Soybean Flour Proteins Digested with Gastric Proteases of the Marine Fish Sparus aurata and Commercial Non-Starch Polysaccharidases. Fishes 2025, 10, 320. https://doi.org/10.3390/fishes10070320
Martínez Ó, Márquez L, Moyano FJ, Díaz M. Modeling the Hydrolysis of Soybean Flour Proteins Digested with Gastric Proteases of the Marine Fish Sparus aurata and Commercial Non-Starch Polysaccharidases. Fishes. 2025; 10(7):320. https://doi.org/10.3390/fishes10070320
Chicago/Turabian StyleMartínez, Óscar, Lorenzo Márquez, Francisco J. Moyano, and Manuel Díaz. 2025. "Modeling the Hydrolysis of Soybean Flour Proteins Digested with Gastric Proteases of the Marine Fish Sparus aurata and Commercial Non-Starch Polysaccharidases" Fishes 10, no. 7: 320. https://doi.org/10.3390/fishes10070320
APA StyleMartínez, Ó., Márquez, L., Moyano, F. J., & Díaz, M. (2025). Modeling the Hydrolysis of Soybean Flour Proteins Digested with Gastric Proteases of the Marine Fish Sparus aurata and Commercial Non-Starch Polysaccharidases. Fishes, 10(7), 320. https://doi.org/10.3390/fishes10070320