Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish
2.2. Experimental Design
2.3. Sample Collection
2.4. Analysis of Enzyme Activity
2.5. Routine Nutritional Components
2.6. Determination of Muscular AA and FA Composition
2.7. Muscle Nutritional Quality Evaluation
2.8. Statistical Analysis
3. Results
3.1. Influence of Light Spectral on Blood Biochemical Parameters
3.2. Influence of Light Spectral on Levels of Antioxidant Enzymes
3.3. Influence of Light Spectral on P. leopardus Body Composition
3.4. Influence of Light Spectral on AA Levels
3.5. Influence of Light Spectral on the Muscle Nutritional Quality
3.6. Influences of Varying Light Spectra on the FAs of P. leopardus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, F.; Shi, L.; Yao, F.; Gu, Y.; Zheng, D.; Zhang, W.W.; Liang, Y.; Zhang, K.X.; Yang, M.; Wang, J.; et al. The effect of background color on skin color variation of juvenile Plectropomus leopardus. Animals 2022, 12, 3349. [Google Scholar] [CrossRef] [PubMed]
- China Fishery Bureau. China Fisheries Yerabook; Bureau, C.F., Ed.; Chinese Agriculture Express: Beijing, China, 2023; p. 22.
- Wu, R.-X.; Liang, Y.-S.; Niu, S.-F.; Zhang, J.; Tang, B.-G.; Liang, Z.-B. Transcriptomic Analysis Reveals Circadian Rhythm Homeostasis in Pearl Gentian Grouper under Acute Hypoxia. Fishes 2023, 8, 358. [Google Scholar] [CrossRef]
- d’Orbcastel, E.R.; Blancheton, J.P.; Belaud, A. Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquac. Eng. 2009, 40, 135–143. [Google Scholar] [CrossRef]
- Fei, F.; Cao, S.Q.; Li, W.S.; Zhu, Z.W.; Li, W.Y.; Gao, X.Q.; Zhang, X.H.; Sun, Y.; Zhang, C.X.; Liu, B.L. Effects of spectral on growth, physiology, and growth axis gene expression in Plectropomus leopardus. Aquaculture 2024, 593, 741290. [Google Scholar] [CrossRef]
- Jie, Z.; Yang, F. Sex differences in the preference for monochromatic light and the as sociated physiological mechanisms in a stream-dwelling fish, Acrossocheilus fasciatus. J. Fish. Sci. China 2021, 28, 1263–1271. [Google Scholar]
- Karakatsouli, N.; Papoutsoglou, S.E.; Pizzonia, G. Effects of light spectrum on growth and physiological status of Gilthead seabream, Sparus aurata and Rainbow trout, Oncorhynchus mykiss reared under recirculating system conditions. Aquac. Eng. 2007, 36, 302–309. [Google Scholar] [CrossRef]
- Wu, L.; Sun, W.; Zhou, J.; Li, Y.; Li, J.; Song, Z.; Song, C.; Xu, S.; Yue, X.; Li, X. Comparative transcriptome analysis reveals growth and molecular pathway of body color regulation in turbot (Scophthalmus maximus) exposed to different light spectrum. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 49, 101165. [Google Scholar] [CrossRef]
- Wei, H.; Cai, W.-J.; Liu, H.-K.; Han, D.; Zhu, X.-M.; Yang, Y.-X.; Jin, J.-Y.; Xie, S.-Q. Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus). J. Photochem. Photobiol. B Biol. 2019, 198, 111552. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.S.; Song, J.A.; Park, H.-S.; Choi, Y.J.; Choi, C.Y. Physiological and oxidative stress response of goldfish Carassius auratus induced by a light dimming system. Fish Physiol. Biochem. 2020, 46, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Song, J.A.; Choi, C.Y. Effects of blue light spectra on retinal stress and damage in goldfish (Carassius auratus). Fish Physiol. Biochem. 2019, 45, 391–400. [Google Scholar] [CrossRef]
- Di Rosa, V.; Frigato, E.; López-Olmeda, J.F.; Sánchez-Vázquez, F.J.; Bertolucci, C. The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLoS ONE 2015, 10, e0132235. [Google Scholar] [CrossRef] [PubMed]
- Ruchin, A.B. Effect of illumination on growth and behavior of two carp fish species (Carassius gibelio and C. carassius). PeriÓDico TchÊ QuÍMica 2019, 16, 8. [Google Scholar] [CrossRef]
- Karakatsouli, N.; Papoutsoglou, E.S.; Sotiropoulos, N.; Mourtikas, D.; Stigen-Martinsen, T.; Papoutsoglou, S.E. Effects of light spectrum, rearing density, and light intensity on growth performance of scaled and mirror common carp Cyprinus carpio reared under recirculating system conditions. Aquac. Eng. 2010, 42, 121–127. [Google Scholar] [CrossRef]
- Güller, U.; Onalan, S.; Arabacı, M.; Karataş, B.; Yaşar, M.; Küfrevioğlu, I. Effects of different LED light spectra on rainbow trout (Oncorhynchus mykiss): In vivo evaluation of the antioxidant status. Fish Physiol. Biochem. 2020, 46, 2169–2180. [Google Scholar] [CrossRef]
- Shin, H.S.; Lee, J.; Choi, C.Y. Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkii. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 160, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.Y.; Choi, J.Y.; Choi, Y.J.; Yoo, J.-H. Physiological effects of various light spectra on oxidative stress by starvation in olive flounder, Paralichthys olivaceus. Mol. Cell. Toxicol. 2018, 14, 399–408. [Google Scholar] [CrossRef]
- Li, X.; Wei, P.P.; Liu, S.T.; Ma, H.; Zhang, J.P.; Liu, Y.; Tian, Y. Comparative study of the growth, feeding, amino acid composition, and nutritional quality of Dicentrarchus labrax juveniles under different light photoperiods. J. Fish. Sci. China 2020, 27, 1062–1074. [Google Scholar]
- Di, Z.; Li, K.; Liu, R.; Wang, G.; Lu, Q.; LI, T.; Yan, L.; Jiang, H.; Liu, L. Effects of photoperiod and light intensity on the growth, muscle nutrition and economic performance of Murray cod (Maccullochella peelii) in the recirculating aquarium system. Acta Hydrobiol. Sin. 2021, 45, 781–789. [Google Scholar]
- Ren, J.L.; Wei, P.P.; Fei, F.; Dai, M.Y.; Ma, H.; Gao, D.K.; Song, C.B.; Chen, T.; Liu, Y. Effects of LED spectrum on feeding, growth and energy distribution of juvenile Dicentrarchus labrax. J. Fish. China 2019, 43, 1821–1829. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lora, J.; Alonso, F.J.; Segura, J.A.; Lobo, C.; Marquez, J.; Mates, J.M. Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur. J. Biochem. 2004, 271, 4298–4306. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.M. Structural and functional organization of the albumin system of fish blood. Pol. Med. J. 1999, 11, 509–513. [Google Scholar]
- Tian, H.Y.; Zhang, D.D.; Xu, C.; Wang, F.; Liu, W.B. Effects of light intensity on growth, immune responses, antioxidant capability and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish Shellfish. Immunol. 2015, 47, 674–680. [Google Scholar] [CrossRef]
- Alam, Y.H.; Kim, R.; Jang, C. Metabolism and Health Impacts of Dietary Sugars. J. Lipid Atheroscler. 2022, 11, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Fei, F.; Gao, X.Q.; Wang, X.Y.; Liu, Y.; Bin, H.; Liu, B.L. Effect of spectral composition on growth, oxidative stress responses, and apoptosis-related gene expression of the shrimp, Penaeus vannamei. Aquac. Rep. 2020, 16, 100267. [Google Scholar] [CrossRef]
- Roychowdhury, P.; Aftabuddin, M.; Pati, M.K. Thermal stress altered growth performance and metabolism and induced anaemia and liver disorder in Labeo rohita. Aquac. Res. 2020, 51, 1406–1414. [Google Scholar] [CrossRef]
- Bozhkov, A.; Nikolov, G.; Ürku Atanasov, Ç.; Zarpyanova, D.; Atanasoff, A.; Secer, F.; Kandir, S. Effect of different light intensities on prolactin and cortisol plasma concentration in farming African catfish (Clarias gariepinus) in RAS with low-water exchange. Isr. J. Aquac. Bamidgeh 2023, 75. [Google Scholar] [CrossRef]
- Mapunda, J.; Mtolera, M.; Yahya, S.A.; Golan, M. Light colour affect the survival rate, growth performance, cortisol level, body composition, and digestive enzymes activities of different Snubnose pompano (Trachinotus blochii (Lacépède, 1801) larval stages. Aquac. Rep. 2021, 21, 100804. [Google Scholar] [CrossRef]
- Heydarnejad, M.S.; Fattollahi, M.; Khoshkam, M. Influence of light colours on growth and stress response of pearl gourami Trichopodus leerii under laboratory conditions. J. Ichthyol. 2017, 57, 908–912. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Zhang, X.; Xu, Y.; Liao, T.; Song, S.; Wang, H. Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquat. Toxicol. 2008, 86, 4–11. [Google Scholar] [CrossRef]
- Breck, J.E. Body composition in fishes: Body size matters. Aquaculture 2014, 433, 40–49. [Google Scholar] [CrossRef]
- Aly, H.A. Impact of different colors of artificial light on pigmentation and growth impact of different colors of artificial light on pigmentation and growth performance of hybrid red Tilapia (Oreochromis mosambicus × O. Hornorum) reared in saline well water. J. Mar. Sci. Res. Dev. 2017, 7, 229. [Google Scholar] [CrossRef]
- Fei, F.; Ren, J.L.; Dai, M.Y.; Wei, P.P.; Ma, H.; Gao, D.K.; Song, C.B.; Chen, T.; Liu, Y. Effects of five kinds of light color environment on nutritional quality of Dicentrarchus labrax. Chin. J. Anim. Nutr. 2019, 31, 11. [Google Scholar]
- Wu, L. Effects of Light on the Habitat, Growth and Nutritive Compositions in Muscles of Plectropomus leopardus Juveniles. Master’s Thsis, Shanghai Ocean University, Shanghai, China, 2016. [Google Scholar]
- Luvizotto-santos, R.; Lee, J.T.; Branco, Z.P.; Bianchini, A.; Nery, L.E.M. Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata dana, 1851 (Crustacea-grapsidae). J. Exp. Zool. 2003, 295A, 200–205. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, W.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Liu, H.; Xie, S. Effects of food restriction on growth, body composition and gene expression related in regulation of lipid metabolism and food intake in grass carp. Aquaculture 2017, 469, 28–35. [Google Scholar] [CrossRef]
- Henderson, R.J.; Sargent, J.R.; Hopkins, C.C.E. Changes in the content and fatty acid composition of lipid in an isolated population of the capelin Mallotus villosus during sexual maturation and spawning. Mar. Biol. 1984, 78, 255–263. [Google Scholar] [CrossRef]
Parameters | Groups | ||||
---|---|---|---|---|---|
Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | |
Moisture | 75.60 ± 0.40 b | 75.50 ± 0.41 b | 75.70 ± 0.32 ab | 76.30 ± 0.24 a | 75.40 ± 0.27 b |
Ash | 0.80 ± 0.08 a | 0.50 ± 0.09 b | 0.80 ± 0.15 a | 0.50 ± 0.03 b | 0.40 ± 0.07 b |
Crude lipid | 1.20 ± 0.19 | 1.10 ± 0.19 | 1.20 ± 0.09 | 1.20 ± 0.03 | 1.20 ± 0.33 |
Crude protein | 21.50 ± 0.70 | 21.30 ± 0.78 | 22.00 ± 0.41 | 21.00 ± 0.62 | 21.90 ± 0.09 |
Amino Acids | Groups | ||||
---|---|---|---|---|---|
Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | |
Aspartic acid (Asp) # | 1.62 ± 0.09 | 1.57 ± 0.31 | 1.84 ± 0.04 | 1.74 ± 0.04 | 1.56 ± 0.02 |
Threonine (Thr) * | 0.57 ± 0.04 ab | 0.54 ± 0.18 ab | 0.70 ± 0.00 a | 0.63 ± 0.02 ab | 0.50 ± 0.01 b |
Serine (Ser) #,& | 0.63 ± 0.03 | 0.61 ± 0.12 | 0.71 ± 0.01 | 0.67 ± 0.02 | 0.60 ± 0.01 |
Glutamic acid (Glu) # | 2.17 ± 0.10 ab | 2.11 ± 0.51 ab | 2.57 ± 0.04 a | 2.39 ± 0.05 ab | 2.07 ± 0.02 b |
Glycine (Gly) #,& | 0.79 ± 0.01 | 0.82 ± 0.09 | 0.85 ± 0.02 | 0.82 ± 0.03 | 0.81 ± 0.02 |
Alanine (Ala) # | 0.99 ± 0.05 | 0.97 ± 0.13 | 1.06 ± 0.00 | 1.03 ± 0.01 | 0.98 ± 0.02 |
Cystine (Cys) #,& | 0.09 ± 0.01 ab | 0.08 ± 0.05 b | 0.13 ± 0.01 a | 0.11 ± 0.01 ab | 0.09 ± 0.01 ab |
Valine (Val) * | 0.40 ± 0.03 ab | 0.38 ± 0.15 b | 0.51 ± 0.01 a | 0.44 ± 0.02 ab | 0.33 ± 0.00 b |
Methionine (Met) # | 0.45 ± 0.02 ab | 0.42 ± 0.06 b | 0.50 ± 0.03 a | 0.48 ± 0.00 ab | 0.43 ± 0.00 b |
Isoleucine (IIe) * | 0.36 ± 0.03 ab | 0.34 ± 0.13 ab | 0.46 ± 0.00 a | 0.39 ± 0.01 ab | 0.30 ± 0.01 b |
Leucin e(Leu) * | 1.13 ± 0.05 ab | 1.09 ± 0.21 b | 1.29 ± 0.01 a | 1.20 ± 0.03 ab | 1.06 ± 0.01 b |
Tyrosine (Tyr) #,& | 0.54 ± 0.01 | 0.54 ± 0.04 | 0.57 ± 0.01 | 0.56 ± 0.00 | 0.55 ± 0.00 |
Phenylalanine (Phe) * | 0.56 ± 0.04 ab | 0.53 ± 0.15 ab | 0.66 ± 0.01 a | 0.60 ± 0.01 ab | 0.50 ± 0.01 b |
Lysine (Lys) * | 1.23 ± 0.08 ab | 1.17 ± 0.31 ab | 1.46 ± 0.01 a | 1.31 ± 0.04 ab | 1.11 ± 0.02 b |
Histidine (His) * | 0.29 ± 0.02 ab | 0.27 ± 0.07 ab | 0.33 ± 0.00 a | 0.31 ± 0.01 ab | 0.26 ± 0.01 b |
Arginine (Arg) #,& | 0.81 ± 0.04 ab | 0.78 ± 0.17 b | 0.95 ± 0.00 a | 0.87 ± 0.04 ab | 0.76 ± 0.01 b |
Proline (Pro) # | 0.43 ± 0.03 | 0.43 ± 0.08 | 0.48 ± 0.00 | 0.47 ± 0.01 | 0.43 ± 0.01 |
Total amino acids (∑TAA) | 13.04 ± 0.66 ab | 12.64 ± 2.77 ab | 15.07 ± 0.14 a | 14.01 ± 0.35 ab | 12.33 ± 0.13 b |
Total essential amino acids (∑EAA) | 4.53 ± 0.29 ab | 4.33 ± 1.21 ab | 5.42 ± 0.03 a | 4.87 ± 0.14 ab | 4.05 ± 0.06 b |
Total non-essential amino acids (∑NEAA) | 8.51 ± 0.37 | 8.32 ± 1.56 | 9.66 ± 0.11 | 9.14 ± 0.21 | 8.28 ± 0.07 |
Total semi-essential amino acids (∑HEAA) | 2.86 ± 0.09 | 2.82 ± 0.47 | 3.21 ± 0.01 | 3.03 ± 0.09 | 2.81 ± 0.02 |
EAA/TAA | 0.35 ± 0.00 ab | 0.34 ± 0.02 bc | 0.36 ± 0.00 a | 0.35 ± 0.00 ab | 0.33 ± 0.00 c |
EAA/NEAA | 0.53 ± 0.01 b | 0.52 ± 0.04 b | 0.56 ± 0.00 a | 0.53 ± 0.00 b | 0.49 ± 0.01 b |
EAA | FAO/WHO Amino Acid Pattern | Whole Egg Protein Amino Acid Pattern | Groups | ||||
---|---|---|---|---|---|---|---|
Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | |||
Ile | 250 | 331 | 193.94 | 193.68 | 216.51 | 193.25 | 172.80 |
Leu | 440 | 534 | 614.46 | 593.61 | 607.60 | 612.23 | 605.40 |
Lys | 340 | 441 | 668.19 | 651.05 | 688.24 | 659.89 | 632.54 |
Thr | 250 | 292 | 311.72 | 310.94 | 331.23 | 303.26 | 283.18 |
Val | 310 | 411 | 217.80 | 215.73 | 240.74 | 211.34 | 185.13 |
Met + Cys | 220 | 386 | 296.08 | 292.94 | 295.38 | 282.83 | 292.89 |
Phe + Tyr | 380 | 565 | 599.37 | 576.37 | 582.21 | 600.43 | 594.93 |
Total | 2190 | 2960 | 2901.57 | 2834.32 | 2961.90 | 2863.24 | 2766.87 |
Essential Amino Acid | AAS | CS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | |
Ile | 0.78 | 0.77 | 0.87 | 0.77 | 0.69 | 0.59 | 0.59 | 0.65 | 0.58 | 0.52 |
Leu | 1.40 | 1.35 | 1.38 | 1.39 | 1.38 | 1.15 | 1.11 | 1.14 | 1.15 | 1.13 |
Lys | 1.97 | 1.91 | 2.02 | 1.94 | 1.86 | 1.52 | 1.48 | 1.56 | 1.50 | 1.43 |
Thr | 1.25 | 1.24 | 1.32 | 1.21 | 1.13 | 1.07 | 1.06 | 1.13 | 1.04 | 0.97 |
Val | 0.70 | 0.70 | 0.78 | 0.68 | 0.60 | 0.53 | 0.52 | 0.59 | 0.51 | 0.45 |
Met + Cys | 1.35 | 1.33 | 1.34 | 1.29 | 1.33 | 0.77 | 0.76 | 0.77 | 0.73 | 0.76 |
Phe + Tyr | 1.58 | 1.52 | 1.53 | 1.58 | 1.57 | 1.06 | 1.02 | 1.03 | 1.06 | 1.05 |
Essential amino acid index (EAAI) | 89.78 | 88.21 | 93.15 | 88.24 | 84.05 |
Fatty Acids (%) | Groups | ||||
---|---|---|---|---|---|
Full Spectrum Light | Dark Light | Blue Light | Green Light | Red Light | |
C14:0 | 4.28 ± 2.10 | 6.19 ± 0.76 | 4.89 ± 0.49 | 4.41 ± 1.04 | 4.74 ± 0.28 |
C15:0 | 0.43 ± 0.12 | 0.57 ± 0.10 | 0.50 ± 0.04 | 0.49 ± 0.10 | 0.52 ± 0.07 |
C16:0 | 25.81 ± 3.40 bc | 32.43 ± 3.40 a | 23.92 ± 1.92 c | 30.91 ± 5.11 ab | 30.74 ± 1.77 abc |
C17:0 | 0.50 ± 0.02 | 0.62 ± 0.10 | 0.50 ± 0.01 | 0.66 ± 0.10 | 0.66 ± 0.13 |
C18:0 | 8.75 ± 1.40 | 10.22 ± 1.66 | 10.92 ± 2.31 | 11.58 ± 1.43 | 11.73 ± 2.32 |
C20:0 | 0.36 ± 0.02 b | 0.48 ± 0.07 ab | 0.38 ± 0.02 ab | 0.46 ± 0.06 ab | 0.50 ± 0.10 a |
C21:0 | 0.07 ± 0.01 | 0.09 ± 0.02 | 0.07 ± 0.00 | 0.08 ± 0.02 | 0.09 ± 0.02 |
C22:0 | 0.21 ± 0.04 b | 0.27 ± 0.04 ab | 0.20 ± 0.02 b | 0.26 ± 0.03 ab | 0.32 ± 0.06 a |
C23:0 | 0.10 ± 0.01 | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.03 | 0.13 ± 0.03 |
C24:0 | 0.50 ± 0.07 | 0.57 ± 0.03 | 0.60 ± 0.13 | 0.58 ± 0.06 | 0.62 ± 0.13 |
C14:1 | 0.12 ± 0.09 ab | 0.18 ± 0.05 a | 0.08 ± 0.05 ab | 0.06 ± 0.02 b | 0.13 ± 0.01 ab |
C16:1 | 5.43 ± 1.69 ab | 6.73 ± 0.32 a | 3.96 ± 1.57 b | 5.77 ± 0.92 ab | 5.94 ± 0.32 ab |
C18:1n9c | 17.00 ± 1.16 bc | 19.13 ± 0.54 a | 15.48 ± 1.47 c | 18.25 ± 1.01 ab | 18.61 ± 0.94 ab |
C20:1 | 3.22 ± 0.39 ab | 3.64 ± 0.30 a | 2.77 ± 0.47 b | 3.44 ± 0.35 ab | 3.68 ± 0.33 a |
C22:1n9 | 0.66 ± 0.13 | 0.76 ± 0.08 | 0.61 ± 0.08 | 0.72 ± 0.08 | 0.80 ± 0.12 |
C24:1 | 2.66 ± 0.38 | 2.75 ± 0.26 | 3.27 ± 0.73 | 2.99 ± 0.06 | 3.26 ± 0.28 |
C18:2n6c | 4.58 ± 0.11 | 3.59 ± 1.06 | 4.46 ± 0.31 | 3.61 ± 0.71 | 3.35 ± 1.20 |
C18:3n3 | 0.09 ± 0.01 a | 0.05 ± 0.02 b | 0.08 ± 0.01 ab | 0.07 ± 0.02 ab | 0.06 ± 0.02 ab |
C18:3n6 | 0.59 ± 0.06 | 0.38 ± 0.18 | 0.47 ± 0.16 | 0.38 ± 0.14 | 0.34 ± 0.19 |
C20:2 | 0.46 ± 0.03 | 0.44 ± 0.13 | 0.47 ± 0.01 | 0.54 ± 0.12 | 0.50 ± 0.07 |
C20:3n6 | 0.16 ± 0.04 ab | 0.08 ± 0.05 b | 0.18 ± 0.03 a | 0.12 ± 0.07 ab | 0.11 ± 0.05 ab |
C20:3n3 | 0.17 ± 0.04 | 0.18 ± 0.06 | 0.21 ± 0.06 | 0.20 ± 0.07 | 0.21 ± 0.02 |
C22:2 | 0.07 ± 0.01 | 0.05 ± 0.02 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.07 ± 0.01 |
C20:4n6 (ARA) | 4.81 ± 0.62 | 4.64 ± 0.31 | 4.12 ± 0.87 | 4.38 ± 0.55 | 4.82 ± 0.53 |
C20:5n3 (EPA) | 4.53 ± 1.02 ab | 1.79 ± 1.42 c | 4.86 ± 0.04 a | 2.51 ± 1.94 abc | 1.96 ± 1.70 bc |
C22:6n3 (DHA) | 14.37 ± 6.96 a | 3.96 ± 3.64 b | 16.30 ± 3.05 a | 7.25 ± 7.00 ab | 6.69 ± 3.34 ab |
∑SFA | 41.00 ± 4.29 bc | 51.56 ± 5.41 a | 42.07 ± 0.83 c | 49.56 ± 7.89 ab | 49.38 ± 4.32 ab |
∑MUFA | 29.09 ± 3.05 ab | 33.19 ± 0.83 a | 26.18 ± 2.88 b | 31.23 ± 2.11 a | 32.42 ± 1.85 a |
∑PUFA | 29.85 ± 7.36 ab | 15.15 ± 6.20 c | 31.24 ± 1.86 a | 19.13 ± 9.99 bc | 18.11 ± 5.77 bc |
EPA + DHA | 18.91 ± 7.97 ab | 5.74 ± 5.06 c | 21.16 ± 3.09 a | 9.76 ± 8.94 bc | 8.66 ± 4.74 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, Z.; Liu, B.; Fang, Y.; Cao, S.; Li, W.; Sun, Y.; He, C.; Zhang, C.; Fei, F. Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus. Fishes 2025, 10, 10. https://doi.org/10.3390/fishes10010010
Li W, Zhang Z, Liu B, Fang Y, Cao S, Li W, Sun Y, He C, Zhang C, Fei F. Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus. Fishes. 2025; 10(1):10. https://doi.org/10.3390/fishes10010010
Chicago/Turabian StyleLi, Wensheng, Zheng Zhang, Baoliang Liu, Yingying Fang, Shuquan Cao, Wenyang Li, Yan Sun, Chengbin He, Chuanxin Zhang, and Fan Fei. 2025. "Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus" Fishes 10, no. 1: 10. https://doi.org/10.3390/fishes10010010
APA StyleLi, W., Zhang, Z., Liu, B., Fang, Y., Cao, S., Li, W., Sun, Y., He, C., Zhang, C., & Fei, F. (2025). Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus. Fishes, 10(1), 10. https://doi.org/10.3390/fishes10010010