Global Empirical Assessment of Marine Heatwaves’ Impacts on Fisheries Production and Economic Value
Abstract
1. Introduction
2. Materials and Methods
2.1. Marine Heatwave Detection and Classification
2.2. Fisheries Production Data
2.3. Economic Value Estimation
2.4. Detecting Fisheries Impacts During Marine Heatwaves
2.5. Study Case Analyses
2.5.1. Regional Focus: The Mediterranean Sea
2.5.2. Species Focus: Global Analysis of Herrings, Sardines, and Anchovies
3. Results
3.1. Global Incidence of Marine Heatwaves
3.2. Impacts on Fisheries Production and Economic Value
3.3. Regional and National Disparities
3.4. Case Studies
3.4.1. Regional Case: Mediterranean Sea
3.4.2. Species Group Case: Herrings, Sardines, and Anchovetas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HLPE. Sustainable Fisheries and Aquaculture for Food Security and Nutrition; High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3844e/i3844e.pdf (accessed on 15 July 2025).
- Colombo, S.M.; Rodgers, T.F.M.; Diamond, M.L.; Bazinet, R.P.; Arts, M.T. Projected Declines in Global DHA Availability for Human Consumption as a Result of Global Warming. Ambio 2020, 49, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Chen, X.; Hilborn, R.; Chen, Y. Vulnerability to Impacts of Climate Change on Marine Fisheries and Food Security. Mar. Policy 2017, 83, 55–61. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 Billion by 2050—Putting Fish Back on the Menu. Food Sec. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- FAO. Global Fisheries and Marine Resources Trends. In The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G. Marine Heatwaves Threaten Global Biodiversity and the Provision of Ecosystem Services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Scannell, H.A.; Sen Gupta, A.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J. A Global Assessment of Marine Heatwaves and Their Drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine Heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J. Longer and More Frequent Marine Heatwaves over the Past Century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Chen, Y.; Su, H.; Yan, X.-H.; Zhang, H.; Wang, Y. Global Oceans Suffer Extreme Heatwaves Intensifying since the Early 21st Century: A New Comprehensive Index. Ecol. Indic. 2024, 162, 112069. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T. Categorizing and Naming Marine Heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Hornstein, J.; Pales Espinosa, E.; Cerrato, R.M.; Lwiza, K.M.M.; Allam, B. The influence of temperature stress on the physiology of the Atlantic surfclam, Spisula solidissima. Comp. Biochem. Physiol. A 2018, 222, 66–73. [Google Scholar] [CrossRef]
- Rohr, J.R.; Palmer, B.D. Climate change, multiple stressors, and the decline of ectotherms. Conserv. Biol. 2013, 27, 741–751. [Google Scholar] [CrossRef]
- Jutfelt, F.; Roche, D.G.; Clark, T.D.; Norin, T.; Binning, S.A.; Speers-Roesch, B.; Sundin, J. Brain cooling marginally increases acute upper thermal tolerance in Atlantic cod. J. Exp. Biol. 2019, 222, jeb208249. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; King, N.G.; Moore, P.J.; Gupta, A.S. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 2023, 15, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Masanja, F.; Yang, K.; Xu, Y.; He, G.; Liu, X.; Xu, X.; Zhao, L. Impacts of marine heat extremes on bivalves. Front. Mar. Sci. 2023, 10, 1159261. [Google Scholar] [CrossRef]
- FAO. The Impact of Disasters on Agriculture and Food Security 2023—Technological Solutions for Reducing Risks and Impacts; FAO: Rome, Italy, 2025. [Google Scholar]
- Caputi, N.; Kangas, M.; Chandrapavan, A.; Hart, A.; Feng, M.; Marin, M.; de Lestang, S. Factors Affecting the Recovery of Invertebrate Stocks from the 2011 Western Australian Extreme Marine Heatwave. Front. Mar. Sci. 2019, 6, 484. [Google Scholar] [CrossRef]
- Chandrapavan, A.; Caputi, N.; Kangas, M.I. The Decline and Recovery of a Crab Population from an Extreme Marine Heatwave and a Changing Climate. Front. Mar. Sci. 2019, 6, 510. [Google Scholar] [CrossRef]
- NOAA Coral Reef Watch. Daily Global 5km Satellite Monitoring Marine Heatwave Watch (Version 1.0.1, Released 21 September 2021). Available online: https://coralreefwatch.noaa.gov/product/marine_heatwave (accessed on 1 July 2024).
- FAO. FishStatJ–Software for Fishery and Aquaculture Statistical Time Series. Available online: https://www.fao.org/fishery/en/topic/166235?lang=en (accessed on 1 July 2024).
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D.; Palomares, M.L.D. Sea Around Us: Concepts, Design and Data. Available online: https://www.seaaroundus.org (accessed on 1 July 2024).
- The World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519 (accessed on 25 August 2024).
- GRID-Arendal Population Density and Urban Centers in the Mediterranean Basin. Available online: https://www.grida.no/resources/5900 (accessed on 30 August 2024).
- Allison, E.H.; Perry, A.L.; Badjeck, M.; Neil Adger, W.; Brown, K.; Conway, D.; Halls, A.S.; Pilling, G.M.; Reynolds, J.D.; Andrew, N.L.; et al. Vulnerability of National Economies to the Impacts of Climate Change on Fisheries. Fish Fish. 2009, 10, 173–196. [Google Scholar] [CrossRef]
- Wang, S.; Jing, Z.; Wu, L.; Sun, S.; Peng, Q.; Wang, H.; Zhang, Y.; Shi, J. Southern Hemisphere Eastern Boundary Upwelling Systems Emerging as Future Marine Heatwave Hotspots under Greenhouse Warming. Nat. Commun. 2023, 14, 28. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hobday, A.J. Vertical Structures of Marine Heatwaves. Nat. Commun. 2023, 14, 6483. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.G.; Ruzicka, J.J.; Crozier, L.G.; Huff, D.D.; Brodeur, R.D.; Stewart, J.D. Marine heatwaves disrupt ecosystem structure and function via altered food webs and energy flux. Nat. Commun. 2024, 15, 1988. [Google Scholar] [CrossRef]
- Swieca, K.; Sponaugle, S.; Schmid, M.S.; Ivory, J.; Cowen, R.K. Oceanographic and trophodynamic underpinnings of anchovy success in the northern California Current. Front. Mar. Sci. 2025, 12, 1558793. [Google Scholar] [CrossRef]
- Boyce, D.G.; Tittensor, D.P.; Garilao, C.; Henson, S.; Kaschner, K.; Kesner-Reyes, K.; Pigot, A.; Reyes, R.B., Jr.; Reygondeau, G.; Schleit, K.E. A Climate Risk Index for Marine Life. Nat. Clim. Change 2022, 12, 854–862. [Google Scholar]
- Heck, N.; Beck, M.W.; Reguero, B.; Pfliegner, K.; Ricker, M.; Prütz, R. Global Climate Change Risk to Fisheries—A Multi-Risk Assessment. Mar. Policy 2023, 148, 105404. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Tigchelaar, M.; Battisti, D.S.; Naylor, R.L.; Ray, D.K. Future Warming Increases Probability of Globally Synchronized Maize Production Shocks. Proc. Natl. Acad. Sci. USA 2018, 115, 6644–6649. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Thiault, L.; Mora, C.; Cinner, J.E.; Cheung, W.W.L.; Graham, N.A.J.; Januchowski-Hartley, F.A.; Mouillot, D.; Sumaila, U.R.; Claudet, J. Escaping the Perfect Storm of Simultaneous Climate Change Impacts on Agriculture and Marine Fisheries. Sci. Adv. 2019, 5, eaaw9976. [Google Scholar] [CrossRef]
- Pinsky, M.L.; Mantua, N.J. Emerging Adaptation Approaches for Climate-Ready Fisheries Management. Oceanography 2014, 27, 146–159. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.-S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C. Fisheries Management in a Changing Climate: Lessons from the 2012 Ocean Heat Wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef]









| Consistency (Number of High MHW Years with Catch Reduction/Total Number of MHW Years) | Proportion of Species with over 80% Consistency | ||||||
|---|---|---|---|---|---|---|---|
| Group | 0 to 50% | 51 to 60% | 61 to 70% | 71 to 80% | 81 to 90% | 91 to 100% | |
| Abalones, winkles, conchs | 2 | 1 | 33.3 | ||||
| Carps, barbels and other cyprinids | 1 | 0.0 | |||||
| Clams, cockles, arkshells | 2 | 2 | 2 | 33.3 | |||
| Cods, hakes, haddocks | 2 | 2 | 5 | 3 | 3 | 6 | 42.9 |
| Crabs, sea-spiders | 2 | 1 | 2 | 1 | 16.7 | ||
| Flounders, halibuts, soles | 1 | 3 | 6 | 2 | 3 | 6 | 42.9 |
| Herrings, sardines, anchovies | 2 | 6 | 3 | 6 | 5 | 8 | 43.3 |
| Horseshoe crabs and other arachnoids | 1 | 0.0 | |||||
| Lobsters, spiny-rock lobsters | 1 | 0.0 | |||||
| Miscellaneous aquatic invertebrates | 1 | 0.0 | |||||
| Miscellaneous coastal fishes | 13 | 15 | 10 | 19 | 3 | 17 | 26.0 |
| Miscellaneous demersal fishes | 7 | 6 | 3 | 3 | 4 | 6 | 34.5 |
| Miscellaneous diadromous fishes | 1 | 1 | 100.0 | ||||
| Miscellaneous freshwater fishes | 2 | 1 | 33.3 | ||||
| Miscellaneous pelagic fishes | 2 | 5 | 5 | 12 | 4 | 11 | 38.5 |
| Mussels | 1 | 0.0 | |||||
| Salmons, trouts, smelts | 1 | 0.0 | |||||
| Scallops, pectens | 1 | 2 | 1 | 25.0 | |||
| Sea-urchins and other echinoderms | 1 | 0.0 | |||||
| Shads | 1 | 0.0 | |||||
| Sharks, rays, chimeras | 2 | 4 | 1 | 71.4 | |||
| Shrimps, prawns | 1 | 2 | 4 | 1 | 9 | 58.8 | |
| Squids, cuttlefishes, octopuses | 3 | 3 | 3 | 3 | 1 | 5 | 33.3 |
| Tunas, bonitos, billfishes | 2 | 4 | 2 | 7 | 1 | 15 | 51.6 |
| All groups | 36 | 51 | 47 | 67 | 32 | 89 | 37.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yañez-Arenas, A.; Lluch-Cota, D.B.; Arias-González, J.E.; Zaidi, R.Z.; Lluch-Cota, S.E. Global Empirical Assessment of Marine Heatwaves’ Impacts on Fisheries Production and Economic Value. Fishes 2025, 10, 594. https://doi.org/10.3390/fishes10110594
Yañez-Arenas A, Lluch-Cota DB, Arias-González JE, Zaidi RZ, Lluch-Cota SE. Global Empirical Assessment of Marine Heatwaves’ Impacts on Fisheries Production and Economic Value. Fishes. 2025; 10(11):594. https://doi.org/10.3390/fishes10110594
Chicago/Turabian StyleYañez-Arenas, Arturo, Daniel B. Lluch-Cota, Jesús Ernesto Arias-González, R. Zehra Zaidi, and Salvador E. Lluch-Cota. 2025. "Global Empirical Assessment of Marine Heatwaves’ Impacts on Fisheries Production and Economic Value" Fishes 10, no. 11: 594. https://doi.org/10.3390/fishes10110594
APA StyleYañez-Arenas, A., Lluch-Cota, D. B., Arias-González, J. E., Zaidi, R. Z., & Lluch-Cota, S. E. (2025). Global Empirical Assessment of Marine Heatwaves’ Impacts on Fisheries Production and Economic Value. Fishes, 10(11), 594. https://doi.org/10.3390/fishes10110594

