Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Standards and Quality Control Materials
2.3. TC and LDL-C Assay in DBS
2.4. ApoB Assay in DBS
3. Results
3.1. Analytical Assay Validation of Biomarkers in DBS
3.2. Stability
3.3. Comparison of Serum and DBS Biomarker Concentrations
3.4. Quantification of Biomarkers in Presumptively Unaffected Newborns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, J.L. The metabolic basis of inherited disease. In Familial Hypercholesterolemia; McGraw-Hill: New York, NY, USA, 1995; pp. 1981–2030. [Google Scholar]
- Austin, M.A.; Hutter, C.M.; Zimmern, R.L.; Humphries, S.E. Genetic Causes of Monogenic Heterozygous Familial Hypercholesterolemia: A HuGE Prevalence Review. Am. J. Epidemiol. 2004, 160, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Akioyamen, L.E.; Tu, J.V.; Genest, J.; Ko, D.; Coutin, A.J.S.; Shan, S.D.; Chu, A. Risk of Ischemic Stroke and Peripheral Arterial Disease in Heterozygous Familial Hypercholesterolemia: A Meta-Analysis. Angiology 2019, 70, 726–736. [Google Scholar] [CrossRef]
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; et al. Familial Hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients. J. Clin. Lipidol. 2011, 5, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Watts, G.F.; Gidding, S.; Wierzbicki, A.S.; Toth, P.P.; Alonso, R.; Brown, W.V.; Bruckert, E.; Defesche, J.; Lin, K.K.; Livingston, M.; et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol. 2014, 171, 309–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neil, A.; Cooper, J.; Betteridge, J.; Capps, N.; McDowell, I.; Durrington, P.; Seed, M.; Humphries, S.E. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: A prospective registry study. Eur. Heart J. 2008, 29, 2625–2633. [Google Scholar] [CrossRef] [Green Version]
- Slack, J. Risks of ischæmic heart-disease in familial hyperlipoproteinæmic states. Lancet 1969, 294, 1380–1382. [Google Scholar] [CrossRef]
- Luirink, I.K.; Wiegman, A.; Kusters, D.M.; Hof, M.H.; Groothoff, J.W.; De Groot, E.; Kastelein, J.J.; Hutten, B.A. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N. Engl. J. Med. 2019, 381, 1547–1556. [Google Scholar] [CrossRef]
- Gidding, S.S.; Champagne, M.A.; de Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; et al. American Heart Association Atherosclerosis, Hypertension, and Obesity in Young Committee of Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and Council on Lifestyle and Cardiometabolic Health. The Agenda for Familial Hypercholesterolemia: A Scientific Statement From the American Heart Association. Circulation. 2015, 132, 2167–2192. [Google Scholar]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Vallego-Vaz, A.J.; Ray, K.K. Epidemiology of familial hypercholesterolaemia: Community and clinical. Atherosclerosis. 2018, 277, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, N.; Makarem, D.C.; Wasserstein, M.P. Screening of Newborns for Disorders with High Benefit-Risk Ratios Should Be Mandatory. J. Law Med. Ethic 2016, 44, 231–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averna, M.R.; Barbagallo, C.M.; Di Paola, G.; Labisi, M.; Pinna, G.; Marino, G.; Dimita, U.; Notarbartolo, A. Total cholesterol, LDLcholesterol and apoprotein B in umbilical cord blood: Cross-sectional study. Minerva Pediatr. 1992, 44, 395–399. [Google Scholar] [PubMed]
- Glueck, C.J.; Heckman, F.; Schoenfeld, M.; Steiner, P.; Pearce, W. Neonatal familial type II hyperlipoproteinemia: Cord blood cholesterol in 1800 births. Metabolism 1971, 20, 597–608. [Google Scholar] [CrossRef]
- Mishkel, M.A. Neonatal plasma lipids as measured in cord blood. Can. Med Assoc. J. 1974, 111, 775–780. [Google Scholar]
- Wald, D.S.; Wald, N.J. Integration of child–parent screening and cascade testing for familial hypercholesterolaemia. J. Med. Screen. 2018, 26, 71–75. [Google Scholar] [CrossRef]
- Hardell, L.I. Serum lipids and lipoproteins at birth based on a study of 2815 newborn infants. Acta Paediatr. 1981, 70, 5–10. [Google Scholar] [CrossRef]
- Andersen, A.E.; Friis-Hansen, B. Neonatal diagnosis of familial type II hyperlipoproteinemia. Pediatrics. 1976, 57, 214–220. [Google Scholar] [CrossRef]
- Boulton, T.J.C.; Craig, I.H.; Hill, G. Screening of cord blood low-dentisty-lipoprotein cholesterol in the diagnosis of familial hypercholesterolaemia: A study of 2000 infants. Act Paediatr Scand. 1979, 68, 363–370. [Google Scholar] [CrossRef]
- Beeso, J.; Wong, N.; Ayling, R.; Eldridge, P.; Marshall, W.; Sherwood, R.; Peters, T. Screening for hypercholesterolaemia in 10,000 neonates in a multi-ethnic population. Eur. J. Pediatr. 1999, 158, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Papagni, F.; Gelzo, M.; Gallo, M.; Barone, R.; Graf, M.; Scarpato, N.; Russo, A.D. Development and Validation of an Enzymatic Method for Total Cholesterol Analysis Using Whole Blood Spot. J. Clin. Lab. Anal. 2015, 30, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshmy, R.; Gupta, R.; Prabhakaran, D.; Snehi, U.; Reddy, K.S. Utility of Dried Blood Spots for Measurement of Cholesterol and Triglycerides in a Surveillance Study. J. Diabetes Sci. Technol. 2010, 4, 258–262. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Zhang, Y.S.; Kim, J.K.; Frochen, S.; Kang, H.; Shim, H.; Ailshire, J.; Potter, A.; Cofferen, J.; Faul, J. Dried blood spots: Effects of less than optimal collection, shipping time, heat, and humidity. Am. J. Hum. Biol. 2020, 32, e23390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blades, B.L.; Dudman, N.P.B.; Wilcken, D.E.L. Variables Affecting Apolipoprotein B Measurements in 3- to 5-Day-Old Babies: A Study of 4491 Neonates. Pediatr. Res. 1987, 21, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangert, S.; Eldridge, P.; Peters, T. Neonatal screening for familial hypercholesterolaemia by immunoturbidimetric assay of apolipoprotein B in dried blood spots. Clin. Chim. Acta 1992, 213, 95–101. [Google Scholar] [CrossRef]
- Eick, G.N.; Kowal, P.; Barrett, T.; Thiele, E.A.; Snodgrass, J.J. Enzyme-Linked Immunoassay-Based Quantitative Measurement of Apolipoprotein B (ApoB) in Dried Blood Spots, a Biomarker of Cardiovascular Disease Risk. Biodemography Soc. Biol. 2017, 63, 116–130. [Google Scholar] [CrossRef]
- Impact of expanded newborn screening--United States, Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep. 2008, 19, 1012–1015.
- Wang, X.; Cui, Y.; Tong, X.; Ye, H.; Li, S. Glucose and Lipid Metabolism in Small-for-Gestational-Age Infants at 72 Hours of Age. J. Clin. Endocrinol. Metab. 2006, 92, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shen, S.; Price, M.J.; Lu, J.; Sumilo, D.; Kuang, Y.; Manolopoulos, K.; Xia, H.; Qiu, X.; Cheng, K.K.; et al. Glucose, Insulin, and Lipids in Cord Blood of Neonates and Their Association with Birthweight: Differential Metabolic Risk of Large for Gestational Age and Small for Gestational Age Babies. J. Pediatr. 2020, 220, 64–72.e2. [Google Scholar] [CrossRef]
- Berberich, A.J.; Hegele, R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 2018, 16, 9–20. [Google Scholar] [CrossRef]
Total Cholesterol | |||
---|---|---|---|
Ctrl 1 | Ctrl 2 | Ctrl 3 | |
Mean Concentration (mg/dL) | 177.2 | 308.5 | 422.9 |
Standard Deviation | 15.7 | 20.6 | 36.0 |
% CV | 8.9 | 6.7 | 8.5 |
Expected | 198.0 | 378.0 | 559.0 |
% Recovery | 89.5 | 81.6 | 75.7 |
N | 25 | 25 | 25 |
Low-Density Lipoprotein-Cholesterol | |||
Ctrl 1 | Ctrl 2 | Ctrl 3 | |
Mean Concentration (mg/dL) | 68.2 | 145.2 | 253.5 |
Standard Deviation | 9.7 | 11.4 | 21.2 |
% CV | 14.2 | 7.9 | 8.4 |
Expected | 76.0 | 196.0 | 326.0 |
% Recovery | 89.7 | 74.1 | 77.8 |
N | 25 | 25 | 25 |
Apolipoprotein B | |||
Ctrl 1 | Ctrl 2 | Ctrl 3 | |
Mean Concentration (mg/dL) | 11.1 | 24.4 | 62.2 |
Standard Deviation | 0.5 | 1.6 | 4.8 |
% CV | 4.5 | 6.7 | 7.8 |
Expected | 12.0 | 30.0 | 60.0 |
% Recovery | 92.6 | 81.4 | 103.7 |
N | 25 | 25 | 25 |
Limit of Detection | Limit of Quantification | Limit of Linearity | |
---|---|---|---|
Total Cholesterol | NA | 100 mg/dL | 900 mg/dL |
Low-Density Lipoprotein-Cholesterol | 20 mg/dL | 40 mg/dL | 387 mg/dL |
Apolipoprotein B | 2.5 mg/dL | 5 mg/dL | 150 mg/dL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Held, P.K.; Campbell, K.; Wiberley-Bradford, A.E.; Lasarev, M.; Horner, V.; Peterson, A. Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots. Int. J. Neonatal Screen. 2022, 8, 14. https://doi.org/10.3390/ijns8010014
Held PK, Campbell K, Wiberley-Bradford AE, Lasarev M, Horner V, Peterson A. Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots. International Journal of Neonatal Screening. 2022; 8(1):14. https://doi.org/10.3390/ijns8010014
Chicago/Turabian StyleHeld, Patrice K., Kristin Campbell, Amy E. Wiberley-Bradford, Michael Lasarev, Vanessa Horner, and Amy Peterson. 2022. "Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots" International Journal of Neonatal Screening 8, no. 1: 14. https://doi.org/10.3390/ijns8010014
APA StyleHeld, P. K., Campbell, K., Wiberley-Bradford, A. E., Lasarev, M., Horner, V., & Peterson, A. (2022). Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots. International Journal of Neonatal Screening, 8(1), 14. https://doi.org/10.3390/ijns8010014