Mussel Restoration Across an Estuarine Environmental Gradient: Implications for Site Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Bed Deployments
2.3. Sampling Design
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayraktorov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef]
- Pogoda, B.; Merk, V.; Colsoul, B.; Hausen, T.; Peter, C.; Pesch, R.; Kramer, M.; Jaklin, S.; Holler, P.; Bartholomä, A.; et al. Site selection for biogenic reef restoration in offshore environments: The Natura 2000 area Borkum Reef Ground as a case study for native oyster restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 2163–2179. [Google Scholar] [CrossRef]
- Hotaling-Hagan, A.; Swett, R.; Ellis, L.R.; Frazer, T.K. A spatial model to improve site selection for seagrass restoration in shallow boating environments. J. Environ. Manag. 2017, 186, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Schill, S.R.; Asner, G.P.; McNulty, V.P.; Pollock, F.J.; Croquer, A.; Vaughn, N.R.; Escovar-Fadul, X.; Raber, G.; Shaver, E. Site selection for coral reef restoration using airborne imaging spectroscopy. Front. Mar. Sci. 2021, 8, 698004. [Google Scholar] [CrossRef]
- Brumbaugh, R.D.; Coen, L.D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: A review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J. Shellfish Res. 2009, 28, 147–161. [Google Scholar] [CrossRef]
- Dankers, N.; Zuidema, D.R. The role of the mussel (Mytilus edulis L.) and mussel culture in the Dutch Wadden Sea. Estuaries 1995, 18, 71–80. [Google Scholar] [CrossRef]
- Baer, J.; Smaal, A.; van der Reijden, K.; Nehls, G. Fisheries. In Wadden Sea Quality Status Report; Kloepper, S., Meise, K., Eds.; Common Wadden Sea Secretariat: Wilhelmshaven, Germany, 2017. [Google Scholar]
- Fariñas-Franco, J.M.; Allcock, L.; Smyth, D.; Roberts, D. Community convergence and recruitment of keystone species as performance indicators of artificial reefs. J. Sea Res. 2013, 78, 59–74. [Google Scholar] [CrossRef]
- de Paoli, H.; van de Koppel, J.; van der Zee, E.; Kangeri, A.; van Belzen, J.; Holthuijsen, S.; van den Berg, A.; Herman, P.; Olff, H.; van der Heide, T. Processes limiting mussel bed restoration in the Wadden-Sea. J. Sea Res. 2015, 103, 42–49. [Google Scholar] [CrossRef]
- Bertolini, C.; Montgomery, W.I.; O’Connor, N.E. Habitat with small inter-structural spaces promotes mussel survival and reef generation. Mar. Biol. 2018, 165, 163. [Google Scholar] [CrossRef]
- Wilcox, M.; Jeffs, A. Is attachment substrate a prerequisite for mussels to establish on soft-sediment substrate? J. Exp. Mar. Biol. Ecol. 2017, 495, 83–88. [Google Scholar] [CrossRef]
- Capelle, J.J.; Leuchter, L.; de Wit, M.; Hartog, E.; Bouma, T.J. Creating a window of opportunity for establishing ecosystem engineers by adding substratum: A case study on mussels. Ecosphere 2019, 10, e02688. [Google Scholar] [CrossRef]
- Gagnon, K.; Christie, H.; Didderen, K.; Fagerli, C.W.; Govers, L.L.; Gräfnings, M.L.E.; Heusinkveld, J.H.T.; Kaljurand, K.; Legnkeek, W.; Martin, G.; et al. Incorporating facilitative interactions into small-scale eelgrass restoration—Challenges and opportunities. Restor. Ecol. 2021, 29, e13398. [Google Scholar] [CrossRef]
- Benjamin, E.D.; Hillman, J.R.; Handley, S.J.; Toone, T.A.; Jeffs, A. The effectiveness of providing shell substrate for the restoration of adult mussel reefs. Sustainability 2022, 14, 15746. [Google Scholar] [CrossRef]
- van den Bogaart, L.A.; Schotanus, J.; Capelle, J.J.; Bouma, T.J. Using a biodegradable substrate to increase transplantation success: Effect of density and sediment on aggregation behaviour of mussels. Ecol. Eng. 2023, 196, 107096. [Google Scholar] [CrossRef]
- Capelle, J.J.; Wijsman, J.W.M.; Schellekens, T.; van Stralen, M.R.; Herman, P.M.J.; Smaal, A.C. Spatial organisation and biomass development after relaying of mussel seed. J. Sea Res. 2014, 85, 395–403. [Google Scholar] [CrossRef]
- Bertolini, C.; Geraldi, N.R.; Montgomery, W.I.; O’Connor, N.E. Substratum type and conspecific density as drivers of mussel patch formation. J. Sea Res. 2017, 121, 24–32. [Google Scholar] [CrossRef]
- Schotanus, J.; Walles, B.; Capelle, J.J.; van Belzen, J.; van de Koppel, J.; Bouma, T.J. Promoting self-facilitating feedback processes in coastal ecosystem engineers to increase restoration success: Testing engineering measures. J. Appl. Ecol. 2020, 57, 1958–1968. [Google Scholar] [CrossRef]
- Schotanus, J.; Capelle, J.J.; Paree, E.; Favish, G.S.; van de Koppel, J.; Bouma, T.J. Restoring mussel beds in highly dynamic environments by lowering environmental stressors. Restor. Ecol. 2020, 28, 1124–1134. [Google Scholar] [CrossRef]
- Alder, A.; Jeffs, A.; Hillman, J.R. Considering the use of subadult and juvenile mussels for mussel reef restoration. Restor. Ecol. 2020, 29, e13322. [Google Scholar] [CrossRef]
- Alder, A.; Jeffs, A.; Hillman, J.R. The importance of stock selection for improving transplantation efficiency. Restor. Ecol. 2021, 30, e13561. [Google Scholar] [CrossRef]
- Alder, A.; Jeffs, A.; Hillman, J.R. Timing mussel deployments to improve reintroduction success and restoration efficiency. Mar. Ecol. Prog. Ser. 2022, 698, 69–83. [Google Scholar] [CrossRef]
- Donker, J.J.A.; van der Vegt, M.; Hoekstra, P. Wave forcing over an intertidal mussel bed. J. Sea Res. 2013, 82, 54–66. [Google Scholar] [CrossRef]
- Donker, J.J.A.; van der Vegt, M.; Hoekstra, P. Erosion of an intertidal mussel by ice- and wave-action. Cont. Shelf Res. 2015, 106, 60–69. [Google Scholar] [CrossRef]
- Schotanus, J.; Capelle, J.J.; Leuchter, L.; van de Koppel, J.; Bouma, T.J. Mussel seed is highly plastic to settling conditions: The influence of waves versus tidal emergence. Mar. Ecol. Prog. Ser. 2019, 624, 77–87. [Google Scholar] [CrossRef]
- Benjamin, E.D.; Toone, T.A.; Hillman, J.R.; Handley, S.J.; Jeffs, A. Aerial exposure and critical temperatures limit the survival of restored intertidal mussels. Restor. Ecol. 2024, 32, e14105. [Google Scholar] [CrossRef]
- Benjamin, E.D.; Handley, S.J.; Jeffs, A.; Olsen, L.; Toone, T.A.; Hillman, J.R. Testing habitat suitability for shellfish restoration with small-scale pilot experiments. Conserv. Sci. Pract. 2023, 5, e12878. [Google Scholar] [CrossRef]
- Wilcox, M.; Kelly, S.; Jeffs, A. Ecological restoration of mussel beds onto soft-sediment using transplanted adults. Restor. Ecol. 2018, 26, 581–590. [Google Scholar] [CrossRef]
- Sim-Smith, C.; Kelly, S. Rotoroa Mussel Bed Monitoring: January 2016a Progress. In Report for Revive Our Gulf; Coast and Catchment Ltd.: Auckland, New Zealand, 2016. [Google Scholar]
- Wilcox, M.; Kelly, S.; Jeffs, A. Patterns of settlement within a restored mussel bed site. Restor. Ecol. 2020, 28, 337–346. [Google Scholar] [CrossRef]
- Wilcox, M.; Jeffs, A. Impacts of sea star predation on mussel bed restoration. Restor. Ecol. 2019, 27, 189–197. [Google Scholar] [CrossRef]
- Sim-Smith, C.; Kelly, S. Rotoroa Mussel Bed Monitoring: November 2016b Progress. In Report for Revive Our Gulf; Coast and Catchment Ltd.: Auckland, New Zealand, 2016. [Google Scholar]
- van Kampen, P.H.G. Characterising the Ideal Habitat for Subtidal Benthic Re-Seeding of the Green-Lipped Mussel Perna canaliculus. Master’s Thesis, University of Auckland, Auckland, New Zealand, 2017. [Google Scholar]
- Paul, L.J. A history of the Firth of Thames dredge fishery for mussels: Use and abuse of a coastal resource. In New Zealand Aquatic Environment and Biodiversity Report No. 94; NIWA: Wellington, New Zealand, 2012. [Google Scholar]
- Paul-Burke, K.; Burke, J.; Bluett, C.; Senior, T. Using Māori knowledge to assist understandings and management of shellfish populations in Ōhiwa Harbour, Aotearoa New Zealand. N. Z. J. Mar. Freshw. Res. 2018, 52, 542–556. [Google Scholar] [CrossRef]
- Paul-Burke, K.; Ngarimu-Cameron, R.; Burke, J.; Bulmer, R.; Cameron, K.; O’Brien, T.; Bluett, C.; Ranapia, M. Taura kuku: Prioritising Māori knowledge and resources to create biodegradable mussel spat settlement lines for shellfish restoration in Ōhiwa Harbour. N. Z. J. Mar. Freshw. Res. 2022, 56, 570–584. [Google Scholar]
- Toone, T.A.; Benjamin, E.D.; Hillman, J.R.; Handley, S.; Jeffs, A. Multidisciplinary baselines quantify a drastic decline of mussel reefs and reveal an absence of natural recovery. Ecosphere 2022, 14, e4390. [Google Scholar] [CrossRef]
- Hirst, A.J. Broad-scale environmental gradients among estuarine benthic macrofaunal assemblages of south-eastern Australia: Implications for monitoring estuaries. Mar. Freshw. Res. 2004, 55, 79–92. [Google Scholar] [CrossRef]
- Gray, J.S. Animal–sediment relationships. Oceanogr. Mar. Biol. Annu. Rev. 1974, 12, 223–261. [Google Scholar]
- Anderson, M.J. Animal–sediment relationships re-visited: Characterising species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. J. Exp. Mar. Biol. Ecol. 2008, 366, 16–27. [Google Scholar] [CrossRef]
- Jeffs, A.G.; Holland, R.C.; Hooker, S.H.; Hayden, B.J. Overview and bibliography of research on the greenshell mussel, Perna canaliculus, from New Zealand waters. J. Shellfish Res. 1999, 18, 347–360. [Google Scholar]
- Copedo, J.S.; Webb, S.C.; Ragg, N.L.C.; Alfaro, A.C. Implications of flooding events for the green-lipped mussels (Perna canaliculus): An aquatic health perspective. N. Z. J. Mar. Freshw. Res. 2025, 59, 1640–1658. [Google Scholar] [CrossRef]
- Ericson, J.A.; Venter, L.; Copedo, J.S.; Nguyen, V.T.; Alfaro, A.C.; Ragg, N.L.C. Chronic heat stress as a predisposing factor in summer mortality of mussels, Perna canaliculus. Aquaculture 2023, 564, 10. [Google Scholar] [CrossRef]
- Hatton, S.; Hayden, B.J.; James, M.R. The effects of food concentration and quality on the feeding rates of three size classes of the Greenshell™ mussel, Perna canaliculus. Hydrobiologia 2005, 548, 23–32. [Google Scholar] [CrossRef]
- Biggar, B.S.; Jeffs, A.G.; Hillman, J.R. Effects of suspended sediment on survival, growth, and nutritional condition of green-lipped mussel spat (Perna canaliculus, Gmelin, 1791). J. Exp. Mar. Biol. Ecol. 2025, 582, 152074. [Google Scholar] [CrossRef]
- Cummings, V.J.; Thrush, S.F.; Pridmore, R.D.; Hewitt, J.E. Mahurangi Harbour Soft-Sediment Communities: Predicting and Assessing the Effects of Harbour and Catchment Development; National Institute of Water and Atmospheric Research for Auckland Regional Council; Auckland Regional Council, Technical Report # TR2009/040; NIWA: Auckland, New Zealand, 1994.
- Gibbs, M. Sediment Source Mapping in Mahurangi Harbour; National Institute of Water and Atmospheric Research for Auckland Regional Council; Auckland Regional Council, Technical Report # TP321-2009/040; NIWA: Auckland, New Zealand, 2006.
- Handley, S.; Gibbs, M.; Swales, A.; Olsen, G.; Ovenden, R.; Bradley, A. A 1000 Year History of Seabed Change in Pelorus Sound/Te Hoiere; Nelson, New Zealand; National Institute of Water and Atmospheric Research Client Report Prepared for Marlborough District Council, Report # 2016119NE; National Institute of Water and Atmospheric Research: Nelson, New Zealand, 2017.
- Hunt, S. Summary of Historic Estuarine Sedimentation Measurements in the Waikato Region and Formulation of a Historic Baseline Sedimentation Rate; Waikato Regional Council Technical Report # 2019/08; NIWA: Hamilton, New Zealand, 2019.
- Harris, T.F.W. Hauraki Gulf Tideways: Elements of Their Natural Sciences; Leigh Laboratory Bulletin No. 29; University of Auckland: Auckland, New Zealand, 1993; 107p. [Google Scholar]
- Green, M.O.; Hewitt, J.E.; Thrush, S.F. Seabed drag coefficient over natural beds of horse mussels (Atrina zelandica). J. Mar. Res. 1998, 56, 613–637. [Google Scholar] [CrossRef]
- de Juan, S.; Hewitt, J. Spatial and temporal variability in species richness in a temperate intertidal community. Ecography 2014, 37, 183–190. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Nagels, J.W. Optical Water Quality of the Mahurangi Estuarine System; Prepared NIWA for Auckland Regional Council; Auckland Regional Council Technical Report 2009/057; NIWA: Auckland, New Zealand, 1995.
- Oldman, J.W.; Black, K.P. Mahurangi Estuary Numerical Modelling; NIWA report prepared for Auckland Regional Council, technical report # ARC60208/1; NIWA: Auckland, New Zealand, 1997.
- Cummings, V.J.; Halliday, J.; Thrush, S.F.; Hancock, N.; Funnell, G.A. Mahurangi Estuary Ecological Monitoring Programme–Report on Data Collected from July 1994 to January 2005; NIWA Client Report for the Auckland Regional Council, HAM2005–057; NIWA: Auckland, New Zealand, 2005.
- Hickman, R.W.; Illingworth, J. Condition cycle of the green-lipped mussel Perna canaliculus in New Zealand. Mar. Biol. 1980, 60, 27–38. [Google Scholar] [CrossRef]
- Lucas, A.; Beninger, P.G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 1985, 44, 187–200. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Marsden, I.D.; Weatherhead, M.A. Shore-level induced variations in condition and feeding of the mussel Perna canaliculus from the east coast of the South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 1999, 33, 611–622. [Google Scholar] [CrossRef]
- Ellis, J.; Cummings, V.; Hewitt, J.; Thrush, S.; Norkko, A. Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): Results of a survey, a laboratory experiment and a field transplant experiment. J. Exp. Mar. Biol. Ecol. 2002, 267, 147–174. [Google Scholar] [CrossRef]
- Tolley, S.G.; Volety, A.K.; Savarese, M. Influence of salinity on the habitat use of oyster reefs in three southwest Florida estuaries. J. Shellfish Res. 2005, 24, 127–137. [Google Scholar]
- Aldrich, J.C.; Crowley, M. Condition and variability in Mytilus edulis (L.) from different habitats in Ireland. Aquaculture 1986, 52, 273–286. [Google Scholar] [CrossRef]
- McLeod, I.M. Green-Lipped Mussels, Perna canaliculus, in Soft-Sediment Systems in Northeastern New Zealand. Master’s Thesis, University of Auckland, Auckland, New Zealand, 2009. [Google Scholar]
- Teaioro, I. The Effects of Turbidity on Suspension Feeding Bivalves. Master’s Thesis, University of Waikato, Hamilton, New Zealand, 1999. [Google Scholar]
- Luesiri, M.; Boonsanit, P.; Lirdwitayaprasit, T.; Pairohakul, S. Filtration rates of the green-lipped mussel Perna viridis (Linnaeus, 1758) exposed to high concentration of suspended particles. Sci. Asia 2022, 48, 452–458. [Google Scholar] [CrossRef]
- Curley, E.A.M.; Thomas, R.; Adams, C.E.; Stephen, A. Behavioural and metabolic responses of Unionida mussels to stress. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 3184–3200. [Google Scholar] [CrossRef]
- Tokumon, R.; Cataldo, D.; Boltovskoy, D. Effects of suspended inorganic matter on filtration and grazing rates of the invasive mussel Limnoperna fortunei (Bivalvia: Mytiloidea). J. Molluscan Stud. 2016, 82, 201–204. [Google Scholar]
- Capelle, J.J.; Hartog, E.; van den Bogaart, L.; Jansen, H.M.; Wijsman, J.W.M. Adaptation of gill-palp ratio by mussels after transplantation to culture plots with different seston conditions. Aquaculture 2021, 541, 736794. [Google Scholar] [CrossRef]
- Kiørboe, T.; Møhlenberg, F.; Nøhr, O. Effect of suspended bottom material on growth and energetics in Mytilus edulis. Mar. Biol. 1981, 61, 283–288. [Google Scholar] [CrossRef]
- Gavrilovic, A.; Jug-Dujakovic, J.; Bonacic, A.M.; Conides, A.; Bonacic, K.; Ljubicic, A.; Van Gorder, S. The influence of environmental parameters on the growth and meat quality of the Mediterranean mussel Mytilus galloprovincialis (Mollusca: Bivalvia). Aquac. Aquar. Conserv. Legis. 2011, 4, 573–583. [Google Scholar]
- Paul-Burke, K.; Burke, J. Monitoring Assessment of Kūtai (Perna canaliculus) Green-Lipped Mussel and Pātangaroa (Coscinasterias muricata) Seastar Populations in the Western Side of Ōhiwa Harbour 2013: Technical Report; Te Rūnanga o Ngāti Awa: Whakatāne, New Zealand, 2013. [Google Scholar]
- Paul-Burke, K.; Ngarimu-Cameron, R.; Paul, W.; Burke, J.; Cameron, K.; O’Brien, T.; Bluett, C. Nga tohu o te taiao: Observing signs of the natural world to identify seastar over-abundance as a detriment to shellfish survival in Ohiwa Harbour, Aotearoa/New Zealand. N. Z. Sociol. 2022, 37, 186–210. [Google Scholar]
- Paine, R.T. Food web complexity and species diversity. Am. Nat. 1966, 100, 65–75. [Google Scholar] [CrossRef]
- Paine, R.T. Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 1974, 15, 93–120. [Google Scholar] [CrossRef]
- Menge, B.A.; Berlow, E.L.; Blanchette, C.A.; Navarrete, S.A.; Yamada, S.B. The keystone species concept: Variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 1994, 64, 249–286. [Google Scholar] [CrossRef]
- Jing, L.; Ridd, P.V.; Mayocchi, C.L.; Heron, M.L. Wave-induced benthic velocity variations in shallow waters. Estuar. Coast. Shelf Sci. 1996, 42, 787–802. [Google Scholar]
- Dean, R.G. Intercomparison of near-bottom kinematics by several wave theories and field and laboratory data. Coast. Eng. 1986, 9, 399–437. [Google Scholar] [CrossRef]
- Commito, J.A.; Dankers, N.M.J.A. Dynamics of spatial and temporal complexity in European and North American soft-bottom mussel beds. In Ecological Comparisons of Sedimentary Shores; Reise, K., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2001; Volume 151, pp. 39–59. [Google Scholar]
- Okamura, B. Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 1986, 69, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Svane, I.; Ompi, M. Patch dynamics in beds of the blue mussel Mytilus edulis L.: Effects of site, patch size, and position within a patch. Ophelia 1993, 37, 187–202. [Google Scholar] [CrossRef]





| Source of Variation | DF | MS | F Value | p Value | |
|---|---|---|---|---|---|
| Mussel density | Site | 5 | 5245 | 5.21 | <0.001 |
| Sampling Date | 1 | 691.2 | 0.69 | 0.409 | |
| Site × Sampling Date | 5 | 1030.7 | 1.02 | 0.407 | |
| Residual | 108 | 1006.5 | |||
| Mussel length | Site | 5 | 550.3 | 8.16 | <0.001 |
| Sampling Date | 1 | 4604.7 | 68.26 | <0.001 | |
| Site × Sampling Date | 5 | 156.4 | 2.32 | 0.041 | |
| Residual | 1508 | 67.5 | |||
| Mussel condition index | Site | 5 | 7.38 | 0.95 | 0.447 |
| Sampling Date | 1 | 562.23 | 72.65 | <0.001 | |
| Site × Sampling Date | 5 | 17.52 | 2.26 | 0.049 | |
| Residual | 228 | 7.74 |
| Source of Variation | DF | MS | F Value | p Value | |
|---|---|---|---|---|---|
| Mussel density | Site | 2 | 17,962.8 | 14.59 | <0.001 |
| Sampling Date | 2 | 179.4 | 0.15 | 0.865 | |
| Site × Sampling Date | 4 | 413 | 0.34 | 0.853 | |
| Residual | 81 | 1231.4 | |||
| Mussel length | Site | 2 | 1042.55 | 15.31 | <0.001 |
| Sampling Date | 2 | 1454.29 | 21.36 | <0.001 | |
| Site × Sampling Date | 4 | 118.27 | 1.74 | 0.140 | |
| Residual | 1017 | 68.08 | |||
| Mussel condition index | Site | 4 | 24.3 | 4.11 | 0.002 |
| Sampling Date | 2 | 902.9 | 152.87 | <0.001 | |
| Site × Sampling Date | 8 | 46.5 | 7.88 | <0.001 | |
| Residual | 282 | 5.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Kampen, P.; Jeffs, A.; Kelly, S.; Wilcox, M. Mussel Restoration Across an Estuarine Environmental Gradient: Implications for Site Selection. Fishes 2025, 10, 653. https://doi.org/10.3390/fishes10120653
van Kampen P, Jeffs A, Kelly S, Wilcox M. Mussel Restoration Across an Estuarine Environmental Gradient: Implications for Site Selection. Fishes. 2025; 10(12):653. https://doi.org/10.3390/fishes10120653
Chicago/Turabian Stylevan Kampen, Peter, Andrew Jeffs, Shane Kelly, and Mark Wilcox. 2025. "Mussel Restoration Across an Estuarine Environmental Gradient: Implications for Site Selection" Fishes 10, no. 12: 653. https://doi.org/10.3390/fishes10120653
APA Stylevan Kampen, P., Jeffs, A., Kelly, S., & Wilcox, M. (2025). Mussel Restoration Across an Estuarine Environmental Gradient: Implications for Site Selection. Fishes, 10(12), 653. https://doi.org/10.3390/fishes10120653

