Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chinese Soft-Shelled Turtle for Experimentation and Culturing Experiment Design
2.2. Measurement and Sampling
2.3. Preprocessing of Morphological and Organ Indexes Data
2.4. Nutritional Index Detection and Calculation
2.5. Statistical Analysis
3. Results
3.1. Morphological Analysis and Discriminant Function
3.2. Organ Indexes Analysis
3.3. Correlation Analysis Between Morphological and Biological Characteristics
3.4. Proximate Composition
3.5. Amino Acids
3.6. Fatty Acids
4. Discussion
4.1. Plasticity of Culturing Modes on Morphology
4.2. Plasticity of Culturing Modes on Organ Characteristics
4.3. Correlation Between Morphological and Organ Indexes
4.4. Effects of Culturing Modes on Proximate Compositions
4.5. Effects of Culturing Modes on Amino Acids
4.6. Effects of Culturing Modes on Fatty Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grenier, S.; Barre, P.; Litrico, I. Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation. Scientifica 2016, 2016, 7021701. [Google Scholar] [CrossRef] [PubMed]
- Liu, O.R.; Gaines, S.D. Environmental context dependency in species interactions. Proc. Natl. Acad. Sci. USA 2022, 119, e2118539119. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, J.C.; McGlothlin, J.W. The predictive power of genetic variation. Science 2024, 384, 622–623. [Google Scholar] [CrossRef]
- Vinton, A.C.; Gascoigne, S.J.L.; Sepil, I.; Salguero-Gómez, R. Plasticity’s role in adaptive evolution depends on environmental change components. Trends Ecol. Evol. 2022, 37, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Orkin, J.D.; Kuderna, L.F.K.; Hermosilla-Albala, N.; Fontsere, C.; Aylward, M.L.; Janiak, M.C.; Andriaholinirina, N.; Balaresque, P.; Blair, M.E.; Fausser, J.-L.; et al. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nat. Ecol. Evol. 2024, 9, 42–56. [Google Scholar] [CrossRef]
- Coelho, M.T.P.; Barreto, E.; Rangel, T.F.; Diniz-Filho, J.A.F.; Wüest, R.O.; Bach, W.; Skeels, A.; McFadden, I.R.; Roberts, D.W.; Pellissier, L.; et al. The geography of climate and the global patterns of species diversity. Nature 2023, 622, 537–544. [Google Scholar] [CrossRef]
- Liu, T.; Han, Y.; Chen, S.; Zhao, H. Global characterization and expression analysis of interferon regulatory factors in response to Aeromonas hydrophila challenge in Chinese soft-shelled turtle (Pelodiscus sinensis). Fish Shellfish Immunol. 2019, 92, 821–832. [Google Scholar] [CrossRef]
- Dong, C.M.; Engstrom, T.N.; Thomson, R.C. Origins of softshell turtles in Hawaii with implications for conservation. Conserv. Genet. 2016, 17, 207–220. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Jiang, Y.-L.; Hou, G.-J.; Cheng, Y.-S.; Chen, H.-L.; Li, X. Modern greenhouse culture of juvenile soft-shelled turtle, Pelodiscus sinensis. Aquac. Int. 2017, 25, 1607–1624. [Google Scholar] [CrossRef]
- Li, W.; Ding, H.; Zhang, F.; Zhang, T.; Liu, J.; Li, Z. Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture. Aquac. Environ. Interact. 2016, 8, 567–574. [Google Scholar] [CrossRef]
- Fernando, C.H. Rice field ecology and fish culture—An overview. Hydrobiologia 1993, 259, 91–113. [Google Scholar] [CrossRef]
- Zhang, W.-y.; Niu, C.-j.; Chen, B.-j.; Yuan, L. Antioxidant responses in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2017, 204, 9–16. [Google Scholar] [CrossRef]
- Blanchard, J.L.; Watson, R.A.; Fulton, E.A.; Cottrell, R.S.; Nash, K.L.; Bryndum-Buchholz, A.; Büchner, M.; Carozza, D.A.; Cheung, W.W.L.; Elliott, J.; et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 2017, 1, 1240–1249. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, P.; Xue, M.; Xiao, Z.; Zhang, M.; Meng, Y.; Fan, Y.; Qiu, J.; Zhang, Q.; Zhou, Y. Variations in the Intestinal Microbiota of the Chinese Soft-Shelled Turtle (Trionyx sinensis) between Greenhouse and Pond Aquaculture. Animals 2023, 13, 2971. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zou, Y.; Chen, H.; Xu, J.; Liang, Z.; Xu, H. Effects of stocking density of Chinese soft-shelled turtle and interactions between cultivated species on growth performance and the environment in a turtle–rice coculture system. J. World Aquac. Soc. 2020, 51, 788–803. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Ren, W.; Guo, L.; Tang, J.; Shu, M.; Chen, X. Rice-soft shell turtle coculture effects on yield and its environment. Agric. Ecosyst. Environ. 2016, 224, 116–122. [Google Scholar] [CrossRef]
- Wang, F.; Lai, N.; Cheng, H.; Wu, H.; Liang, F.; Ye, T.; Lin, L.; Jiang, S.; Lu, J. Comparative analysis of the nutritional quality and volatile flavor constituents in the muscle of Chinese soft-shelled turtle from three different environments. Food Ferment. Ind. 2019, 45, 253–261. [Google Scholar] [CrossRef]
- Qu, T.; Shen, T.; Mu, E.; Li, Y.; Zhu, W.; Zheng, W.Z. Effects of Overwintering on the Morphological Characteristics of Trionyx Sinensis in Pond Culture Mode. Oceanol. Et Limnol. Sin. 2022, 81, 654–663. [Google Scholar]
- Wu, B.; Huang, L.; Wu, C.; Chen, J.; Chen, X.; He, J. Comparative Analysis of the Growth, Physiological Responses, and Gene Expression of Chinese Soft-Shelled Turtles Cultured in Different Modes. Animals 2024, 14, 962. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC INTERNATIONAL; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-761013-8. [Google Scholar]
- WHO; FAO. Energy and Protein Requirements: Report of a Joint FAO/WHO Ad Hoc Expert Committee; WHO: Geneva, Switzerland; FAO: Rome, Italy, 1973; Available online: https://iris.who.int/bitstream/handle/10665/41042/WHO_TRS_522_eng.pdf (accessed on 17 February 2025).
- Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Bertossa, R.C. Morphology and behaviour: Functional links in development and evolution. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2011, 366, 2056–2068. [Google Scholar] [CrossRef]
- Stevens, M.; Ruxton, G.D. The key role of behaviour in animal camouflage. Biol. Rev. 2019, 94, 116–134. [Google Scholar] [CrossRef]
- Harino, H.; Ohji, M.; Wattayakorn, G.; Adulyanukosol, K.; Arai, T.; Miyazaki, N. Accumulation of Organotin Compounds in Tissues and Organs of Stranded Whales Along the Coasts of Thailand. Arch. Environ. Contam. Toxicol. 2007, 53, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Lyson, T.R.; Bever, G.S.; Scheyer, T.M.; Hsiang, A.Y.; Gauthier, J.A. Evolutionary Origin of the Turtle Shell. Curr. Biol. 2013, 23, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr. Comp. Biol. 2008, 48, 769–787. [Google Scholar] [CrossRef] [PubMed]
- Schoch, R.R.; Sues, H.-D. The origin of the turtle body plan: Evidence from fossils and embryos. Palaeontology 2020, 63, 375–393. [Google Scholar] [CrossRef]
- Stayton, C.T. Biomechanics on the half shell: Functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology 2011, 114, 213–223. [Google Scholar] [CrossRef]
- Domokos, G.; Várkonyi, P.L. Geometry and self-righting of turtles. Proc. R. Soc. B Biol. Sci. 2007, 275, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Dosik, M.; Stayton, T. Size, Shape, and Stress in Tortoise Shell Evolution. Herpetologica 2016, 72, 309–317. [Google Scholar] [CrossRef]
- Xiao, F.; Lin, Z.; Wang, J.; Shi, H.-T. Shell shape-habitat correlations in extant turtles: A global-scale analysis. Glob. Ecol. Conserv. 2023, 46, e02543. [Google Scholar] [CrossRef]
- Melville, J.; Swain, R. Evolutionary relationships between morphology, performance and habitat openness in the lizard genusNiveoscincus (Scincidae: Lygosominae). Biol. J. Linn. Soc. 2000, 70, 667–683. [Google Scholar] [CrossRef]
- Smith, G.R. Habitat Use and Its Effect on Body Size Distribution in a Population of the Tree Lizard, Urosaurus ornatus. J. Herpetol. 1996, 30, 528–530. [Google Scholar] [CrossRef]
- Fischer, V.; Benson, R.B.J.; Zverkov, N.G.; Soul, L.C.; Arkhangelsky, M.S.; Lambert, O.; Stenshin, I.M.; Uspensky, G.N.; Druckenmiller, P.S. Plasticity and Convergence in the Evolution of Short-Necked Plesiosaurs. Curr. Biol. 2017, 27, 1667–1676.e1663. [Google Scholar] [CrossRef] [PubMed]
- Rieppel, O. Feeding mechanics in Triassic stem-group sauropterygians: The anatomy of a successful invasion of Mesozoic seas. Zool. J. Linn. Soc. 2002, 135, 33–63. [Google Scholar] [CrossRef]
- Larsson, M.L. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. Front. Ecol. Evol. 2015, 3, 89. [Google Scholar] [CrossRef]
- Li, H.-h.; Pan, Y.-x.; Liu, L.; Li, Y.-l.; Huang, X.-q.; Zhong, Y.-w.; Tang, T.; Zhang, J.-s.; Chu, W.-y.; Shen, Y.-d. Effects of high-fat diet on muscle textural properties, antioxidant status and autophagy of Chinese soft-shelled turtle (Pelodiscus sinensis). Aquaculture 2019, 511, 734228. [Google Scholar] [CrossRef]
- Ge, Y.; Yao, S.; Shi, Y.; Cai, C.; Wang, C.; Wu, P.; Cao, X.; Ye, Y. Effects of Low or High Dosages of Dietary Sodium Butyrate on the Growth and Health of the Liver and Intestine of Largemouth Bass, Micropterus salmoides. Aquac. Nutr. 2022, 2022, 6173245. [Google Scholar] [CrossRef]
- Du, Z.Y.; Clouet, P.; Huang, L.M.; Degrace, P.; Zheng, W.H.; He, J.G.; Tian, L.X.; Liu, Y.J. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): Mechanism related to hepatic fatty acid oxidation. Aquac. Nutr. 2008, 14, 77–92. [Google Scholar] [CrossRef]
- Vincent, H.K.; Mathews, A. Obesity and Mobility in Advancing Age: Mechanisms and Interventions to Preserve Independent Mobility. Curr. Obes. Rep. 2013, 2, 275–283. [Google Scholar] [CrossRef]
- Snively, E.; O’Brien, H.; Henderson, D.M.; Mallison, H.; Surring, L.A.; Burns, M.E.; Holtz, T.R., Jr.; Russell, A.P.; Witmer, L.M.; Currie, P.J.; et al. Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods. PeerJ 2019, 7, e6432. [Google Scholar] [CrossRef]
- Pond, C.M. Morphological Aspects and the Ecological and Mechanical Consequences of Fat Deposition in Wild Vertebrates. Annu. Rev. Ecol. Evol. Syst. 1978, 9, 519–570. [Google Scholar] [CrossRef]
- Radchuk, V.; Reed, T.; Teplitsky, C.; van de Pol, M.; Charmantier, A.; Hassall, C.; Adamík, P.; Adriaensen, F.; Ahola, M.P.; Arcese, P.; et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 2019, 10, 3109. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Hetlelid, K.J.; Plews, D.J.; Herold, E.; Laursen, P.B.; Seiler, S. Rethinking the role of fat oxidation: Substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc. Med. 2015, 1, e000047. [Google Scholar] [CrossRef]
- Anderson, P.H.; Atkins, G.J.; Turner, A.G.; Kogawa, M.; Findlay, D.M.; Morris, H.A. Vitamin D metabolism within bone cells: Effects on bone structure and strength. Mol. Cell. Endocrinol. 2011, 347, 42–47. [Google Scholar] [CrossRef]
- Neville, J.J.; Palmieri, T.; Young, A.R. Physical Determinants of Vitamin D Photosynthesis: A Review. JBMR Plus 2021, 5, e10460. [Google Scholar] [CrossRef]
- Chou, S.J.; Huang, C.H. Ultraviolet Influences Growth, Tissue Vitamin D Status, and Carapace Strength of Chinese Soft-Shelled Turtle, Pelodiscus sinensis. Fish. Soc. Taiwan 2013, 40, 71–77. [Google Scholar]
- Benedetti, M.G.; Furlini, G.; Zati, A.; Letizia Mauro, G. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. Biochem. Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef]
- Long, Y.-F.; Chow, S.K.-H.; Cui, C.; Wong, R.M.Y.; Zhang, N.; Qin, L.; Law, S.-W.; Cheung, W.-H. Does exercise influence skeletal muscle by modulating mitochondrial functions via regulating MicroRNAs? A systematic review. Ageing Res. Rev. 2023, 91, 102048. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.S.; Krause, C.; Lilje, K.E. Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology 2010, 113, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.P.; Bels, V. Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 131, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.L.; Higham, T.E. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J. Exp. Biol. 2012, 215, 2288–2300. [Google Scholar] [CrossRef]
- Mayerl, C.J.; Capano, J.G.; Moreno, A.A.; Wyneken, J.; Blob, R.W.; Brainerd, E.L. Pectoral and pelvic girdle rotations during walking and swimming in a semi-aquatic turtle: Testing functional role and constraint. J. Exp. Biol. 2019, 222, jeb212688. [Google Scholar] [CrossRef]
- Qian, G.; Zhu, Q. Effects of living space on nutrient components of Chinese softshelled turtle (Trionyx Sinensis). Acta Hydrobiol. Sin. (Chin.) 2003, 27, 217–220. [Google Scholar] [CrossRef]
- Solsona, R.; Pavlin, L.; Bernardi, H.; Sanchez, A.M. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int. J. Mol. Sci. 2021, 22, 2741. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Valencak, T.G.; Shan, T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024, 27, 109221. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Santesso, N.; Akl, E.A.; Bianchi, M.; Mente, A.; Mustafa, R.; Heels-Ansdell, D.; Schünemann, H.J. Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Leser, S. The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wu, P.; Tang, R.J.; Liu, Y.; Kuang, S.Y.; Jiang, J.; Tang, L.; Tang, W.N.; Zhang, Y.A.; Zhou, X.Q.; et al. Nutritive values, flavor amino acids, healthcare fatty acids and flesh quality improved by manganese referring to up-regulating the antioxidant capacity and signaling molecules TOR and Nrf2 in the muscle of fish. Food Res. Int. 2016, 89, 670–678. [Google Scholar] [CrossRef]
- Durante, W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019, 11, 2092. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Aspartic Acid in Health and Disease. Nutrients 2023, 15, 4023. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.A.; Begum, P.S.; Viswanath, B.; Rajagopal, S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxidative Med. Cell. Longev. 2017, 2017, 1716701. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.-W.; Hendry, A.; Kenney, L.; Bertinato, J. l-Lysine supplementation affects dietary protein quality and growth and serum amino acid concentrations in rats. Sci. Rep. 2023, 13, 19943. [Google Scholar] [CrossRef]
- Muhammad, A.; Muhammad, D.; Aatiqa, A.; Rida, Z.; Syed Muhammad Ali, S.; Naveed, M.; Imtiaz Mahmood, T. Role of Phenylalanine and Its Metabolites in Health and Neurological Disorders. In Synucleins; Andrei, S., Ed.; IntechOpen: Rijeka, Croatia, 2020; Volume 5. [Google Scholar]
- Kaspy, M.S.; Hannaian, S.J.; Bell, Z.W.; Churchward-Venne, T.A. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: An update. Nutr. Res. Rev. 2024, 37, 273–286. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Phillips, S.M. Chapter 17–Branched-Chain Amino Acids (Leucine, Isoleucine, and Valine) and Skeletal Muscle. In Nutrition and Skeletal Muscle; Walrand, S., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 283–298. [Google Scholar]
- Rappu, P.; Salo, A.M.; Myllyharju, J.; Heino, J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 2019, 63, 325–335. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ding, X.-Y.; Feng, H.; Xu, Y.-B.; Xue, H.-L.; Zhang, J.-R.; Ng, W.-K. The dietary protein requirement of a new Japanese strain of juvenile Chinese soft shell turtle, Pelodiscus sinensis. Aquaculture 2013, 412–413, 74–80. [Google Scholar] [CrossRef]
- Tian, L.; Chi, G.; Lin, S.; Ling, X.; He, N. Marine microorganisms: Natural factories for polyunsaturated fatty acid production. Blue Biotechnol. 2024, 1, 15. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods- a review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Bodkowski, R.; Szlinder-Richert, J.; Usydus, Z.; Patkowska-SokoŁa, B. An attempt of optimization of fish oil crystallization at low temperature. Przem. Chem. 2011, 90, 703–706. [Google Scholar]
- Rajaram, S. Health benefits of plant-derived α-linolenic acid123. Am. J. Clin. Nutr. 2014, 100, 443S–448S. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzyńska, M.; Kawka, A.; Górna, I.; Woźniak, D.; Przysławski, J.; Drzymała-Czyż, S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases–Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar] [CrossRef] [PubMed]
- Kousparou, C.; Fyrilla, M.; Stephanou, A.; Patrikios, I. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as Bioactive Molecules in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 10717. [Google Scholar] [CrossRef] [PubMed]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits–A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Banic, M.; van Dijk, M.; Dijk, F.J.; Furber, M.J.W.; Witard, O.C.; Donker, N.; Becker, M.J.A.; Galloway, S.D.; Rodriguez-Sanchez, N. Dose-dependency of a combined EPA:DHA mixture on incorporation, washout, and protein synthesis in C2C12 myotubes. Prostaglandins Leukot. Essent. Fat. Acids 2024, 203, 102651. [Google Scholar] [CrossRef]
- van Goor, S.A.; Janneke Dijck-Brouwer, D.A.; Doornbos, B.; Erwich, J.J.H.M.; Schaafsma, A.; Muskiet, F.A.J.; Hadders-Algra, M. Supplementation of DHA but not DHA with arachidonic acid during pregnancy and lactation influences general movement quality in 12-week-old term infants. Br. J. Nutr. 2010, 103, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Minihane, A.M.; Saleh, R.N.M.; Risérus, U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: Nutritional implications for cardiometabolic diseases. Lancet. Diabetes Endocrinol. 2020, 8, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, Y.; Zhang, B.; Li, D.; Yan, J.; Yang, J.; Sun, J.; Cao, H.; Wang, Y.; Zhang, F. Effects of different n-6/n-3 polyunsaturated fatty acids ratios on lipid metabolism in patients with hyperlipidemia: A randomized controlled clinical trial. Front. Nutr. 2023, 10, 1166702. [Google Scholar] [CrossRef]
- Liang, H.; Tong, M.; Cao, L.; Li, X.; Li, Z.; Zou, G. Amino Acid and Fatty Acid Composition of Three Strains of Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Pak. J. Zool. 2018, 50, 1061–1069. [Google Scholar] [CrossRef]
Morphological Proportions | Code | Groups | ||
---|---|---|---|---|
R | P | G | ||
Proboscis breadth/back carapace length, PRB/BCL | x1 | 0.040 ± 0.005 | 0.038 ± 0.003 | 0.040 ± 0.006 |
Proboscis length/back carapace length, PRL/BCL | x2 | 0.026 ± 0.005 | 0.030 ± 0.004 | 0.025 ± 0.004 |
Snout length/back carapace length, SL/BCL | x3 | 0.034 ± 0.007 | 0.039 ± 0.006 | 0.035 ± 0.008 |
Head breadth/back carapace length, HB/BCL | x4 | 0.169 ± 0.005 | 0.171 ± 0.006 | 0.178 ± 0.009 |
Head height/back carapace length, HH/BCL | x5 | 0.144 ± 0.008 | 0.146 ± 0.008 | 0.143 ± 0.008 |
Interocular distance/back carapace length, ID/BCL | x6 | 0.031 ± 0.002 a | 0.032 ± 0.002 a | 0.035 ± 0.002 b |
Head length/back carapace length, HL/BCL | x7 | 0.342 ± 0.022 | 0.354 ± 0.030 | 0.343 ± 0.036 |
Neck length/back carapace length, NL/BCL | x8 | 0.491 ± 0.055 b | 0.474 ± 0.053 a | 0.470 ± 0.033 a |
Neck breadth/back carapace length, NB/BCL | x9 | 0.143 ± 0.008 a | 0.152 ± 0.011 b | 0.151 ± 0.010 b |
Body length/back carapace length, BL/BCL | x10 | 1.860 ± 0.056 b | 1.829 ± 0.058 b | 1.786 ± 0.055 a |
Back carapace breadth/back carapace length, BCB/BCL | x11 | 0.892 ± 0.015 | 0.883 ± 0.018 | 0.881 ± 0.032 |
Plastron length/back carapace length, PL/BCL | x12 | 0.785 ± 0.018 a | 0.793 ± 0.018 ab | 0.804 ± 0.021 b |
Plastron breadth/back carapace length, PB/BCL | x13 | 0.860 ± 0.017 b | 0.832 ± 0.034 a | 0.827 ± 0.021 a |
Plastron concave breadth/back carapace length, PCB/BCL | x14 | 0.377 ± 0.014 b | 0.367 ± 0.014 a | 0.369 ± 0.013 a |
Calipash breadth/back carapace length, CB/BCL | x15 | 0.144 ± 0.006 b | 0.144 ± 0.008 b | 0.137 ± 0.004 a |
Calipash thickness/back carapace length, CT/BCL | x16 | 0.035 ± 0.003 | 0.035 ± 0.004 | 0.037 ± 0.004 |
Tail length/back carapace length, TL/BCL | x17 | 0.111 ± 0.010 | 0.097 ± 0.011 | 0.104 ± 0.012 |
Tail breadth/back carapace length, TB/BCL | x18 | 0.123 ± 0.015 | 0.117 ± 0.012 | 0.117 ± 0.018 |
Fore limb length/back carapace length, FLL/BCL | x19 | 0.487 ± 0.047 b | 0.493 ± 0.036 b | 0.456 ± 0.024 a |
Hind limb length/back carapace length, HLL/BCL | x20 | 0.577 ± 0.035 b | 0.594 ± 0.048 b | 0.539 ± 0.042 a |
Body height/back carapace length, BH/BCL | x21 | 0.322 ± 0.019 | 0.320 ± 0.017 | 0.316 ± 0.012 |
Back carapace perimeter/back carapace length, BCP/BCL | x22 | 3.046 ± 0.189 a | 3.094 ± 0.166 a | 3.725 ± 0.210 b |
Organ Proportions | Groups | ||
---|---|---|---|
R | P | G | |
Visceral index, VW/BW | 16.079 ± 1.663 a | 15.413 ± 1.402 a | 17.787 ± 1.023 b |
Liver index, LW/BW | 3.022 ± 0.451 a | 3.686 ± 0.161 b | 4.398 ± 0.283 c |
Internal fat lump index, IFW/BW | 4.246 ± 0.393 a | 7.402 ± 0.809 b | 6.237 ± 0.469 c |
Back carapace index, BCW/BW | 15.991 ± 1.197 b | 15.906 ± 1.468 b | 13.548 ± 0.577 a |
Calipash index, CW/BW | 6.094 ± 0.553 b | 6.051 ± 0.908 b | 5.060 ± 0.574 a |
Edible portion index, EPW/BW | 63.581 ± 1.872 b | 62.114 ± 0.560 ab | 60.330 ± 4.430 a |
Condition factor index(a), BW/BCL3(/) | 15.787 ± 0.632 a | 15.953 ± 0.873 a | 19.176 ± 1.524 b |
Condition factor index(b), EPW/BCL3(/) | 12.518 ± 0.754 a | 12.453 ± 0.481 a | 15.345 ± 1.251 b |
Proximate Compositions | Groups | ||
---|---|---|---|
R | P | G | |
Moisture | 78.577 ± 0.066 | 78.817 ± 0.576 | 79.397 ± 0.254 |
Ash | 0.960 ± 0.036 ab | 0.910 ± 0.016 a | 1.030 ± 0.033 b |
Crude protein | 20.450 ± 0.265 b | 19.183 ± 0.127 a | 18.820 ± 0.221 a |
Crude fat | 0.713 ± 0.031 a | 0.867 ± 0.059 ab | 0.957 ± 0.114 b |
Tissue | Amino Acids | Groups | ||
---|---|---|---|---|
R | P | G | ||
Muscle | Threonine, Thr | 0.818 ± 0.005 b | 0.809 ± 0.002 b | 0.786 ± 0.009 a |
Valine, Val @ | 0.831 ± 0.012 a | 0.829 ± 0.011 a | 0.969 ± 0.021 b | |
Methionine, Met # | 0.518 ± 0.003 c | 0.491 ± 0.004 b | 0.427 ± 0.011 a | |
Isoleucine, Ile @ | 0.873 ± 0.016 b | 0.835 ± 0.007 a | 0.841 ± 0.003 a | |
Leucine, Leu #,@ | 1.446 ± 0.016 b | 1.434 ± 0.005 b | 1.391 ± 0.009 a | |
Phenylalanine, Phe # | 0.738 ± 0.006 | 0.741 ± 0.004 | 0.754 ± 0.005 | |
Lysine, Lys # | 1.732 ± 0.030 c | 1.655 ± 0.012 b | 1.580 ± 0.027 a | |
Tryptophan, Trp | 0.157 ± 0.003 c | 0.149 ± 0.002 b | 0.139 ± 0.001 a | |
∑EAAs | 7.113 ± 0.075 b | 7.083 ± 0.027 a | 6.746 ± 0.041 a | |
Histidine, His | 0.576 ± 0.019 b | 0.489 ± 0.012 a | 0.745 ± 0.017 c | |
Arginine, Arg # | 0.982 ± 0.007 b | 0.968 ± 0.007 b | 0.906 ± 0.009 a | |
Serine, Ser | 0.733 ± 0.007 | 0.718 ± 0.005 | 0.726 ± 0.007 | |
Proline, Pro | 0.706 ± 0.007 c | 0.668 ± 0.020 b | 0.504 ± 0.006 a | |
Cysteine, Cys # | 0.368 ± 0.014 c | 0.323 ± 0.008 b | 0.114 ± 0.011 a | |
Tyrosine, Tyr # | 0.609 ± 0.012 b | 0.589 ± 0.007 b | 0.453 ± 0.009 a | |
Aspartic acid, Asp #,& | 1.605 ± 0.006 b | 1.567 ± 0.009 a | 1.623 ± 0.015 b | |
Glutamic acid, Glu #,& | 2.823 ± 0.062 b | 2.783 ± 0.027 ab | 2.689 ± 0.011 a | |
Glycine, Gly #,& | 0.856 ± 0.013 a | 0.833 ± 0.007 a | 0.922 ± 0.014 b | |
Alanine, Ala & | 1.214 ± 0.014 b | 1.156 ± 0.042 b | 1.032 ± 0.031 a | |
∑NEAAs | 10.471 ± 0.077 c | 10.094 ± 0.072 b | 9.714 ± 0.005 a | |
∑TAAs | 17.584 ± 0.007 c | 17.177 ± 0.071 b | 16.460 ± 0.044 a | |
∑FAAs & | 6.497 ± 0.052 b | 6.339 ± 0.075 a | 6.266 ± 0.022 a | |
∑PAAs & | 11.676 ± 0.037 c | 11.383 ± 0.039 b | 10.858 ± 0.018 a | |
∑BCAAs @ | 3.151 ± 0.036 b | 3.239 ± 0.018 c | 3.061 ± 0.017 a | |
∑EAAs/TAAs (%) | 40.453 ± 0.431 a | 41.237 ± 0.213 b | 40.982 ± 0.141 ab | |
∑FAAs/TAAs (%) | 38.068 ± 0.151 b | 36.948 ± 0.296 a | 36.906 ± 0.353 a | |
∑PAAs/TAAs (%) | 66.402 ± 0.214 b | 66.272 ± 0.056 ab | 65.968 ± 0.074 a | |
∑EAAs/NEAAs (%) | 67.943 ± 1.219 a | 70.177 ± 0.618 b | 69.440 ± 0.404 ab | |
Calipash | Hydroxyproline, Hyp # | 16.149 ± 0.241 c | 15.653 ± 0.247 b | 14.796 ± 0.171 a |
Fatty Acid | Groups | ||
---|---|---|---|
R | P | G | |
Myristic acid, C14:0 | 1.199 ± 0.005 a | 1.780 ± 0.020 c | 1.559 ± 0.036 b |
Pentadecanoic acid, C15:0 | 0.743 ± 0.004 b | 0.818 ± 0.007 c | 0.433 ± 0.004 a |
Palmitic acid, C16:0 | 18.732 ± 0.058 b | 21.253 ± 0.143 c | 18.112 ± 0.155 a |
Heptadecanoic acid, C17:0 | 0.749 ± 0.010 c | 0.397 ± 0.007 b | 0.220 ± 0.005 a |
Stearic acid, C18:0 | 5.080 ± 0.030 b | 5.929 ± 0.039 c | 4.949 ± 0.017 a |
Eicosanoic acid, C20:0 | 0.130 ± 0.002 b | 0.125 ± 0.002 a | 0.132 ± 0.002 b |
ΣSFAs | 26.634 ± 0.074 b | 30.301 ± 0.160 c | 25.404 ± 0.172 a |
Palmitoleic acid, C16:1 | 7.200 ± 0.024 c | 6.813 ± 0.061 b | 6.521 ± 0.058 a |
Heptadecenoic acid, C17:1 | 0.467 ± 0.007 c | 0.362 ± 0.005 b | 0.270 ± 0.005 a |
Oleic acid, C18:1n-9 | 29.047 ± 0.235 a | 31.083 ± 0.105 c | 29.886 ± 0.060 b |
Eicosenoic acid, C20:1 | 7.580 ± 0.028 c | 2.963 ± 0.041 a | 3.449 ± 0.069 b |
Nervonic acid, C24:1 | 0.700 ± 0.005 a | 1.051 ± 0.008 b | 1.068 ± 0.006 c |
ΣMUFAs | 44.993 ± 0.179 c | 42.271 ± 0.186 b | 41.194 ± 0.089 a |
Linoleic acid C18:2n-6 @ | 8.076 ± 0.056 a | 9.812 ± 0.093 b | 17.700 ± 0.195 c |
Linolenic acid, C18:3n-3 # | 2.021 ± 0.021 a | 2.800 ± 0.002 b | 2.901 ± 0.007 c |
Arachidonic acid, C20:4n-6 @ | 2.637 ± 0.050 c | 0.465 ± 0.008 a | 0.656 ± 0.010 b |
Eicosapentaenoic acid (EPA), C20:5n-3 # | 6.388 ± 0.019 b | 6.179 ± 0.075 a | 6.161 ± 0.042 a |
Docosadienoic acid, C22:2 | 0.755 ± 0.005 c | 0.413 ± 0.009 b | 0.212 ± 0.012 a |
Docosahexaenoic acid (DHA), C22:6n-3 # | 7.748 ± 0.022 b | 7.884 ± 0.065 c | 6.786 ± 0.028 a |
ΣPUFAs | 27.624 ± 0.119 a | 27.553 ± 0.033 a | 34.415 ± 0.211 b |
ΣUFAs | 72.617 ± 0.063 b | 69.824 ± 0.160 a | 75.608 ± 0.165 c |
EPA+DHA | 14.135 ± 0.040 b | 14.063 ± 0.084 b | 12.947 ± 0.045 a |
n-3 # | 16.156 ± 0.059 b | 16.863 ± 0.083 c | 15.847 ± 0.038 a |
n-6 @ | 10.713 ± 0.057 b | 10.278 ± 0.087 a | 18.356 ± 0.203 c |
n-6/n-3 (/) | 0.663 ± 0.001 b | 0.610 ± 0.008 a | 1.158 ± 0.012 c |
UFAs/SFAs (/) | 2.727 ± 0.010 b | 2.304 ± 0.017 a | 2.976 ± 0.026 c |
PUFAs/SFAs (/) | 1.037 ± 0.002 b | 0.909 ± 0.004 a | 1.355 ± 0.017 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; Wang, Y.; Hu, L.; Chen, G.; Zheng, T.; Ding, X.; Bei, Y.; Tang, J.; Ma, W.; Chen, X. Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes. Fishes 2025, 10, 89. https://doi.org/10.3390/fishes10030089
Qi M, Wang Y, Hu L, Chen G, Zheng T, Ding X, Bei Y, Tang J, Ma W, Chen X. Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes. Fishes. 2025; 10(3):89. https://doi.org/10.3390/fishes10030089
Chicago/Turabian StyleQi, Ming, Yang Wang, Liangliang Hu, Guangmei Chen, Tianlun Zheng, Xueyan Ding, Yijiang Bei, Jianjun Tang, Wenjun Ma, and Xin Chen. 2025. "Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes" Fishes 10, no. 3: 89. https://doi.org/10.3390/fishes10030089
APA StyleQi, M., Wang, Y., Hu, L., Chen, G., Zheng, T., Ding, X., Bei, Y., Tang, J., Ma, W., & Chen, X. (2025). Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes. Fishes, 10(3), 89. https://doi.org/10.3390/fishes10030089