Prospects for the Application of Probiotics to Increase the Efficiency of Integrated Cultivation of Aquatic Animals and Plants in Aquaponic Systems
Abstract
1. Introduction
2. Materials and Methods
3. The Role of the Bacterial Component in Aquaponics
4. Experience of Using Probiotics in Aquaponics
5. Effect of Probiotics on Growth of Aquatic Animals in Aquaponic Systems
6. Effect of Probiotics on Plant Growth in Aquaponic Systems
7. Addressing Existing Aquaponic Problems with Probiotics and Modulating the Overall Microbial Community
- The problem of optimum pH;
- The problem of optimum temperature;
- The problem of water pollution and turbidity, including algae;
- The problem of depletion of nutrients and oxygen;
7.1. The Problem of Optimum pH
7.2. Optimization of Temperature Resistance
7.3. Reducing Water Pollution and Turbidity
7.4. Prevention of Nutrient and Oxygen Deficiencies
7.5. Pathogen and Disease Control
7.6. Systemic Approach in Aquaponics
8. Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RAS | Recirculating aquaculture system |
PGPB | Plant growth-promoting bacteria |
FCR | Feed conversion ratio |
VOCs | Volatile organic compounds |
DO | Dissolved oxygen |
NFT | Nutrient film technique |
C:N | Carbon-to-nitrogen |
References
- Nash, C. The History of Aquaculture; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Sukardi, P.; Soedibya, P.H.T.; Pramono, T.B. Produksi budidaya ikan nila (Oreochromis niloticus) sistem bioflok dengan sumber karbohidrat berbeda. J. AJIE-Asian J. Innov. Entrep. 2018, 3, 198–203. [Google Scholar]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Bartelme, R.P.; Oyserman, B.O.; Blom, J.E.; Sepulveda-Villet, O.J.; Newton, R.J. Stripping away the soil: Plant growth promoting microbiology opportunities in aquaponics. Front. Microbiol. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Dos-Santos, M. Aquaponics and global food challenges. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: Cham, Switzerland, 2019; pp. 3–17. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics—Integrating fish and plant culture. In Aquaculture Production Systems; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar]
- Tidwell, J.H. On the drawing board. Aquac. Prod. Syst. 2012, 80, 395. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2014. [Google Scholar]
- Nugroho, R.A.; Pambudi, L.T.; Chilmawati, D.; Haditomo, A.H.C. Aplikasi teknologi aquaponic pada budidaya ikan air tawar untuk optimalisasi kapasitas produksi. J. Saintek Perikan. 2012, 8, 46–51. [Google Scholar] [CrossRef]
- Joyce, A.; Timmons, M.; Goddek, S.; Pentz, T. Bacterial relationships in aquaponics: New research directions. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: Cham, Switzerland, 2019; pp. 145–161. [Google Scholar] [CrossRef]
- Rakocy, J. Aquaculture engineering—The status of aquaponics, part 1. Aquac. Mag. 1999, 25, 83–88. [Google Scholar]
- Adler, P.R.; Harper, J.K.; Takeda, F.; Summerfelt, S.T. Economic analysis of an aquaponic system for the integrated production of rainbow trout and plants. Int. J. Recirc. Aquac. 2000, 1, 15–34. [Google Scholar] [CrossRef]
- Cerozi, B.D.S.; Fitzsimmons, K. Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric. Syst. 2017, 153, 94–100. [Google Scholar] [CrossRef]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Forchino, A.A.; Lourguioui, H.; Brigolin, D.; Pastres, R. Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquac. Eng. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Birolo, M.; Bordignon, F.; Trocino, A.; Fasolato, L.; Pascual, A.; Carlo, N.; Carmelo, M.; Xiccato, G. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture 2020, 529, 735653. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.W.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef]
- Handayani, R.; Dinoto, A. Effect of fermented feed supplementation in circulated aquaponic system with catfish (Clarias sp.) on growth of lettuce (Lactuca sativa L.). IOP Conf. Ser. Earth Environ. Sci. 2020, 572, 012009. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Nuwansi, K.K.T.; Verma, A.K.; Prakash, C.; Tiwari, V.K.; Chandrakant, M.H.; Shete, A.P.; Prabhath, G.P.W.A. Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquac. Int. 2016, 24, 385–393. [Google Scholar] [CrossRef]
- Fierro-Sañudo, J.F.; Rodríguez-Montes de Oca, G.A.; León-Cañedo, J.A.; Alarcón-Silvas, S.G.; Mariscal-Lagarda, M.M.; Díaz-Valdés, T.; Páez-Osuna, F. Production and management of shrimp (Penaeus vannamei) in co-culture with basil (Ocimum basilicum) using two sources of low-salinity water. Lat. Am. J. Aquat. Res. 2018, 46, 63–71. [Google Scholar] [CrossRef]
- Dwiardani, K.H.; Rahardja, B.S. Utilization of Nitrosomonas sp and Nitrobacter sp probiotic towards total suspended solid and ammonia level in nile tilapia culturing using aquaponic system. IOP Conf. Ser. Earth Environ. Sci. 2021, 679, 012067. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Abbey, M.; Anderson, N.O.; Yue, C.; Short, G.; Schermann, M.; Phelps, N.; Venturell, P.; Vickers, Z. An Analysis of Strawberry (Fragaria χ ananassa) Productivity in Northern Latitudinal Aquaponic Growing Conditions. J. Am. Pomol. Soc. 2019, 73, 22–37. [Google Scholar] [CrossRef]
- Eck, M.; Körner, O.; Jijakli, M.H. Nutrient cycling in aquaponics systems. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: Cham, Switzerland, 2019; pp. 231–246. [Google Scholar] [CrossRef]
- Kasozi, N.; Abraham, B.; Kaiser, H.; Wilhelmi, B. The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Ann. Microbiol. 2021, 71, 1. [Google Scholar] [CrossRef]
- Gatesoupe, F.J. The use of probiotics in aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Parker, R.B. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health 1974, 29, 4–8. [Google Scholar]
- Priyadarshini, S.; Gopinath, V.; Priyadharsshini, N.M.; MubarakAli, D.; Velusamy, P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces 2013, 102, 232–237. [Google Scholar] [CrossRef]
- Kasozi, N.; Iwe, G.D.; Walakira, J.; Langi, S. Integration of probiotics in aquaponic systems: An emerging alternative approach. Aquac. Int. 2024, 32, 2131–2150. [Google Scholar] [CrossRef]
- Heise, J.; Müller, H.; Probst, A.J.; Meckenstock, R.U. Ammonium removal in aquaponics indicates participation of comammox Nitrospira. Curr. Microbiol. 2021, 78, 894–903. [Google Scholar] [CrossRef]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H. Microbial diversity in different compartments of an aquaponics system. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef]
- Hasan, Z.; Andriani, Y.; Hamdani, H.; Sahidin, A.; Surbakti, S.B. Effect of probiotics addition with different dosage on water quality performance of Sangkuriang Catfish (Clarias gariepinus) farming in the aquaponic system. In Proceedings of the 1st International Conference on Islam, Science and Technology 2021, ICONISTECH 2019, Bandung, Indonesia, 11–12 July 2019. [Google Scholar] [CrossRef]
- Gjedrem, T. Disease resistant fish and shellfish are within reach: A review. J. Mar. Sci. Eng. 2015, 3, 146–153. [Google Scholar] [CrossRef]
- Ip, Y.K.; Chew, S.F. Ammonia production, excretion, toxicity, and defense in fish: A review. Front. Physiol. 2010, 1, 134. [Google Scholar] [CrossRef]
- Boyd, C.E. Ammonia toxicity degrades animal health, growth. Glob. Aquac. Advocate Dec. 2013. Available online: https://aquafishcrsp.oregonstate.edu/sites/aquafishcrsp.oregonstate.edu/files/gaa_boyd_nov13_1.pdf (accessed on 27 February 2025).
- Lin, W.; Luo, H.; Wu, J.; Hung, T.C.; Cao, B.; Liu, X.; Yang, P. A review of the emerging risks of acute ammonia nitrogen toxicity to aquatic decapod crustaceans. Water 2022, 15, 27. [Google Scholar] [CrossRef]
- Putra, I.; Pamukas, N.A.; Rusliadi, R. Peningkatan kapasitas produksi akuakultur pada pemeliharaan ikan selais (Ompok sp) sistem aquaponik. J. Perikan. Dan Kelaut. 2013, 18, 1–10. [Google Scholar]
- Taragusti, A.S.; Santanumurti, M.B.; Rahardja, B.S. Effectiveness of Nitrobacter on the specific growth rate, survival rate and feed conversion ratio of dumbo catfish Clarias sp. with density differences in the aquaponic system. IOP Conf. Ser. Earth Environ. Sci. 2019, 236, 012088. [Google Scholar] [CrossRef]
- Mehrani, M.J.; Sobotka, D.; Kowal, P.; Ciesielski, S.; Makinia, J. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresour. Technol. 2020, 303, 122936. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Shu, L.; Gu, H.; Liu, F.; Ding, J.; Zeng, J.; Wang, C.; He, Z.; Xu, M.; et al. Unraveling the important role of comammox Nitrospira to nitrification in the coastal aquaculture system. Front. Microbiol. 2024, 15, 1355859. [Google Scholar] [CrossRef] [PubMed]
- Cerozi, B.; Fitzsimmons, K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef]
- Eck, M.; Sare, A.R.; Massart, S.; Schmautz, Z.; Junge, R.; Smits, T.H.; Jijakli, M.H. Exploring bacterial communities in aquaponic systems. Water 2019, 11, 260. [Google Scholar] [CrossRef]
- Krastanova, M.; Sirakov, I.; Ivanova-Kirilova, S.; Yarkov, D.; Orozova, P. Aquaponic systems: Biological and technological parameters. Biotechnol. Biotechnol. Equip. 2022, 36, 305–316. [Google Scholar] [CrossRef]
- Kasozi, N.; Kaiser, H.; Wilhelmi, B. Effect of Bacillus spp. on lettuce growth and root associated bacterial community in a small-scale aquaponics system. Agronomy 2021, 11, 947. [Google Scholar] [CrossRef]
- FAO; WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Cordoba, Argentina, 2001. [Google Scholar]
- FAO; WHO. Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: London, ON, Canada, 2002. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zommiti, M.; Feuilloley, M.G.; Connil, N. Update of probiotics in human world: A nonstop source of benefactions till the end of time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef] [PubMed]
- Askarian, F.; Kousha, A.; Salma, W.; Ringø, E. The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquac. Nutr. 2011, 17, 488–497. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Bradley, G.; Baker, R.T.M.; Davies, S.J. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr. 2010, 16, 496–503. [Google Scholar] [CrossRef]
- Yanbo, W.; Zirong, X. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol. 2006, 127, 283–292. [Google Scholar] [CrossRef]
- Al-Dohail, M.A.; Hashim, R.; Aliyu-Paiko, M. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac. Res. 2009, 40, 1642–1652. [Google Scholar] [CrossRef]
- Méndez-Martínez, Y.; Torres-Navarrete, Y.G.; Cortés-Jacinto, E.; García-Guerrero, M.U.; Hernández-Hernández, L.H.; Verdecia, D.M. Biological, nutritional, and hematoimmune response in juvenile Cherax quadricarinatus (Decapoda: Parastacidae) fed with probiotic mixture. Rev. MVZ Cordoba 2022, 27, e2578. [Google Scholar] [CrossRef]
- Ziaei-Nejad, S.; Rezaei, M.H.; Takami, G.A.; Lovett, D.L.; Mirvaghefi, A.R.; Shakouri, M. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 2006, 252, 516–524. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, Z.; Wang, Y.; Li, W. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol. Biochem. 2010, 36, 501–509. [Google Scholar] [CrossRef]
- Sahu, M.K.; Swarnakumar, N.S.; Sivakumar, K.; Thangaradjou, T.; Kannan, L. Probiotics in aquaculture: Importance and future perspectives. Indian J. Microbiol. 2008, 48, 299–308. [Google Scholar] [CrossRef]
- Tabassum, T.; Mahamud, A.S.U.; Acharjee, T.K.; Hassan, R.; Snigdha, T.A.; Islam, T.; Alam, R.; Khoiam, M.U.; Akter, F.; Azad, R.; et al. Probiotic supplementations improve growth, water quality, hematology, gut microbiota and intestinal morphology of Nile tilapia. Aquac. Rep. 2021, 21, 100972. [Google Scholar] [CrossRef]
- Nadia, Z.M.; Akhi, A.R.; Roy, P.; Farhad, F.B.; Hossain, M.M.; Salam, M.A. Yielding of aquaponics using probiotics to grow tomatoes with tilapia. Aquac. Rep. 2023, 33, 101799. [Google Scholar] [CrossRef]
- Irianto, A.; Austin, B. Probiotics in aquaculture. J. Fish Dis. 2002, 25, 633–642. [Google Scholar] [CrossRef]
- Hai, N.V. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.T.; Brown, P.B. Sustainable marine aquaponics: Effects of shrimp to plant ratios and C/N ratios. Front. Mar. Sci. 2021, 8, 771630. [Google Scholar] [CrossRef]
- Huitzitl-López, M.G.; Monroy-Dosta, M.D.C.; Castro-Mejía, J.; Vázquez-Silva, G.; Chávez Serrano, E.M. Growth evaluation of Ambystoma mexicanum and Ocimum basilicum with application of Bacillus subtilis probiotic in aquaponic system. Int. J. Aquat. Sci. 2018, 9, 93–98. [Google Scholar]
- Kasozi, N.; Kaiser, H.; Wilhelmi, B. Determination of phylloplane associated bacteria of lettuce from a small-scale aquaponic system via 16S rRNA gene amplicon sequence analysis. Horticulturae 2022, 8, 151. [Google Scholar] [CrossRef]
- Said, M.M.; Zaki, F.M.; Ahmed, O.M. Effect of the Probiotic (Bacillus spp.) on Water Quality, Production Performance, Microbial Profile, and Food Safety of the Nile Tilapia and Mint in Recirculating Aquaponic System. Egypt. J. Aquat. Biol. Fish. 2022, 26, 351–372. [Google Scholar] [CrossRef]
- Taufik, I.; Setijaningsih, L.; Widyastuti, Y.R. Performance growth and survival of Hemibagrus nemurus with probiotic application on aquaponics. IOP Conf. Ser. Earth Environ. Sci. 2022, 1119, 012070. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Slavcheva-Sirakova, D. The ProViotic® supplemented diet on growth performance, biochemical blood parameters and meat quality of common carp (Cyprinus carpio L.) and growth of lettuce (Lactuca sativa) cultivated in aquaponics. J. Hyg. Eng. Des. 2021, 34, 26–30. [Google Scholar]
- Setiawan, D.; Rahardja, B.S. Utilization of Nitrosomonas sp. and Nitrobacter sp. probiotic towards nitrite and nitrate level in nile tilapia (Oreochromis niloticus) using aquaponic system. IOP Conf. Ser. Earth Environ. Sci. 2021, 718, 012098. [Google Scholar] [CrossRef]
- Dhahiyat, Y.; Andriani, Y.; Sahidin, A.; Farizi, I. Impact of Red Water System (RWS) application on water quality of catfish culture using aquaponics. IOP Conf. Ser. Earth Environ. Sci. 2018, 139, 012009. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Stoyanova, S.; Kaymakanova, M.; Slavcheva-Sirakova, D.; Atanasova, R.; Staykov, Y. Effect of synbiotic dietary supplementation on growth, physiological and immunological parameters in common carp (Cyprinus carpio L.) fingerlings and on yield and physiological parameters in lettuce (Lactuca sativa L.), cultivated in mesocosmos aquaponic system. Bulg. J. Agric. Sci. 2018, 24 (Suppl. S1), 140–149. [Google Scholar]
- Kuebutornye, F.K.; Wang, Z.; Lu, Y.; Abarike, E.D.; Sakyi, M.E.; Li, Y.; Hlordzi, V. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 97, 83–95. [Google Scholar] [CrossRef]
- Rengpipat, S.; Rukpratanporn, S.; Piyatiratitivorakul, S.; Menasaveta, P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 2000, 191, 271–288. [Google Scholar] [CrossRef]
- Raida, M.K.; Larsen, J.L.; Nielsen, M.E.; Buchmann, K. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J. Fish Dis. 2003, 26, 495–498. [Google Scholar] [CrossRef]
- Vaseeharan, B.; Ramasamy, P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 2003, 36, 83–87. [Google Scholar] [CrossRef]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Niu, Y.; Huo, R.; Gao, X. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 2017, 7, 40481. [Google Scholar] [CrossRef] [PubMed]
- Blake, C.; Christensen, M.N.; Kovács, Á.T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant-Microbe Interact. 2021, 34, 15–25. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Chizhevskaya, E.P.; Vorobyov, N.I.; Bobkova, V.V.; Pomyaksheva, L.V.; Khomyakov, Y.V.; Konovalov, S.N. The quality and productivity of strawberry (Fragaria× ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments. Agronomy 2022, 12, 2600. [Google Scholar] [CrossRef]
- Sretenović, M.; Tamaš, N.; Zec, G.; Stojanoski, M.; Tešić, N.; Miletić, N.; Djordjević, B. Productivity, biocontrol and postharvest fruit quality of strawberry cultivar ‘Clery’ using plant growth promoting microorganisms. Cogent Food Agric. 2024, 10, 2310896. [Google Scholar] [CrossRef]
- Huang, F.; Pan, L.; Lv, N.; Tang, X. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. J. Biosci. Bioeng. 2017, 124, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Dominika, G.; Joanna, M.; Jacek, M. Sulfate reducing ammonium oxidation (SULFAMMOX) process under anaerobic conditions. Environ. Technol. Innov. 2021, 22, 101416. [Google Scholar] [CrossRef]
- Cai, L.S.; Wang, L.; Song, K.; Lu, K.L.; Zhang, C.X.; Rahimnejad, S. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture 2020, 516, 734615. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, S.N. Water quality management with Bacillus spp. in the high-density culture of red-parrot fish Cichlasoma citrinellum × C. synspilum. N. Am. J. Aquac. 2001, 63, 66–73. [Google Scholar] [CrossRef]
- Panetto, L.D.; Doria, J.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; de Andrade, L.A.; Rigobelo, E.C. Lactic Bacteria with Plant-Growth-Promoting Properties in Potato. Microbiol. Res. 2023, 14, 279–288. [Google Scholar] [CrossRef]
- Dierberg, F.E.; Kiattisimkul, W. Issues, impacts, and implications of shrimp aquaculture in Thailand. Environ. Manag. 1996, 20, 649–666. [Google Scholar] [CrossRef]
- Martínez Cruz, P.; Ibáñez, A.L.; Monroy Hermosillo, O.A.; Ramírez Saad, H.C. Use of probiotics in aquaculture. Int. Sch. Res. Not. 2012, 2012, 916845. [Google Scholar] [CrossRef]
- Nemutanzhela, M.E.; Roets, Y.; Gardiner, N.; Lalloo, R. The use and benefits of Bacillus based biological agents in aquaculture. Sustain. Aquac. Tech. 2014, 19, 1–34. [Google Scholar] [CrossRef]
- Olmos, J.; Acosta, M.; Mendoza, G.; Pitones, V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch. Microbiol. 2020, 202, 427–435. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.; Abarike, E.D.; Lu, Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019, 87, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Stegelmeier, A.A.; Rose, D.M.; Joris, B.R.; Glick, B.R. The use of PGPB to promote plant hydroponic growth. Plants 2022, 11, 2783. [Google Scholar] [CrossRef]
- Piñero, M.C.; Collado-González, J.; Otálora, G.; López-Marín, J.; Del Amor, F.M. Plant Growth-Promoting Rhizobacteria as Tools to Improve the Growth of Kohlrabi (Brassica oleracea var. gongylodes) Plants in an Aquaponics System. Plants 2024, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Aleksic, N.; Sustersic, V. Analysis of application of aquaponic system as a model of the circular economy: A review. Reciklaza I Odrziv. Razvoj. 2020, 13, 73–86. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, T.; Kim, H.J. pH dynamics in aquaponic systems: Implications for plant and fish crop productivity and yield. Sustainability 2023, 15, 7137. [Google Scholar] [CrossRef]
- Rahayu, S.; Amoah, K.; Huang, Y.; Cai, J.; Wang, B.; Shija, V.M.; Jin, X.; Anokyewaa, M.A.; Jiang, M. Probiotics application in aquaculture: Its potential effects, current status in China and future prospects. Front. Mar. Sci. 2024, 11, 1455905. [Google Scholar] [CrossRef]
- Torres-Maravilla, E.; Parra, M.; Maisey, K.; Vargas, R.A.; Cabezas-Cruz, A.; Gonzalez, A.; Tello, M.; Bermúdez-Humarán, L.G. Importance of Probiotics in Fish Aquaculture: Towards the Identification and Design of Novel Probiotics. Microorganisms 2024, 12, 626. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- Lobanov, V.; Keesman, K.J.; Joyce, A. Plants dictate root microbial composition in hydroponics and aquaponics. Front. Microbiol. 2022, 13, 848057. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Suhl, J.; Oppedijk, B.; Baganz, D.; Kloas, W.; Schmidt, U.; van Duijn, B. Oxygen consumption in recirculating nutrient film technique in aquaponics. Sci. Hortic. 2019, 255, 281–291. [Google Scholar] [CrossRef]
- Mao, H.; Wang, B.; Zhao, J.; Wang, Y.; Du, X.; Shi, Q. Influences of Aquaponics System on Growth Performance, Antioxidant Parameters, Stress Parameters and Gene Expression of Carassius auratus. Fishes 2023, 8, 360. [Google Scholar] [CrossRef]
- Senavirathna, M.D.H.J.; Zhaozhi, L.; Fujino, T. Root adsorption of microplastic particles affects the submerged freshwater macrophyte Egeria densa. Water Air Soil Pollut. 2022, 233, 80. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish by-product use as biostimulants: An overview of the current state of the art, including relevant legislation and regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Chen, Q.F.; Wang, J.N.; Liu, T.; Zhao, W.Y. Substrates, plants, and their combinations for water purification of urban household aquaponics systems. Int. J. Environ. Res. Public Health 2022, 19, 10276. [Google Scholar] [CrossRef]
- Ulaş, A.; Yücel, Y.C.; Ulaş, F. The application of fish wastewater to improve the plant growth, development and yield of lettuce (Lactuca sativa L.). Int. J. Agric. Environ. Food Sci. 2022, 6, 100–107. [Google Scholar] [CrossRef]
- Fruscella, L.; Kotzen, B.; Paradelo, M.; Milliken, S. Investigating the effects of fish effluents as organic fertilisers on onion (Allium cepa) yield, soil nutrients, and soil microbiome. Sci. Hortic. 2023, 321, 112297. [Google Scholar] [CrossRef]
- Yahya, G.; Ebada, A.; Khalaf, E.M.; Mansour, B.; Nouh, N.A.; Mosbah, R.A.; Saber, S.; Moustafa, M.; Negm, S.; El-Sokkary, M.M.A.; et al. Soil-associated Bacillus species: A reservoir of bioactive compounds with potential therapeutic activity against human pathogens. Microorganisms 2021, 9, 1131. [Google Scholar] [CrossRef]
- Andrić, S.; Meyer, T.; Ongena, M. Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Front. Microbiol. 2020, 11, 1350. [Google Scholar] [CrossRef]
- Eck, M.; Szekely, I.; Massart, S.; Jijakli, M.H. Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle. Water 2021, 13, 2089. [Google Scholar] [CrossRef]
- Thakur, K.; Kuthiala, T.; Singh, G.; Arya, S.K.; Iwai, C.B.; Ravindran, B.; Khoo, K.S.; Chang, S.W.; Awasthi, M.K. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. Chemosphere 2023, 316, 137849. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Y.; Wang, X.; Zhang, H.; Liu, Y. Maximizing nutrient recovery from aquaponics wastewater with autotrophic or heterotrophic management strategies. Bioresour. Technol. Rep. 2023, 21, 101360. [Google Scholar] [CrossRef]
- Peng, Z.; Chen, P.; Li, Y.; Wang, X.; Zhang, H. C/N ratio shifted autotrophic partial nitrification to heterotrophic nitrification and aerobic denitrification in high-strength ammonium wastewater treatment. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y.; Li, J.; Wang, L.; Chen, H. Responses of various carbon to nitrogen ratios to microbial communities, kinetics, and nitrogen metabolic pathways in aerobic granular sludge reactor. Bioresour. Technol. 2023, 367, 128225. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.L.; Kanoh, K.; Kamino, K. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Appl. Environ. Microbiol. 2001, 67, 1710–1717. [Google Scholar] [CrossRef]
- Rwezawula, P.; Mwanja, W.W.; Vereecke, N.; Bossier, P.; Vanrompay, D. Advancing aquaculture probiotic discovery via an innovative protocol for isolation of indigenous, heat and salt tolerant, quorum quenching probiotic candidates. Front. Microbiol. 2025, 16, 1558238. [Google Scholar] [CrossRef]
- Ruiz, A.; Scicchitano, D.; Palladino, G.; Nanetti, E.; Candela, M.; Furones, D.; Sanahuja, I.; Carbó, R.; Gisbert, E.; Andree, K.B. Microbiome study of a coupled aquaponic system: Unveiling the independency of bacterial communities and their beneficial influences among different compartments. Sci. Rep. 2023, 13, 19704. [Google Scholar] [CrossRef]
- Sayavedra-Soto, L.A.; Stein, L.Y. Genetic transformation of ammonia-oxidizing bacteria. Methods Enzymol. 2021, 486, 389–402. [Google Scholar] [CrossRef]
- Yu, Y.-B.; Choi, J.-H.; Lee, J.-H.; Jo, A.-H.; Han, S.W.; Han, S.-H.; Choi, H.J.; Choi, C.Y.; Kang, J.-C.; Min, E.; et al. Biofloc Application Using Aquaponics and Vertical Aquaculture Technology in Aquaculture: Review. Fishes 2023, 8, 543. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Akhavan-Bahabadi, M.; Emerenciano, M.G.C. Probiotics and Phytobiotics as Dietary and Water Supplements in Biofloc Aquaculture Systems. Aquac. Nutr. 2024, 1, 3089887. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Commercial Name of Probiotic | Aquatic Animal Species | Plant Species | Probiotic Serving Method | Result | Reference |
---|---|---|---|---|---|---|
Bacillus spp. | EZ-Bio; Zeigler Bros., Inc. (Gardners, PA, United States) | whiteleg shrimp (L. vannamei) | red orache (Atriplex hortensis), okahijiki (Salsola komarovii), minutina (Plantago coronopus) | into the water | Increased shrimp survival (up to 95%) | [65] |
Nitrosomonas, Nitrobacter | - | Nile tilapia (O. niloticus) | water spinach (Ipomoea aquatica) | - | Reduced the level of ammonia in the system | [25] |
Bacillus spp. | Brightwell Aquatics MicroBacter (Fort Payne, AL, United States) | largemouth bass (Micropterus salmoides) | lemongrass (Cymbopogon spp.), onion (Allium cepa) | into the water | Reduced the nitrate level in water | [9] |
Lactobacillus, Bacillus, Nitrosomonas, Nitrobacter | - | catfish (C. gariepinus) | turnip (Brassica rapa) | into the water | Reduced the concentration of ammonia in water, increased the survival and growth rate of fish | [36] |
Bacillus subtilis | axolotl (Ambystoma mexicanum) | basil (Ocimum basilicum) | Increased overall length of plants | [66] | ||
Bacillus spp. | Sanolife® PRO-W; 5.0 × 1010 CFU g−1 (Nonthaburi, Thailand) | Mozambican tilapia (O. mossambicus) | lettuce (Lactuca sativa) | into the water | Enhanced vegetative growth of lettuce | [67] |
Bacillus mesentericus, Streptococcus faecalis, Clostridium butyricum | ZYMETIN;Advance Pharma Co., Ltd. (Bangkok, Thailand) | tilapia | tomato | in feed, into the water | Improved the efficiency of tomato and tilapia cultivation | [62] |
Bacillus spp. | - | Nile tilapia (O. niloticus) | mint (Mentha spicata) | - | Increased body weight gain, daily gain, specific growth rate of fish, decreased the feed conversion ratio, increased wet weight of plants, decreased the NH3 and NO2 concentrations | [68] |
Pseudomonas aeruginosa, Achromobacter insuavis | RIFA; Rifa International Co., Ltd. (Bangkok, Thailand) | catfish (Hemibagrus nemurus) | lettuce (L. sativa), eggplant (Solanum melongena) | - | Increased fish growth and survival, improved water quality, increased plant productivity | [69] |
Lactobacillus bulgaricus | PROVIOTIC®; Farmaceutici Procemsa S.r.l. (Ponte San Pietro, Italy) | Cyprinus carpio | L. sativa | in feed | Increased average individual carp weight by 4.3% | [70] |
Nitrosomonas, Nitrobacter | - | Nile tilapia (O. niloticus) | - | into the water | Reduced the concentration of nitrite in water | [71] |
Lactobacillus casei, Saccharomyces cerevisiae | - | - | lettuce | into the water | Reduced the concentration of ammonia in water | [72] |
B. lactis, L. acidophilus DDS-1, S. thermophilus, B. bifidum, B. longum | Bio balance® (Copenhagen, Denmark) | Cyprinus carpio | lettuce (L. sativa) | into the water | Positively affected the growth rate and feed utilization of carp fry | [73] |
Bacillus spp. | Sanolife® PRO-W (Nonthaburi, Thailand) | juvenile tilapia | lettuce | into the water | Rapidly reduced the ammonia concentration in water | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudoy, D.; Olshevskaya, A.; Shevchenko, V.; Prazdnova, E.; Odabashyan, M.; Teplyakova, S. Prospects for the Application of Probiotics to Increase the Efficiency of Integrated Cultivation of Aquatic Animals and Plants in Aquaponic Systems. Fishes 2025, 10, 251. https://doi.org/10.3390/fishes10060251
Rudoy D, Olshevskaya A, Shevchenko V, Prazdnova E, Odabashyan M, Teplyakova S. Prospects for the Application of Probiotics to Increase the Efficiency of Integrated Cultivation of Aquatic Animals and Plants in Aquaponic Systems. Fishes. 2025; 10(6):251. https://doi.org/10.3390/fishes10060251
Chicago/Turabian StyleRudoy, Dmitry, Anastasiya Olshevskaya, Victoria Shevchenko, Evgeniya Prazdnova, Mary Odabashyan, and Svetlana Teplyakova. 2025. "Prospects for the Application of Probiotics to Increase the Efficiency of Integrated Cultivation of Aquatic Animals and Plants in Aquaponic Systems" Fishes 10, no. 6: 251. https://doi.org/10.3390/fishes10060251
APA StyleRudoy, D., Olshevskaya, A., Shevchenko, V., Prazdnova, E., Odabashyan, M., & Teplyakova, S. (2025). Prospects for the Application of Probiotics to Increase the Efficiency of Integrated Cultivation of Aquatic Animals and Plants in Aquaponic Systems. Fishes, 10(6), 251. https://doi.org/10.3390/fishes10060251