Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Monitoring of the Environmental Conditions
2.3. Registration of Sea Lice Infestation
2.4. Statistical Methods
3. Results
3.1. Hydrographic Conditions
3.2. L. salmonis and C. elongatus Infestation
4. Discussion
4.1. Hydrographic Conditions
4.2. L. salmonis Infestation
4.3. Experimental Set-Up Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrissen, O.; Jones, S.; Asche, F.; Guttormsen, A.; Skilbrei, O.T.; Nilsen, F.; Horsberg, T.E.; Jackson, D. Salmon lice-impact on wild salmonids and salmon aquaculture. J. Fish. Dis. 2013, 36, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Dempster, T.; Overton, K.; Bui, S.; Stien, L.H.; Oppedal, F.; Karlson, Ø.; Coates, A.; Phillips, B.L.; Barrett, L.T. Farmed salmonids drive the abundance, ecology and evolution of parasitic salmon lice in Norway. Aquac. Environ. Interact. 2021, 13, 237–248. [Google Scholar] [CrossRef]
- Abolofia, J.; Wilen, J.E.; Asche, F. The cost of lice: Quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Res. Econ. 2017, 32, 329–349. [Google Scholar] [CrossRef]
- Barber, I. Parasites, behaviour and welfare in fish. Appl. Anim. Behav. Sci. 2007, 104, 251–264. [Google Scholar] [CrossRef]
- Imsland, A.K.; Reynolds, P.; Eliassen, G.; Hangstad, T.A.; Foss, A.; Vikingstad, E.; Elvegård, T.A. The use of lumpfish (Cyclopterus lumpus L.) to control sea lice (Lepeophtheirus salmonis Krøyer) infestations in intensively farmed Atlantic salmon (Salmo salar L.). Aquaculture 2014, 424–425, 8–23. [Google Scholar] [CrossRef]
- Imsland, A.K.D.; Reynolds, P. In lumpfish we trust? The efficacy of lumpfish to control Lepeophtheirus salmonis infestations on farmed Atlantic salmon: A review. Fishes 2022, 7, 220. [Google Scholar] [CrossRef]
- Skiftesvik, A.B.; Bjelland, R.M.; Durif, C.M.F.; Johansen, I.S.; Browman, H.I. Delousing of Atlantic salmon (Salmo salar) by cultured vs. wild ballan wrasse (Labrus bergylta). Aquaculture 2013, 402, 113–118. [Google Scholar] [CrossRef]
- Nilsen, A.; Nielsen, K.V.; Biering, E.; Bergheim, A. Effective protection against sea lice during the production of Atlantic salmon in floating enclosures. Aquaculture 2017, 466, 41–50. [Google Scholar] [CrossRef]
- Stien, L.H.; Lind, M.B.; Oppedal, F.; Wright, D.W.; Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 2018, 490, 281–287. [Google Scholar] [CrossRef]
- Oppedal, F.; Samsing, F.; Dempster, T.; Wright, D.W.; Bui, S.; Stien, L.H. Sea lice infestation levels decrease with deeper ‘snorkel’ barriers in Atlantic salmon sea-cages. Pest Manag. Sci. 2017, 73, 1935–1943. [Google Scholar] [CrossRef]
- Oppedal, F.; Bui, S.; Stien, L.H.; Overton, K.; Dempster, T. Snorkel technology to reduce sea lice infestations: Efficacy depends on salinity at the farm site, but snorkels have minimal effects on salmon production and welfare. Aquac. Environ. Interact. 2019, 11, 445–457. [Google Scholar] [CrossRef]
- Stien, L.H.; Dempster, T.; Bui, S.; Glaropoulos, A.; Fosseidengen, J.E.; Wright, D.W.; Oppedal, F. ‘Snorkel’ sea lice barrier technology reduces sea lice loads on harvest-sized Atlantic salmon with minimal welfare impacts. Aquaculture 2016, 458, 29–37. [Google Scholar] [CrossRef]
- Grøntvedt, R.N.; Kristoffersen, A.J.; Jansen, P.A. Reduced exposure of farmed salmon to salmon louse (Lepeophtheirus salmonis L.) infestation by use of plankton nets: Estimating the shielding effect. Aquaculture 2018, 495, 865–872. [Google Scholar] [CrossRef]
- Guttu, M.; Gaasø, M.; Båtnes, A.S.; Olsen, Y. The decline in sea lice numbers during freshwater treatments in salmon aquaculture. Aquaculture 2024, 579, 740131. [Google Scholar] [CrossRef]
- Reynolds, P. Ferskvannsavlusing i Brønnbåt: The Use of Freshwater to Control Infestations of the Sea Louse Lepeophtheirus salmonis K on Atlantic Salmon Salmo salar L. (FHF 901006). 2013. Available online: https://www.researchgate.net/publication/280877554_Ferskvannsavlusing_i_bronnbat_October_2013_The_use_of_freshwater_to_control_infestations_of_the_sea_louse_ (accessed on 4 April 2025).
- Barrett, L.T.; Oppedal, F.; Robinson, N.; Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 2020, 12, 2527–2543. [Google Scholar] [CrossRef]
- Groner, M.L.; McEvan, G.F.; Rees, E.E.; Gettinby, G.; Revie, C.W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 2016, 73, 1281–1291. [Google Scholar] [CrossRef]
- Groner, M.L.; Laurin, E.; Stormoen, M.; Sanchez, J.; Fast, M.D.; Revie, C.W. Evaluating the potential for sea lice to evolve freshwater tolerance as a consequence of freshwater treatments in salmon aquaculture. Aquac. Environ. Interact. 2019, 11, 507–519. [Google Scholar] [CrossRef]
- Powell, M.D.; Reynolds, P.; Kristensen, T. Freshwater treatment of amoebic gill disease and sea-lice in seawater salmon production: Considerations of water chemistry and fish welfare in Norway. Aquaculture 2015, 448, 18–28. [Google Scholar] [CrossRef]
- Hamre, L.A.; Eichner, C.; Caipang, C.M.A.; Dalvin, S.T.; Bron, J.E.; Nilsen, F.; Boxshall, G.; Skern-Mauritzen, R. The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle has only two Chalimus stages. PLoS ONE 2013, 8, e73539. [Google Scholar] [CrossRef]
- Samsing, F.; Oppedal, F.; Dalvin, S.; Johnsen, I.; Vågseth, T.; Dempster, T. Salmon lice (Lepeophtheirus salmonis) development times, body size, and reproductive outputs follow universal models of temperature dependence. Can. J. Fish. Aquat. Sci. 2016, 73, 1841–1851. [Google Scholar] [CrossRef]
- Bricknell, I.R.; Dalesman, S.J.; O’shea, B.; Pert, C.C.; Mordue Luntz, A.J. Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis. Anim. Org. 2006, 71, 201–212. [Google Scholar] [CrossRef]
- Genna, R.L.; Mordue, W.; Pike, A.W.; Mordue Luntz, A.J. Light intensity, salinity, and host velocity influence presettlement intensity and distribution on hosts by copepodids of sea lice, Lepeophtheirus salmonis. Can. J. Fish. Aquat. Sci. 2015, 62, 2675–2682. [Google Scholar] [CrossRef]
- Stavang, J.A.; Chauvigné, F.; Kongshaug, H.; Cerdà, J.; Nilsen, F.; Finn, R.N. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genom. 2015, 16, 618. [Google Scholar] [CrossRef] [PubMed]
- Hahnenkamp, L.; Fyhn, H.J. The osmotic response of the salmon louse, Lepeophtheirus salmonis (Copepoda: Caligidae), during the transition from sea water to fresh water. J. Comp. Physiol. B 1985, 155, 357–365. [Google Scholar] [CrossRef]
- Crosbie, T.; Wright, D.W.; Oppedal, F.; Johnsen, I.A.; Samsing, F.; Dempster, T. Effects of step salinity gradients on salmon lice larvae behaviour and dispersal. Aquac. Environ. Int. 2019, 11, 181–190. [Google Scholar] [CrossRef]
- Costello, M.J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 2006, 22, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Heuch, P.A.; Olsen, R.S.; Malkenes, R.; Revie, C.W.; Gettinby, G.; Baillie, M.; Lees, F.; Finstad, B. Temporal and spatial variations in lice numbers on salmon farms in the Hardanger fjord 2004–06. J. Fish Dis. 2009, 32, 89–100. [Google Scholar] [CrossRef]
- Rees, E.E.; St-Hilaire, S.; Jones, S.R.; Krkošek, M.; Foreman, M.; DeDominicis, S.; Patanasatienkul, T.; Revie, C.W. Spatial patterns of sea lice infection among wild and captive salmon in western Canada. Landsc. Ecol. 2015, 30, 989–1004. [Google Scholar] [CrossRef]
- Penston, M.J.; Millar, C.P.; Zuur, A.; Davies, I.M. Spatial and temporal distribution of Lepeophtheirus salmonis (Krøyer) larvae in a sea loch containing Atlantic salmon Salmo salar L. farms on the northwest coast of Scotland. J. Fish Dis. 2008, 31, 361–371. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 2nd ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1984; 718p. [Google Scholar]
- Grøntvedt, R.; Nervikbø, I.; Viljugrein, H.; Lillehaug, A.; Nilsen, H.; Gjevre, A. Termisk Avlusning av Laksefisk-Dokumentasjon av Fiskevelferd og Effekt; Norwegian Veterinary Institute’s Report Series; Veterinærinstituttet: Oslo, Norway, 2015; Volume 13, 32p, ISSN 1890-3290. [Google Scholar]
- Wright, D.W.; Oppedal, F.; Dempster, T. Early-stage sea lice recruits on Atlantic salmon are freshwater sensitive. J. Fish Dis. 2016, 39, 1179–1186. [Google Scholar] [CrossRef]
- Heuch, P.A. Experimental evidence for aggregation of salmon louse copepodids (Lepeophtheirus salmonis) in step-salinity gradients. J. Mar. Biol. Assoc. 1995, 75, 927–939. [Google Scholar] [CrossRef]
- Sievers, M.; Oppedal, F.; Ditria, E.; Wright, D.W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 2019, 9, 6976. [Google Scholar] [CrossRef]
- Borchel, A.; Heggland, E.I.; Nilsen, F. Without a pinch of salt: Effect of low salinity on eggs and nauplii of the salmon louse (Lepeophtheirus salmonis). Parasitol. Res. 2023, 122, 1893–1905. [Google Scholar] [CrossRef]
- Borchel, A.; Nilsen, F. Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus. J. Comp. Physiol. B 2025, 195, 155–171. [Google Scholar] [CrossRef]
- Glaropoulos, A.; Stien, L.H.; Folkedal, O.; Dempster, T.; Oppedal, F. Welfare, behaviour and feasibility of farming Atlantic salmon in submerged cages with weekly surface access to refill their swim bladders. Aquaculture 2019, 502, 332–337. [Google Scholar] [CrossRef]
CTD-SRDL Unit | Chain Number | Depth (m) 6 June–23 August | New Depth (m) 23 August–2 November |
---|---|---|---|
12,857 | 1 | 0.5 | 0.14 |
12,887 | 1 | 1 | 0.37 |
12,888 | 1 | 1.5 | 0.60 |
12,882 | 1 | 2.0 | 0.84 |
12,885 | 1 | 2.5 | 1.07 |
12,881 | 1 | 3.5 | 2.07 |
12,886 | 1 | 5 | 3.57 |
12,883 | 2 | 0.5 | 0.1 |
12,856 | 2 | 1 | 0.6 |
13,069 | 2 | 2.5 | 2.1 |
13,067 | 3 | 1.0 | 0.1 |
13,071 | 3 | 2.5 | 1.6 |
12,884 | 3 | 3.5 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drivdal, M.; Jonassen, T.M.; Imsland, A.K.D.; Bloch-Hansen, K.; Sparboe, L.O.; Halsband, C.; Sperre, K.H.; Nygaard, T. Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming. Fishes 2025, 10, 503. https://doi.org/10.3390/fishes10100503
Drivdal M, Jonassen TM, Imsland AKD, Bloch-Hansen K, Sparboe LO, Halsband C, Sperre KH, Nygaard T. Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming. Fishes. 2025; 10(10):503. https://doi.org/10.3390/fishes10100503
Chicago/Turabian StyleDrivdal, Magnus, Thor Magne Jonassen, Albert Kjartan Dagbjartarson Imsland, Karin Bloch-Hansen, Lars Olav Sparboe, Claudia Halsband, Kristine Hopland Sperre, and Tor Nygaard. 2025. "Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming" Fishes 10, no. 10: 503. https://doi.org/10.3390/fishes10100503
APA StyleDrivdal, M., Jonassen, T. M., Imsland, A. K. D., Bloch-Hansen, K., Sparboe, L. O., Halsband, C., Sperre, K. H., & Nygaard, T. (2025). Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming. Fishes, 10(10), 503. https://doi.org/10.3390/fishes10100503