Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality
Abstract
1. Introduction
2. Nutritional Benefits of Fish to Humans
2.1. Fatty Acids
2.2. Proteins and Essential Amino Acids
2.3. Vitamins
2.4. Minerals
3. Methods for Growing Fish for Food Purposes
System Type | Description | Advantages | Disadvantages |
---|---|---|---|
Structure | |||
Ponds | Built a dam across a natural watercourse or dug a hole in the ground. May have little or flow-through water exchange, depending on the construction method [83]. |
|
|
Cages | Enclosed natural bay where shoreline forms all but one side, typically closed by net/mesh barrier [86]. |
|
|
Tanks | Fish tank aquaculture involves rearing fish in controlled, artificial tank systems, which can be indoor (recirculating aquaculture systems, RAS) or outdoor [88]. |
|
|
Water Exchange | |||
Static (Static Ponds) | Involves fish production in earthen or lined ponds without continuous water flow. These systems rely on natural processes (e.g., photosynthesis, microbial activity) to maintain water quality [94]. | ||
Closed (RAS) | Closed water exchange aquaculture, also known as recirculating aquaculture systems (RAS), is a highly controlled production method where water is continuously filtered and reused within the system. Recirculating systems with <10% daily water exchange, using mechanical and biological filtration [88]. | ||
Semi-closed (Mariculture + RAS) | Replaces 10–50% water daily, blending seawater and recirculation [100]. Hybrid systems now use 15–30% exchange with tidal synchronization. |
| |
Open (Sea Cages) | Net pens rely entirely on natural water exchange via currents [103]. |
| |
Culture Intensification | |||
Intensive | High stocking density with 20–100% daily exchange [81]. |
|
|
Semi-intensive | Moderate stocking density with 5–20% daily exchange [94]. |
| |
Extensive | Minimal intervention with <5% daily exchange [97]. | Very low productivity [97]. | |
Integrated Fish Farming | |||
Rice+fish (Paddy fields) | Fish (e.g., carp) reared in flooded paddies. Water exchange via monsoon rains [107]. |
| |
Duck+fish (Ponds) | Duck waste fertilizes ponds with natural exchange [110]. |
| |
Aquaponics | Combines RAS with hydroponics; <5% daily exchange [27]. |
|
3.1. RAS Cultivation
3.2. Pond Farming
3.3. Aquaponic Fish Breeding
3.4. Sea Farming
4. Impact of Fish Farming Methods on Fish Nutritional Value
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balami, S.; Sharma, A.; Karn, R. Significance of Nutritional Value of Fish for Human Health. Malays. J. Halal Res. 2019, 2, 32–34. [Google Scholar] [CrossRef]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Serna, J.; Bergwitz, C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L. Modern Nutrition in Health and Disease; Jones & Bartlett Learning: Burlington, MA, USA, 2020; 1645p. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture. 2022. Available online: https://www.fao.org/3/cc0461en/online/cc0461en.html (accessed on 18 March 2024).
- Pal, J.; Shukla, B.N.; Maurya, A.K.; Verma, H.O.; Pandey, G.; Amitha, A. A review on role of fish in human nutrition with special emphasis to essential fatty acid. Int. J. Fish. Aquat. Stud. 2018, 6, 427–430. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Food Matters: Fish, Income, and Food Supply—A Comparative Analysis. Rev. Fish. Sci. Aquac. 2018, 26, 15–28. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Thilsted, S.H.; Phillips, M.J.; Metian, M.; Troell, M.; Hall, S.J. Meeting the food and nutrition needs of the poor: The role of fish and the opportunities and challenges emerging from the rise of aquaculturea. J. Fish Biol. 2013, 83, 1067–1084. [Google Scholar] [CrossRef]
- Charlton, K.E.; Russell, J.; Gorman, E.; Hanich, Q.; Delisle, A.; Campbell, B.; Bell, J. Fish, food security and health in Pacific Island countries and territories: A systematic literature review. BMC Public Health 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.L.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Nutrition: Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef]
- Beisbekova, A.; Raushanova, A.; Juszkiewicz, K.; Kainarbayeva, M.; Chuyenbekova, A.; Khassenova, G.; Kozhakhmetova, A.; Kenessary, D. Medico-social effectiveness of biological monitoring of iodine deficiency status (IDS) among women of reproductive age in Kazakhstan. Ann. Agric. Environ. Med. 2019, 26, 73–77. [Google Scholar] [CrossRef]
- Sioen, I.; De Henauw, S.; Van Camp, J.; Volatier, J.-L.; Leblanc, J.-C. Comparison of the nutritional–toxicological conflict related to seafood consumption in different regions worldwide. Regul. Toxicol. Pharmacol. 2009, 55, 219–228. [Google Scholar] [CrossRef]
- Merten, W.; Reyer, A.; Savitz, J.; Amos, J.; Woods, P.; Sullivan, B. Global Fishing Watch: Bringing Transparency to Global Commercial Fisheries. arXiv 2016, arXiv:1609.08756. [Google Scholar]
- Anna, Z.; Hindayani, P. The Cost of Pollution to Dam’s Fisheries. Pol. J. Environ. Stud. 2022, 31, 4539–4547. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.M.; Arenas, F.; Neto, A.I.; Jenkins, S.R. Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities. PLoS ONE 2012, 7, e44297. [Google Scholar] [CrossRef]
- Fishery Management; Inland Fisheries: Rome, Italy, 2001; pp. 195–216.
- Cowx, I.G.; Portocarrero Aya, M. Paradigm shifts in fish conservation: Moving to the ecosystem services concept. J. Fish Biol. 2011, 79, 1663–1680. [Google Scholar] [CrossRef] [PubMed]
- Atalah, J.; Sanchez-Jerez, P. Global assessment of ecological risks associated with farmed fish escapes. Glob. Ecol. Conserv. 2020, 21, e00842. [Google Scholar] [CrossRef]
- Muir, W.M.; Hostetler, W.M. Transgenic Fish: Production, Testing, and Risk Assessment. In Biotechnology in Animal Husbandry; Renaville, R., Burny, A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2002; pp. 261–281. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [PubMed]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.; Stevens, J.R.; Santos, E.M.; et al. Harnessing Genomics to Fast-Track Genetic Improvement in Aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Hosomi, R.; Yoshida, M.; Fukunaga, K. Seafood Consumption and Components for Health. Glob. J. Health Sci. 2012, 4, 72–86. [Google Scholar] [CrossRef]
- Funge-Smith, S.; Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish. 2019, 20, 1176–1195. [Google Scholar] [CrossRef]
- Arshad, N.; Samat, N.; Lee, L.K. Insight into the Relation Between Nutritional Benefits of Aquaculture Products and Its Consumption Hazards: A Global Viewpoint. Front. Mar. Sci. 2022, 9, 925463. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Lemos, D.; Metian, M. Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption. Rev. Fish. Sci. Aquac. 2020, 28, 449–458. [Google Scholar] [CrossRef]
- Srinivasa Gopal, T.K. Chapter 9—Foods from the ocean for nutrition, health, and wellness. In Nutritional and Health Aspects of Food in South Asian Countries; Prakash, J., Waisundara, V., Prakash, V., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 113–122. [Google Scholar]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility–Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef]
- Jensen, I.J.; Eilertsen, K.E.; Otnæs, C.H.A.; Mæhre, H.K.; Elvevoll, E.O. An Update on the Content of Fatty Acids, Dioxins, PCBs and Heavy Metals in Farmed, Escaped and Wild Atlantic Salmon (Salmo salar L.) in Norway. Foods 2020, 9, 1901. [Google Scholar] [CrossRef]
- Molversmyr, E.; Devle, H.M.; Naess-Andresen, C.F.; Ekeberg, D. Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC-MS. Food Sci. Nutr. 2022, 10, 3117–3127. [Google Scholar] [CrossRef]
- Food Search|USDA FoodData Central. Available online: https://fdc.nal.usda.gov/food-search?query=fish%20 (accessed on 5 April 2025).
- Mohanty, B.P.; Ganguly, S.; Mahanty, A.; Sankar, T.V.; Anandan, R.; Chakraborty, K.; Paul, B.N.; Sarma, D.; Syama Dayal, J.; Venkateshwarlu, G.; et al. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India. BioMed Res. Int. 2016, 2016, 027437. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.; Glushchenko, L.A.; Rudchenko, A.E.; Makhrov, A.A.; Borovikova, E.A.; Dgebuadze, Y.Y. Fatty Acid Composition and Contents of Seven Commercial Fish Species of Genus Coregonus from Russian Subarctic Water Bodies. Lipids 2017, 52, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Balouei, F.; Stefanon, B.; Martello, E.; Atuahene, D.; Sandri, M.; Meineri, G. Supplementation with Silybum marianum Extract, Synbiotics, Omega-3 Fatty Acids, Vitamins, and Minerals: Impact on Biochemical Markers and Fecal Microbiome in Overweight Dogs. Animals 2024, 14, 579. [Google Scholar] [CrossRef]
- Alshdaifat, M.M.; Serbester, U.; Obeidat, B.S.; Gorgulu, M. Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring. Animals 2023, 13, 3888. [Google Scholar] [CrossRef] [PubMed]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef]
- Sawada, Y.; Saito-Sasaki, N.; Nakamura, M. Omega 3 Fatty Acid and Skin Diseases. Front. Immunol. 2021, 11, 623052. [Google Scholar] [CrossRef]
- You, C.; Xu, Q.; Chen, J.; Xu, Y.; Pang, J.; Peng, X.; Tang, Z.; Sun, W.; Sun, Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals 2023, 13, 1093. [Google Scholar] [CrossRef]
- Brandt, J. Diet in Brain Health and Neurological Disorders: Risk Factors and Treatments. Brain Sci. 2019, 9, 234. [Google Scholar] [CrossRef]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef]
- Mueller, B.A.; Talbert, R.L. Biological mechanisms and cardiovascular effects of omega-3 fatty acids. Clin. Pharm. 1988, 7, 795–807. [Google Scholar] [PubMed]
- Chang, J.P.-C.; Tseng, P.-T.; Zeng, B.-S.; Chang, C.-H.; Su, H.; Chou, P.-H.; Su, K.-P. Safety of Supplementation of Omega-3 Polyunsaturated Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.W.; Nakamura, Y.; Gosslau, A.M.; Li, S. Are there serious adverse effects of omega-3 polyunsaturated fatty acid supplements? J. Food Bioact. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Maulu, S.; Nawanzi, K.; Abdel-Tawwab, M.; Khalil, H.S. Fish Nutritional Value as an Approach to Children’s Nutrition. Front. Nutr. 2021, 8, 780844. [Google Scholar] [CrossRef]
- Sobczak, M.; Panicz, R.; Eljasik, P.; Sadowski, J.; Tórz, A.; Żochowska-Kujawska, J.; Barbosa, V.; Dias, J.; Marques, A. Nutritional value and sensory properties of common carp (Cyprinus carpio L.) fillets enriched with sustainable and natural feed ingredients. Food Chem. Toxicol. 2021, 152, 112197. [Google Scholar] [CrossRef]
- Ryu, B.; Shin, K.-H.; Kim, S.-K. Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Mar. Drugs 2021, 19, 377. [Google Scholar] [CrossRef]
- Dale, H.F.; Madsen, L.; Lied, G.A. Fish–derived proteins and their potential to improve human health. Nutr. Rev. 2019, 77, 572–583. [Google Scholar] [CrossRef]
- Khan, S.; Rehman, A.; Shah, H.; Aadil, R.M.; Ali, A.; Shehzad, Q.; Ashraf, W.; Yang, F.; Karim, A.; Khaliq, A.; et al. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. Food Rev. Int. 2022, 38, 1607–1634. [Google Scholar] [CrossRef]
- Idowu, A.T.; Igiehon, O.O.; Idowu, S.; Olatunde, O.O.; Benjakul, S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int. J. Pept. Res. Ther. 2021, 27, 109–118. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Benjakul, S.; Maqsood, S. Fish protein hydrolysates as a health-promoting ingredient—Recent update. Nutr. Rev. 2022, 80, 1013–1026. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Dórea, J.G. Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Sci. Total Environ. 2008, 400, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Yazdekhasti, N.; Brandsch, C.; Schmidt, N.; Schloesser, A.; Huebbe, P.; Rimbach, G.; Stangl, G.I. Fish protein increases circulating levels of trimethylamine-N-oxide and accelerates aortic lesion formation in apoE null mice. Mol. Nutr. Food Res. 2016, 60, 358–368. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Health and ecological implications of fish consumption: A deeper insight. Mediterr. J. Nutr. Metab. 2016, 9, 7–22. [Google Scholar] [CrossRef]
- Kraemer, K.; Semba, R.D.; Eggersdorfer, M.; Schaumberg, D.A. Introduction: The Diverse and Essential Biological Functions of Vitamins. Ann. Nutr. Metab. 2012, 61, 185–191. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins: Their Role in the Human Body; John Wiley & Sons: Hoboken, NJ, USA, 2008; 451p. [Google Scholar]
- Harrison, E.H. Vitamin A. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Halver, J.E. The Vitamins. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 61–141. [Google Scholar]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D for skeletal and non-skeletal health: What we should know. J. Clin. Orthop. Trauma. 2019, 10, 1082–1093. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef] [PubMed]
- Torquato, P.; Marinelli, R.; Bartolini, D.; Galli, F. Vitamin E: Nutritional aspects. In Molecular Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 447–485. [Google Scholar]
- Garg, A.; Lee, J.C.-Y. Vitamin E: Where Are We Now in Vascular Diseases? Life 2022, 12, 310. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Kwasek, K.; Thorne-Lyman, A.L.; Phillips, M. Can human nutrition be improved through better fish feeding practices? A review paper. Crit. Rev. Food Sci. Nutr. 2020, 60, 3822–3835. [Google Scholar] [CrossRef]
- Sprague, M.; Chau, T.C.; Givens, D.I. Iodine Content of Wild and Farmed Seafood and Its Estimated Contribution to UK Dietary Iodine Intake. Nutrients 2022, 14, 195. [Google Scholar] [CrossRef]
- Mohamed, A.S.; El-Desoky, M.A.; El-Lahamy, A.A.; Gad, N.S. Influence of Environmental Pollutants on Water Quality and Biochemical Parameters of Fish Tissue. Adv. Oceanogr. Mar. Biol. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Mustafa, S.A.; Al-Rudainy, A.J.; Salman, N.M. Effect of environmental pollutants on fish health: An overview. Egypt. J. Aquat. Res. 2024, 50, 225–233. [Google Scholar] [CrossRef]
- Obasohan, E.E.; Agbonlahor, D.E.; Obano, E.E. Water pollution: A review of microbial quality and health concerns of water, sediment and fish in the aquatic ecosystem. Afr. J. Biotechnol. 2010, 9, 423–427. [Google Scholar]
- Brandão, M.L.; Dorigão-Guimarães, F.; Bolognesi, M.C.; Gauy, A.C.D.S.; Pereira, A.V.S.; Vian, L.; Carvalho, T.B.; Gonçalves-de-Freitas, E. Understanding behaviour to improve the welfare of an ornamental fish. J. Fish Biol. 2021, 99, 726–739. [Google Scholar] [CrossRef]
- Bregnballe, J. A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; Food & Agriculture Org.: Rome, Italy, 2022; 120p. [Google Scholar]
- Ahmad, A.; Sheikh Abdullah, S.R.; Hasan, H.A.; Othman, A.R.; Ismail, N. Izzati Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. J. Environ. Manag. 2021, 287, 112271. [Google Scholar] [CrossRef]
- Egna, H.S.; Boyd, C.E. Dynamics of Pond Aquaculture; CRC Press: Boca Raton, FL, USA, 1997; 476p. [Google Scholar]
- Liu, X.; Shao, Z.; Cheng, G.; Lu, S.; Gu, Z.; Zhu, H.; Shen, H.; Wang, J.; Chen, X. Ecological engineering in pond aquaculture: A review from the whole-process perspective in China. Rev. Aquac. 2021, 13, 1060–1076. [Google Scholar] [CrossRef]
- Chen, J.; Guang, C.; Xu, H.; Chen, Z.; Xu, P.; Yan, X.; Wang, Y.; Liu, J. A review of cage and pen aquaculture: China. FAO Fish. Tech. Pap. 2008, 498, 53. [Google Scholar]
- Beveridge, M.C.M. Cage Aquaculture; John Wiley & Sons: Hoboken, NJ, USA, 2008; 379p. [Google Scholar]
- Nyakeya, K.; Masese, F.O.; Gichana, Z.; Nyamora, J.M.; Getabu, A.; Onchieku, J.; Odoli, C.; Nyakwama, R. Cage farming in the environmental mix of Lake Victoria: An analysis of its status, potential environmental and ecological effects, and a call for sustainability. Aquat. Ecosyst. Health Manag. 2022, 25, 37–52. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; d’Orbcastel, E.R.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Rakocy, J. Tank Culture of Tilapia; Division of Agricultural Sciences and Natural Resources, Oklahoma State University: Stillwater, OK, USA, 1990. [Google Scholar]
- Chandra Mal, B. Raceways and Tanks; Elsevier: Amsterdam, The Netherlands, 2021; pp. 239–268. [Google Scholar] [CrossRef]
- McLean, E. Fish tank color: An overview. Aquaculture 2021, 530, 735750. [Google Scholar] [CrossRef]
- Losordo, T.; Delong, D.; Guerdat, T. 31—Advances in technology and practice for land-based aquaculture systems: Tank-based recirculating systems for finfish production. In New Technologies in Aquaculture; Burnell, G., Allan, G., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 945–983. [Google Scholar]
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2897–2912. [Google Scholar] [CrossRef]
- Boyd, C.E. Handbook for Aquaculture Water Quality; USDA: Washington, DC, USA, 2014; 454p. [Google Scholar]
- Diana, J.S. Aquaculture Production and Biodiversity Conservation. BioScience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Boyd, C.E. Chapter 6—General Relationship Between Water Quality and Aquaculture Performance in Ponds. In Fish Diseases; Jeney, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 147–166. [Google Scholar]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Bui, S.; Skern-Mauritzen, R.; Saito, T.; Thompson, C. Optimising delousing strategies: Developing best practice recommendations for maximal efficacy and positive welfare—Final Report. Rapp. Fra Havforskningen 2023, 5–40. [Google Scholar]
- Zhang, G.; Zhang, Q.; Shang, K. Eco-Engineering Technologies and Achievements of Projects for Reconstructing Landscape Water from Aquaculture Ponds in Shanghai. Water 2023, 15, 2881. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Chopin, T. Cage Aquaculture. Third Edition. By Malcolm C M Beveridge. Ames (Iowa): Blackwell Publishing Professional. $114.99 (paper). viii + 368 p; ill.; index. ISBN: 1–4051–0842–8. 2004. Q. Rev. Biol. 2006, 81, 77. [Google Scholar] [CrossRef]
- Johansen, L.-H.; Jensen, I.; Mikkelsen, H.; Bjørn, P.-A.; Jansen, P.A.; Bergh, Ø. Disease interaction and pathogens exchange between wild and farmed fish populations with special reference to Norway. Aquaculture 2011, 315, 167–186. [Google Scholar] [CrossRef]
- Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture Systems. In Aquaculture Production Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 245–277. [Google Scholar]
- FAO. Fisheries and Aquaculture Department—Culture of Fish in Rice Fields. Available online: https://www.fao.org/4/a0823e/a0823e00.htm (accessed on 5 April 2025).
- Berg, H. Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—Economic and ecological considerations. Ecol. Econ. 2002, 41, 95–107. [Google Scholar] [CrossRef]
- Kundu, P.; Mallick, U.K. Modeling the Analysis for the Exploitation of Fertilizers and Pesticides on Rice Production in Bangladesh. Org. Farming 2024, 10, 13–42. [Google Scholar] [CrossRef]
- Little, D.; Edwards, P. Integrated Livestock Fish Farming Systems; Food & Agriculture Org.: Rome, Italy, 2003; Available online: https://www.researchgate.net/publication/259999240_Integrated_Livestock_Fish_Farming_Systems (accessed on 5 April 2025).
- Bondad-Reantaso, M.G.; Subasinghe, R.P.; Arthur, J.R.; Ogawa, K.; Chinabut, S.; Adlard, R.; Tan, Z.; Shariff, M. Disease and health management in Asian aquaculture. Vet. Parasitol. 2005, 132, 249–272. [Google Scholar] [CrossRef]
- Hao, Y.; Ding, K.; Xu, Y.; Tang, Y.; Liu, D.; Li, G. States, Trends, and Future of Aquaponics Research. Sustainability 2020, 12, 7783. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Hammer, H.S. Recirculating Aquaculture Systems (RAS) for Zebrafish Culture. In The Zebrafish in Biomedical Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–356. [Google Scholar]
- Holan, A.B.; Good, C.; Powell, M.D. Health management in recirculating aquaculture systems (RAS). In Aquaculture Health Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–318. [Google Scholar]
- Ruiz, P.; Vidal, J.M.; Sepúlveda, D.; Torres, C.; Villouta, G.; Carrasco, C.; Aguilera, F.; Ruiz-Tagle, N.; Urrutia, H. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. Rev. Aquac. 2020, 12, 1478–1494. [Google Scholar] [CrossRef]
- Aubakirova, K.; Satkanov, M.; Kulataeva, M.; Assylbekova, G.; Kambarbekova, A.; Alikulov, Z. Molybdoenzymes isolated from S. glanis liver can produce nitric oxide from nitrates and nitrites. Czech J. Anim. Sci. 2023, 68, 222–230. [Google Scholar]
- Whangchai, N.; Klahan, R.; Balakrishnan, D.; Unpaprom, Y.; Ramaraj, R.; Pimpimol, T. Development of aeration devices and feeding frequencies for oxygen concentration improvement in 60-tones freshwater recirculating aquaculture and biofloc ponds of Asian seabass (Lates calcarifer) rearing. Chemosphere 2022, 307, 135761. [Google Scholar] [CrossRef]
- Bögner, D.; Bögner, M.; Schmachtl, F.; Bill, N.; Halfer, J.; Slater, M.J. Hydrogen peroxide oxygenation and disinfection capacity in recirculating aquaculture systems. Aquac. Eng. 2021, 92, 102140. [Google Scholar] [CrossRef]
- Dahle, S.W.; Attramadal, K.J.K.; Vadstein, O.; Hestdahl, H.I.; Bakke, I. Disease and health management in Asian aquaculture. Aquaculture 2022, 546, 737382. [Google Scholar] [CrossRef]
- Moreno-Andrés, J.; Rueda-Márquez, J.J.; Homola, T.; Vielma, J.; Moríñigo, M.Á.; Mikola, A.; Sillanpää, M.; Acevedo-Merino, A.; Nebot, E.; Levchuk, I. A comparison of photolytic, photochemical and photocatalytic processes for disinfection of recirculation aquaculture systems (RAS) streams. Water Res. 2020, 181, 115928. [Google Scholar] [CrossRef] [PubMed]
- pH in Fish Farming|Yokogawa America. Available online: https://www.yokogawa.com/us/library/resources/application-notes/ph-in-fish-farming/ (accessed on 5 April 2025).
- Bögner, D.; Schmachtl, F.; Mayr, B.; Franz, C.P.; Strieben, S.; Jaehne, G.; Lorkowski, K.; Slater, M.J. Sludge Pre-Treatment through Ozone Application: Alternative Sludge Reuse Possibilities for Recirculating Aquaculture System Optimization. Ozone: Sci. Eng. 2019, 41, 105–117. [Google Scholar] [CrossRef]
- Joseph, T.; Naik, S.; Shaikh, A.; Pereira, W.; Ingle, B.; Rao, Y.S. Aquaculture Monitoring and Feedback System. In Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 16–18 December 2019; pp. 326–330. [Google Scholar]
- Cordova-Rozas, M.; Aucapuri-Lecarnaque, J.; Shiguihara-Juárez, P. A Cloud Monitoring System for Aquaculture using IoT. In Proceedings of the 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON), Lima, Peru, 13–15 November 2019; pp. 1–4. [Google Scholar]
- CSong, X.; Liu, Y.; Pettersen, J.B.; Brandão, M.; Ma, X.; Røberg, S.; Frostell, B. Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. J. Ind. Ecol. 2019, 23, 1077–1086. [Google Scholar] [CrossRef]
- Sherry, J.; Koester, J. Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon (Salmo salar). Sustainability 2020, 12, 6079. [Google Scholar] [CrossRef]
- Lal, J.; Vaishnav, A.; Deb, S.; Kashyap, S.; Debbarma, P.; Devati; Gautam, P.; Pavankalyan, M.; Kumari, K.; Verma, D.K. Re-Circulatory Aquaculture Systems: A Pathway to Sustainable Fish Farming. Arch. Curr. Res. Int. 2024, 24, 799–810. [Google Scholar] [CrossRef]
- Gao, X.; Zhai, H.; Peng, Z.; Yu, J.; Yan, L.; Wang, W.; Ren, T.; Han, Y. Comparison of nutritional quality, flesh quality, muscle cellularity, and expression of muscle growth-related genes between wild and recirculating aquaculture system (RAS)-farmed black rockfish (Sebastes schlegelii). Aquacult Int. 2023, 31, 2263–2280. [Google Scholar] [CrossRef]
- Chatzoglou, E.; Kechagia, P.; Tsopelakos, A.; Miliou, H. Co-culture of Ulva sp. and Dicentrarchus labrax in Recirculating Aquaculture System: Effects on growth, retention of nutrients and fatty acid profile. Aquat. Living Resour. 2020, 33, 19. [Google Scholar] [CrossRef]
- Stejskal, V.; Matousek, J.; Podhorec, P.; Prokesova, M.; Zajic, T.; Mraz, J. The Effect of Culture System on Proximate Composition and Amino and Fatty Acid Profiles of Peled Coregonus peled Fillets. J. Aquat. Food Prod. Technol. 2019, 28, 933–943. [Google Scholar] [CrossRef]
- Barbosa, V.; Maulvault, A.L.; Anacleto, P.; Santos, M.; Mai, M.; Oliveira, H.; Delgado, I.; Coelho, I.; Barata, M.; Araújo-Luna, R.; et al. Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) fillets elemental nutritional value. Food Chem. Toxicol. 2020, 140, 111330. [Google Scholar] [CrossRef]
- François, N.R.L.; Jobling, M.; Carter, C. Finfish Aquaculture Diversification; CABI: Wallingford, UK, 2010; 703p. [Google Scholar]
- Chakroff, M. Freshwater Fish Pond Culture and Management; The Corps: Quantico, VA, USA, 1984. [Google Scholar]
- Boyd, C.E. Pond Bottom Soil Analyses. In Bottom Soils, Sediment, and Pond Aquaculture; Springer US: Boston, MA, USA, 1995; pp. 304–340. [Google Scholar]
- Hasibuan, S.; Syafriadiman, S.; Aryani, N.; Fadhli, M.; Hasibuan, M. The age and quality of pond bottom soil affect water quality and production of Pangasius hypophthalmus in the tropical environment. Aquac. Fish. 2023, 8, 296–304. [Google Scholar] [CrossRef]
- Boyd, C.E. Bottom Soils, Sediment, and Pond Aquaculture; Springer Science & Business Media: Berlin, Germany, 2012; 366p. [Google Scholar]
- Boyd, C.E. Water Quality Management for Pond Fish Culture; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982; 524p. [Google Scholar]
- Eze, E.; Ajmal, T. Dissolved Oxygen Forecasting in Aquaculture: A Hybrid Model Approach. Appl. Sci. 2020, 10, 7079. [Google Scholar] [CrossRef]
- Rahman, A.; Dabrowski, J.; McCulloch, J. Dissolved oxygen prediction in prawn ponds from a group of one step predictors. Inf. Process. Agric. 2020, 7, 307–317. [Google Scholar] [CrossRef]
- Drozdz, D.; Malinska, K.; Mazurkiewicz, J.; Kacprzak, M.; Mrowiec, M.; Szczypior, A.; Postawa, P.; Stachowiak, T. Fish pond sediment from aquaculture production—Current practices and the potential for nutrient recovery: A Review. Int. Agrophysics 2020, 34, 33–41. [Google Scholar] [CrossRef]
- Dróżdż, D.; Malińska, K.; Kacprzak, M.; Mrowiec, M.; Szczypiór, A.; Postawa, P.; Stachowiak, T. Potential of Fish Pond Sediments Composts as Organic Fertilizers. Waste Biomass Valor. 2020, 11, 5151–5163. [Google Scholar] [CrossRef]
- Garrett-Walker, J.; Collier, K.J.; Daniel, A.; Hicks, B.J.; Klee, D. Design features of constructed floodplain ponds influence waterbird and fish communities in northern New Zealand. Freshw. Biol. 2020, 65, 2066–2080. [Google Scholar] [CrossRef]
- Recirculating Aquaculture Systems (RAS)—Pros and Cons—Arab World Agribusiness 2021. Available online: https://www.fanarpublishing.net/arabworldagribusiness/aquaculture-37-2/recirculating-aquaculture-systems-ras-pros-and-cons/ (accessed on 5 April 2025).
- Ghamkhar, R.; Boxman, S.E.; Main, K.L.; Zhang, Q.; Trotz, M.A.; Hicks, A. Life cycle assessment of aquaculture systems: Does burden shifting occur with an increase in production intensity? Aquac. Eng. 2021, 92, 102130. [Google Scholar] [CrossRef]
- Grigorakis, K.; Rigos, G. Aquaculture effects on environmental and public welfare—The case of Mediterranean mariculture. Chemosphere 2011, 85, 899–919. [Google Scholar] [CrossRef]
- Tidwell, J.H. Functions and Characteristics of All Aquaculture Systems. In Aquaculture Production Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 51–63. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin, Germany, 1998; 732p. [Google Scholar]
- Colt, J.; Schuur, A.M.; Weaver, D.; Semmens, K. Engineering Design of Aquaponics Systems. Rev. Fish. Sci. Aquac. 2022, 30, 33–80. [Google Scholar] [CrossRef]
- Turkmen, G.; Güner, Y. Aquaponic (Integrating Fish and Plant Culture) Systems. In International Symposium on Sustainable Development, Science Book; Wiley: London, UK, 2000; pp. 657–666. [Google Scholar]
- Thakur, K.; Kuthiala, T.; Singh, G.; Arya, S.K.; Iwai, C.B.; Ravindran, B.; Khoo, K.S.; Chang, S.W.; Awasthi, M.K. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. Chemosphere 2023, 316, 137849. [Google Scholar] [CrossRef]
- Hagopian, D.S.; Riley, J.G. A closer look at the bacteriology of nitrification. Aquac. Eng. 1998, 18, 223–244. [Google Scholar] [CrossRef]
- Kasozi, N.; Abraham, B.; Kaiser, H.; Wilhelmi, B. The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Ann. Microbiol. 2021, 71, 1–13. [Google Scholar] [CrossRef]
- Satkanov, M.; Tazhibay, D.; Zhumabekova, B.; Assylbekova, G.; Abdukarimov, N.; Nurbekova, Z.; Kulatayeva, M.; Aubakirova, K.; Alikulov, Z. Method for assessing the content of molybdenum enzymes in the internal organs of fish. MethodsX 2024, 12, 102576. [Google Scholar] [CrossRef]
- Supriadi, O.; Sunardi, A.; Baskara, H.A.; Safei, A. Controlling pH and temperature aquaponics use proportional control with Arduino and Raspberry. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 550, p. 012016. [Google Scholar] [CrossRef]
- Gosh, K.; Chowdhury, S. Review of aquaponics system: Searching for a technically feasible and economically profitable aquaponics system. J. Agric. Environ. Consum. Sci. 2019, 19, 5–13. [Google Scholar]
- Aitlessov, K.; Zhumabekova, B.; Sagyndykov, U.; Tuyakbayeva, A.; Bitkeyeva, A.; Bazarbaeva, K.Z.; Mukhtarov, A.; Nurbekova, Z.; Satkanov, M.; Kulatayeva, M.; et al. Foliar Fertilization with Molybdate and Nitrate Up-Regulated Activity of Nitrate Reductase in Lemon Balm Leaves. Horticulturae 2023, 9, 325. [Google Scholar] [CrossRef]
- Vasdravanidis, C.; Alvanou, M.V.; Lattos, A.; Papadopoulos, D.K.; Chatzigeorgiou, I.; Ravani, M.; Liantas, G.; Georgoulis, I.; Feidantsis, K.; Ntinas, G.K.; et al. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals 2022, 12, 2523. [Google Scholar] [CrossRef] [PubMed]
- NDCs, F.F. Implementing Sustainable Aquaculture Management Systems. Available online: https://foodforwardndcs.panda.org/food-production/implementing-sustainable-aquaculture-management-systems/ (accessed on 5 April 2025).
- Robaina, L.; Pirhonen, J.; Mente, E.; Sánchez, J.; Goosen, N. Fish diets in aquaponics. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; SpringerLink: Berlin/Heidelberg, Germany, 2019; Available online: https://link.springer.com/chapter/10.1007/978-3-030-15943-6_13 (accessed on 5 April 2025).
- Eck, M.; Körner, O.; Jijakli, M.H. Nutrient Cycling in Aquaponics Systems. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 231–246. [Google Scholar]
- Shaw, C.; Knopf, K.; Kloas, W. Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems. Sustainability 2022, 14, 4064. [Google Scholar] [CrossRef]
- Jones, J.J.; Shaw, C.; Chen, T.W.; Staß, C.M.; Ulrichs, C.; Riewe, D.; Kloas, W.; Geilfus, C.M. Plant nutritional value of aquaculture water produced by feeding Nile tilapia (Oreochromis niloticus) alternative protein diets: A lettuce and basil case study. Plants People Planet. 2024, 6, 362–380. [Google Scholar] [CrossRef]
- What Is Aquaponics and How Does It Work?—Go Green Aquaponics. Available online: https://gogreenaquaponics.com/blogs/news/what-is-aquaponics-and-how-does-it-work (accessed on 5 April 2025).
- Chu, Y.I.; Wang, C.M.; Park, J.C.; Lader, P.F. Review of cage and containment tank designs for offshore fish farming. Aquaculture 2020, 519, 734928. [Google Scholar] [CrossRef]
- Lounas, R.; Kasmi, H.; Chernai, S.; Nadia Amarni; Ghebriout, L.; Meslem-Haoui, N.; Hamdi, B. Towards Sustainable Mariculture: Some Global Trends. Thalassas 2020, 36, 447–456. [Google Scholar] [CrossRef]
- Wang, X.; Cuthbertson, A.; Gualtieri, C.; Shao, D. A Review on Mariculture Effluent: Characterization and Management Tools. Water 2020, 12, 2991. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Q.; Liu, J.; Xiao, J.; Xu, G. Pollution Control of Industrial Mariculture Wastewater: A Mini-Review. Water 2022, 14, 1390. [Google Scholar] [CrossRef]
- Bannister, J.; Sievers, M.; Bush, F.; Bloecher, N. Biofouling in marine aquaculture: A review of recent research and developments. Biofouling 2019, 35, 631–648. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.M.; Davidson, I.C.; Bucknall, B.G.; Atalah, J. Salmon farm biofouling and potential health impacts to fish from stinging cnidarians. Aquaculture 2023, 568, 739315. [Google Scholar] [CrossRef]
- Pleadin, J.; Lesic, T.; Kresic, G.; Baric, R.; Bogdanovic, T.; Oraic, D.; Vulic, A.; Legac, A.; Zrncic, S. Nutritional Quality of Different Fish Species Farmed in the Adriatic Sea. Ital. J. Food Sci. 2017, 29, 537–549. [Google Scholar] [CrossRef]
- Cerezo-Valverde, J.; Martínez-Llorens, S.; Tomas-Vidal, A.; Jover, M.; Rodríguez, C.; Estefanell, J.; Gairín, J.I.; Rodrigues-dos-Santos-Domingues, P.M.; Rodríguez, C.; García-García, B. Amino acids composition and protein quality evaluation of marine species and meals for feed formulations in cephalopods. Aquac. Int. 2013, 21, 413–433. [Google Scholar] [CrossRef]
- Lund, E.K. Health benefits of seafood; is it just the fatty acids? Food Chem. 2013, 140, 413–420. [Google Scholar] [CrossRef]
- Thilsted, S.H.; Thorne-Lyman, A.; Webb, P.; Bogard, J.R.; Subasinghe, R.; Phillips, M.J.; Allison, E.H. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 2016, 61, 126–131. [Google Scholar] [CrossRef]
- Orban, E.; Sinesio, F.; Paoletti, F.; Casini, N.S.; Caproni, R.; Moneta, E. Caratteristiche nutrizionali ed organolettiche di orate (Sparus aurata) da acquacoltura: Un esempio di come le differenti tecniche di allevamento possono influenzare la qualità del pesce. Riv. Sci. Aliment. 1996, 25, 27–36. [Google Scholar]
- Oliva-Teles, A. Nutrition and health of aquaculture fish. J. Fish. Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, X.; Wang, W.; Liu, J. Comparison of proximate composition, amino acid and fatty acid profiles in wild, pond- and cage-cultured longsnout catfish (Leiocassis longirostris). Int. J. Food Sci. Technol. 2012, 47, 1772–1776. [Google Scholar] [CrossRef]
- Suarez-Mahecha, H.; de Francisco, A.; Beirão, L.H. Importância de ácidos graxos poliinsaturados presentes em peixes de cultivo e de ambiente natural para a nutrição humana. Bol. Inst. Pesca 2002, 28, 101–110. [Google Scholar]
- Calderini, M.L.; Stevčić, Č.; Taipale, S.; Pulkkinen, K. Filtration of Nordic recirculating aquaculture system wastewater: Effects on microalgal growth, nutrient removal, and nutritional value. Algal Res. 2021, 60, 102486. [Google Scholar] [CrossRef]
- Nozzi, V.; Parisi, G.; Di Crescenzo, D.; Giordano, M.; Carnevali, O. Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. cicla Farmed in Freshwater and Saltwater Aquaponic Systems. Water 2016, 8, 423. [Google Scholar] [CrossRef]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. In Proceedings of the South Pacific Soilless Culture Conference-SPSCC 648, Palmerston North, New Zealand, 10–13 February 2003; pp. 63–69. [Google Scholar] [CrossRef]
- Gebauer, R.; Brügmann, A.; Folorunso, E.A.; Goldhammer, T.; Gebauer, T.; Schöning, V.; Bittmann, S.; Knopf, K.; Mráz, J.; Kloas, W. Species- and diet-specific aquaculture wastewater nutrient profile: Implications for aquaponics and development of sustainable aquaponics diet. Aquaculture 2023, 568, 739307. [Google Scholar] [CrossRef]
- Beem, M.; Rakocy, J.; Masser, M.; Losordo, T. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture—Oklahoma State University. Available online: https://extension.okstate.edu/fact-sheets/recirculating-aquaculture-tank-production-systems-aquaponics-integrating-fish-and-plant-culture.html (accessed on 24 May 2024).
- Glencross, B.D. A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquac. Nutr. 2020, 6, 1871–1883. [Google Scholar] [CrossRef]
- Mente, E.; Stratakos, A.; Boziaris, I.S.; Kormas, K.A.; Karalazos, V.; Karapanagiotidis, I.T.; Catsiki, V.A.; Leondiadis, L. The effect of organic and conventional production methods on sea bream growth, health and body composition: A field experiment. Sci. Mar. 2022, 76, 549–560. [Google Scholar] [CrossRef]
- Timmerhaus, G.; Lazado, C.C.; Cabillon, N.A.R.; Reiten, B.K.M.; Johansen, L.-H. The optimum velocity for Atlantic salmon post-smolts in RAS is a compromise between muscle growth and fish welfare. Aquaculture 2021, 532, 736076. [Google Scholar] [CrossRef]
- Hardy, R.W. 13—Alternative marine sources of fish feed and farmed fish quality. In Improving Farmed Fish Quality and Safety; Lie, Ø., Ed.; Woodhead Publishing: Sawston, UK, 2008; pp. 328–342. [Google Scholar]
- Monti, G.; De Napoli, L.; Mainolfi, P.; Barone, R.; Guida, M.; Marino, G.; Amoresano, A. Monitoring Food Quality by Microfluidic Electrophoresis, Gas Chromatography, and Mass Spectrometry Techniques: Effects of Aquaculture on the Sea Bass (Dicentrarchus labrax). Anal. Chem. Soc. 2005, 77, 2587–2594. [Google Scholar] [CrossRef]
- Morishita, T.; Uno, K.; Matsumoto, Y.; Takahashi, T. Comparison of the Proximate Compositions in Cultured Red Sea Bream Differing the Localities and Culture Methods, and of the Wild Fish. Nippon. Suisan Gakkaishi 1988, 54, 1965–1970. [Google Scholar] [CrossRef]
- Luchtman, D.W.; Song, C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: Findings from animal and clinical studies. Neuropharmacology 2013, 64, 550–565. [Google Scholar] [CrossRef]
- Bennett, A.; Basurto, X.; Virdin, J.; Lin, X.; Betances, S.J.; Smith, M.D.; Allison, E.H.; Best, B.A.; Brownell, K.D.; Campbell, L.M.; et al. Recognize fish as food in policy discourse and development funding. Ambio 2021, 50, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Nurdiani, R.; Prihanto, A.A.; Firdaus, M. Seafood as Source of Protein-based Functional Foods. In Encyclopedia of Marine Biotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 2987–2997. [Google Scholar]
- Hei, A. Mental Health Benefits of Fish Consumption. Clin. Schizophr. Relat. Psychoses 2020, 1, 19–225. Available online: https://www.researchgate.net/publication/343557862_Mental_Health_Benefits_of_Fish_Consumption (accessed on 5 April 2025).
- Lagouri, V. Functional Foods; BoD—Books on Demand; IntechOpen: London, UK, 2019; 139p. [Google Scholar]
- Hu, Z.; Li, R.; Xia, X.; Yu, C.; Fan, X.; Zhao, Y. A method overview in smart aquaculture. Environ. Monit. Assess. 2020, 192, 1–25. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P. Water quality monitoring in recirculating aquaculture systems. Aquac. Fish. Fish. 2023, 3, 113–131. [Google Scholar] [CrossRef]
Minerals | Functions and Properties | Highest Accumulation of Fish |
---|---|---|
Fe | Hemoglobin and myoglobin transport oxygen in the body [31] | Liver, spleen, gills, and kidneys [75] |
Ca | Support bone and teeth structure; Muscle contraction and relaxation; Facilitates nerve impulse transmission [31] | Fish bones are almost 24% in fish scales [75] |
Zn | Influence cellular metabolism; Affects immune system function; Regulates protein synthesis; Impacts regeneration [31] | Were obtained from the liver, muscle, bone, and scales of tilapia [75] |
Se | Reproduction; Thyroid hormone metabolism; DNA synthesis [31] | Fish filet [75] |
P | Essential for ATP synthesis; Supports teeth and bone development; Promotes healthy aging [3] | Fish bones [3] |
I | The biosynthesis of thyroid hormones: thyroxine and triiodothyronine [76] | Fish skin [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turlybek, N.; Nurbekova, Z.; Mukhamejanova, A.; Baimurzina, B.; Kulatayeva, M.; Aubakirova, K.M.; Alikulov, Z. Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality. Fishes 2025, 10, 206. https://doi.org/10.3390/fishes10050206
Turlybek N, Nurbekova Z, Mukhamejanova A, Baimurzina B, Kulatayeva M, Aubakirova KM, Alikulov Z. Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality. Fishes. 2025; 10(5):206. https://doi.org/10.3390/fishes10050206
Chicago/Turabian StyleTurlybek, Nafuza, Zhadyrassyn Nurbekova, Akmaral Mukhamejanova, Bayan Baimurzina, Maral Kulatayeva, Karlygash M. Aubakirova, and Zerekbay Alikulov. 2025. "Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality" Fishes 10, no. 5: 206. https://doi.org/10.3390/fishes10050206
APA StyleTurlybek, N., Nurbekova, Z., Mukhamejanova, A., Baimurzina, B., Kulatayeva, M., Aubakirova, K. M., & Alikulov, Z. (2025). Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality. Fishes, 10(5), 206. https://doi.org/10.3390/fishes10050206