The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DALYs | Disability-adjusted life years |
EVPI | Expected value of perfect information |
EQ-5D | EuroQol-5D |
EQ-5D+C | EuroQol-5D cognitive functioning |
GA1 | Glutaric aciduria type 1 |
HCU | Homocystinuria |
ICER | Incremental cost-effectiveness ratio |
IEM | Inborn error of metabolism |
IVA | Isovaleric acidaemia |
LCHADD | Long-chain hydroxyacyl CoA dehydrogenase deficiency |
TMS | Tandem mass spectroscopy |
MSUD | Maple syrup urine disease |
PSS | Personal social services |
NHS | National Health Service |
NSC | National Screening Committee |
UK | United Kingdom |
QALY | Quality-adjusted life year |
References
- Boer, M.E.J.D.; Wanders, R.J.A.; Morris, A.A.M.; Ijlst, L.; Heymans, H.S.A.; Wijburg, F.A. Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency: Clinical Presentation and Follow-Up of 50 Patients. Pediatrics 2002, 109, 99–104. [Google Scholar] [CrossRef]
- Grünert, S.C.; Wendel, U.; Lindner, M.; Leichsenring, M.; Schwab, K.O.; Vockley, J.; Lehnert, W.; Ensenauer, R. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J. Rare Dis. 2012, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Mudd, S.H.; Skovby, F.; Levy, H.L.; Pettigrew, K.D.; Wilcken, B.; Pyeritz, R.E.; Andria, G.; Boers, G.H.J.; Bromberg, I.L.; Cerone, R.; et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am. J. Hum. Genet. 1985, 37, 1–31. [Google Scholar]
- Sykut-Cegielska, J.; Gradowska, W.; Piekutowska-Abramczuk, D.; Andresen, B.S.; Olsen, R.K.J.; Ołtarzewski, M.; Pronicki, M.; Pajdowska, M.; Bogdańska, A.; Jabłońska, E.; et al. Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J. Inherit. Metab. Dis. 2011, 34, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Fingerhut, R.; Baumkötter, J.; Konstantopoulou, V.; Ratschmann, R.; Wendel, U. Maple syrup urine disease: Favourable effect of early diagnosis by newborn screening on the neonatal course of the disease. J. Inherit. Metab. Dis. 2006, 29, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Kölker, S.; Garbade, S.F.; Greenberg, C.R.; Leonard, J.V.; Saudubray, J.-M.; Ribes, A.; Kalkanoğlu, H.S.; Lund, A.M.; Merinero, B.; Wajner, M.; et al. Natural History, Outcome, and Treatment Efficacy in Children and Adults with Glutaryl-CoA Dehydrogenase Deficiency. Pediatr. Res. 2006, 59, 840–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcken, B.; Wiley, V.; Hammond, J.; Carpenter, K. Screening Newborns for Inborn Errors of Metabolism by Tandem Mass Spectrometry. N. Engl. J. Med. 2003, 348, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Burton, H.; Moorthie, S. Expanded Newborn Screening: A Review of the Evidence; The PHG Foundation (Foundation for Genomics and Population Health): Cambridge, UK, 2010. [Google Scholar]
- Hawkes, N. Newborn babies will be tested for four more disorders, committee decides. BMJ 2014, 348, g3267. [Google Scholar] [CrossRef]
- Jansen, M.E.; Metternick-Jones, S.C.; Lister, K.J. International differences in the evaluation of conditions for newborn bloodspot screening: A review of scientific literature and policy documents. Eur. J. Hum. Genet. 2016, 25, 10–16. [Google Scholar] [CrossRef]
- Public Health England. Newborn Blood Spot Screening Programme in the UK: Data Collection and Performance Analysis Report 2016 to 2017. PHE 2018. Available online: https://www.gov.uk/government/publications/newborn-blood-spot-screening-data-collection-and-performance-analysis-report (accessed on 1 October 2020).
- Public Health England. Newborn Blood Spot Screening Programme in the UK: Data Collection and Performance Analysis Report 2017 to 2018. PHE 2020. Available online: https://www.gov.uk/government/publications/newborn-blood-spot-screening-data-collection-report-2017-to-2018 (accessed on 1 October 2020).
- National Institute for Health and Care Excellence. Methods for the Development of NICE Public Health Guidance, 3rd ed.; National Institute for Health and Care Excellence: London, UK, 2012. [Google Scholar]
- Moorthie, S.; Cameron, L.; Sagoo, G.S.; Bonham, J.R.; Burton, H. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J. Inherit. Metab. Dis. 2014, 37, 889–898. [Google Scholar] [CrossRef]
- Kölker, S.; Garbade, S.F.; Boy, N.; Maier, E.M.; Meissner, T.; Mühlhausen, C.; Hennermann, J.B.; Lücke, T.; Häberle, J.; Baumkötter, J.; et al. Decline of Acute Encephalopathic Crises in Children with Glutaryl-CoA Dehydrogenase Deficiency Identified by Newborn Screening in Germany. Pediatr. Res. 2007, 62, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensenauer, R.; Vockley, J.; Willard, J.-M.; Huey, J.C.; Sass, J.O.; Edland, S.D.; Burton, B.K.; Berry, S.A.; Santer, R.; Grünert, S.; et al. A Common Mutation Is Associated with a Mild, Potentially Asymptomatic Phenotype in Patients with Isovaleric Acidemia Diagnosed by Newborn Screening. Am. J. Hum. Genet. 2004, 75, 1136–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunn, D.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Taylor, R.H.; Burke, J.; O’Keefe, M.; Beighi, B.; Naughton, E.; Walsh, T.J. Ophthalmic abnormalities in homocystinuria: The value of screening. Eye 1998, 12, 427–430. [Google Scholar] [CrossRef]
- Yap, S.; Rushe, H.; Howard, P.M.; Naughten, E.R. The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine β-synthase deficiency. J. Inherit. Metab. Dis. 2001, 24, 437–447. [Google Scholar] [CrossRef]
- Curtis, L. Unit Costs of Health and Social Care 2012; University of Kent: Canterbury, UK, 2012. [Google Scholar]
- Department of Health. NHS Reference Costs 2011 to 2012. Available online: https://www.gov.uk/government/publications/nhs-reference-costs-financial-year-2011-to-2012 (accessed on 4 July 2012).
- Sheffield Children’s Hospitals NHS Foundation Trust. Expanded Newborn Screening. Available online: http://www.expandedscreening.org/site/home/start.asp (accessed on 13 February 2012).
- Vetterly, C.G. BNF for Children 2009 by Paediatric Formulary Committee. Pediatr. Crit. Care Med. 2010, 11, 318. [Google Scholar] [CrossRef]
- Krabbe, P.F.; Stouthard, M.E.; Essink-Bot, M.-L.; Bonsel, G.J. The Effect of Adding a Cognitive Dimension to the EuroQol Multiattribute Health-Status Classification System. J. Clin. Epidemiol. 1999, 52, 293–301. [Google Scholar] [CrossRef]
- Kind, P.; Hardman, G.; Macran, S. UK Population Norms for EQ-5D; Centre for Health Economics, University of York: Heslington, UK, 1999. [Google Scholar]
- Yap, S.; Boers, G.H.; Wilcken, B.; Wilcken, D.E.; Brenton, D.P.; Lee, P.; Walter, J.H.; Howard, P.M.; Naughten, E.R. Vascular Outcome in Patients with Homocystinuria due to Cystathionine β-Synthase Deficiency Treated Chronically. Arter. Thromb. Vasc. Biol. 2001, 21, 2080–2085. [Google Scholar] [CrossRef] [Green Version]
- Kreimeier, S.; Greiner, W. EQ-5D-Y as a Health-Related Quality of Life Instrument for Children and Adolescents: The Instrument’s Characteristics, Development, Current Use, and Challenges of Developing Its Value Set. Value Health 2019, 22, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Willner, P.; Rose, J.; Jahoda, A.; Kroese, B.S.; Felce, D.; MacMahon, P.; Stimpson, A.; Rose, N.; Gillespie, D.; Shead, J.; et al. A cluster randomised controlled trial of a manualised cognitive behavioural anger management intervention delivered by supervised lay therapists to people with intellectual disabilities. Health Technol. Assess. 2013, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Chapman, K.A.; Gramer, G.; Viall, S.; Summar, M.L. Incidence of maple syrup urine disease, propionic acidemia, and methylmalonic aciduria from newborn screening data. Mol. Genet. Metab. Rep. 2018, 15, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Stroek, K.; Boelen, A.; Bouva, M.J.; Velden, M.D.S.D.; Schielen, P.C.J.I.; Maase, R.; Engel, H.; Jakobs, B.; Kluijtmans, L.A.J.; Mulder, M.F.; et al. Evaluation of 11 years of newborn screening for maple syrup urine disease in the Netherlands and a systematic review of the literature: Strategies for optimization. JIMD Rep. 2020, 54, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Pfeil, J.; Listl, S.; Hoffmann, G.F.; Kölker, S.; Lindner, M.; Burgard, P. Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: A cost-effectiveness analysis. Orphanet J. Rare Dis. 2013, 8, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwana, S.K.; Rascati, K.L.; Park, H. Cost-Effectiveness of Expanded Newborn Screening in Texas. Value Health 2012, 15, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.E.; Downs, S.M. Comprehensive Cost-Utility Analysis of Newborn Screening Strategies. Pediatrics 2006, 117, S287–S295. [Google Scholar] [CrossRef] [Green Version]
- Autti-Rämö, I.; Måkelå, M.; Sintonen, H.; Koskinen, H.; Laajalahti, L.; Halila, R.; Kååriåinen, H.; Lapatto, R.; Nåntö-Salonen, K.; Pulkki, K.; et al. Expanding screening for rare metabolic disease in the newborn: An analysis of costs, effect and ethical consequences for decision-making in Finland. Acta Paediatr. 2005, 94, 1126–1136. [Google Scholar] [CrossRef]
- Cipriano, L.E.; Rupar, C.A.; Zaric, G.S. The Cost-Effectiveness of Expanding Newborn Screening for up to 21 Inherited Metabolic Disorders Using Tandem Mass Spectrometry: Results from a Decision-Analytic Model. Value Health 2007, 10, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Insinga, R.P.; Laessig, R.H.; Hoffman, G.L. Newborn screening with tandem mass spectrometry: Examining its cost-effectiveness in the Wisconsin Newborn Screening Panel. J. Pediatr. 2002, 141, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, R.; Haas, M.; Chaplin, M.; Joy, P.; Wilcken, B. Economic Evaluation of Tandem Mass Spectrometry Newborn Screening in Australia. Pediatrics 2009, 123, 451–457. [Google Scholar] [CrossRef]
- Schoen, E.J.; Baker, J.C.; Colby, C.J.; To, T.T. Cost-Benefit Analysis of Universal Tandem Mass Spectrometry for Newborn Screening. Pediatrics 2002, 110, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Thiboonboon, K.; Leelahavarong, P.; Wattanasirichaigoon, D.; Vatanavicharn, N.; Wasant, P.; Shotelersuk, V.; Pangkanon, S.; Kuptanon, C.; Chaisomchit, S.; Teerawattananon, Y. An Economic Evaluation of Neonatal Screening for Inborn Errors of Metabolism Using Tandem Mass Spectrometry in Thailand. PLoS ONE 2015, 10, e0134782. [Google Scholar] [CrossRef]
- Heringer, J.; Valayannopoulos, V.; Lund, A.M.; Wijburg, F.A.; Freisinger, P.; Barić, I.; Baumgartner, M.R.; Burgard, P.; Burlina, A.B.; Chapman, K.A.; et al. Impact of age at onset and newborn screening on outcome in organic acidurias. J. Inherit. Metab. Dis. 2016, 39, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Couce, M.L.; Ramos, F.; Bueno, M.; Diaz, J.; Meavilla, S.; Bóveda, M.; Fernández-Marmiesse, A.; García-Cazorla, A. Evolution of maple syrup urine disease in patients diagnosed by newborn screening versus late diagnosis. Eur. J. Paediatr. Neurol. 2015, 19, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.-C.; Lee, H.-J.; Wang, A.-G.; Hsieh, S.-C.; Lu, Y.-H.; Lee, M.-C.; Pai, J.-S.; Chu, T.-H.; Yang, C.-F.; Hsu, T.-R.; et al. Experiences during newborn screening for glutaric aciduria type 1: Diagnosis, treatment, genotype, phenotype, and outcomes. J. Chin. Med. Assoc. 2017, 80, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Viau, K.; Ernst, S.L.; Vanzo, R.J.; Botto, L.D.; Pasquali, M.; Longo, N. Glutaric acidemia Type 1: Outcomes before and after expanded newborn screening. Mol. Genet. Metab. 2012, 106, 430–438. [Google Scholar] [CrossRef] [PubMed]
Parameter | MSUD Mean (95% CI) | HCU Mean (95% CI) | IVA Mean (95% CI) | GA1 Mean (95% CI) | LCHADD Mean (95% CI) | Distribution | References | |
---|---|---|---|---|---|---|---|---|
Cost of long-term health and social care impact of inborn errors | No Screening | £585,845 (£431k, £778k) | £704,459 (£519k, £936k) | £262,377 (£193k, £349k) | £549,529 (£405k, £730k) | £636,641 (£469k, £846k) | Lognormal | [2] (IVA) [3,18,19] (HCU) [5] (MSUD) [15] (GA1) [20,21] (All Conditions) |
Screening | £432,070 (£319k, £576k) | £82,193 (£61k, £109k) | £48,313 (£36k, £64k) | £170,644 (£126k, £227k) | £113,268 (£84k, £151k) | |||
Incremental | −£153,775 | −£622,267 | −£214,064 | −£378,885 | −£523,373 | |||
Cost of managing the IEM | No Screening | £445,933 (£327k, £589k) | £172,197 (£127k, £229k) | £171,859 (£127k, £229k) | £65,383 (£48k, £87k) | £81,900 (£60k, £109k) | Lognormal | [20,22,23] |
Screening | £531,328 (£393k, £707k) | £235,730 (£174k, £312k) | £69,704 (£52k, £92k) | £70,793 (£52k, £94k) | £56,578 (£42k, £75k) | |||
Incremental | £85,394 | £63,533 | −£102,155 | £5410 | −£25,322 | |||
Life-time QALYs | No Screening | 14.17 (12.8, 15.6) | 22.74 (20.6, 25.0) | 29.90 (27.1, 32.9) | 8.40 (7.6, 9.2) | 17.80 (16.1, 19.6) | Lognormal | [2] (IVA) [3] (HCU), 5 (MSUD) [15] (GA1) [24] (HCU/IVA) [25] (GA1/LCHADD/MSUD) |
Screening | 24.73 (23.3, 26.2) | 38.40 (35.3, 40.9) | 39.29 (36.4, 41.6) | 39.47 (36.7, 41.7) | 41.20 (39.2, 43.0) | |||
Incremental | 10.56 | 15.66 | 9.40 | 31.07 | 23.40 | |||
Costs of confirmation testing in positive screening | £582 (£524, £638) | £475 (£428, £521) | £896 (£807, £983) | £1052 (£948, £1154) | £555 (£500, £609) | Normal | [21] | |
Screening test characteristics | Sensitivity | 88.47% (16.6%, 100%) | 93.26% (48.9%, 100%) | 93.80% (56.5%, 100%) | 90.72% (35.5%, 100%) | 89.35% (38.3%, 100%) | Normal (logit) | [8] |
Specificity | 99.99% (100.0%, 100%) | 99.95% (99.7%, 100%) | 99.99% (99.9%, 100%) | 99.99% (99.9%, 100%) | 100% (100%, 100%) | Normal (logit) | [8] | |
Incidence per 100,000 births | No Screening | 0.73 (0.60, 0.87) | 0.72 (0.52, 0.94) | 0.30 (0.17, 0.47) | 0.47 (0.26, 0.75) | 0.55 (0.40, 0.68) | Normal (logit) | [8,15] (GA1), [16] (IVA) [8,14] (All Conditions) |
Screening | 0.74 (0.60, 0.87) | 0.74 (0.53, 0.95) | 0.83 (0.69, 0.97) | 1.02 (0.87, 1.17) | 0.65 (0.52, 0.79) | Normal (logit) | ||
Incremental | 0.0003 | 0.02 | 0.52 | 0.56 | 0.10 | |||
Sensitivity analysis: UK incidence per 100,000 births (2014–2018) | Screening and No Screening | 0.5 | 0.347 | 0.154 (0.386 including mild) | 0.309 | N/A (not screened for) | [11,12] |
Condition | Outcome | Normal | Mild Neurological or Psychiatric Disability | Moderate Neurological or Psychiatric Disability | Severe Neurological or Psychiatric Disability | References |
QALY utility | 1 | 0.721 | 0.503 | 0.075 | [25] | |
GA1 | Symptomatically detected | 10% | 0% | 20% | 70% | [15] |
Screen-detected | 89.5% | 0% | 0% | 10.5% | [15] | |
LCHADD | Symptomatically detected | 12% | 50% | 30% | 8% | Expert opinion |
Screen-detected | 90% | 6% | 3% | 1% | Expert opinion | |
MSUD Classic | Symptomatically detected | 10% | 50% | 30% | 10% | [5] Expert opinion |
Screen-detected | 40% | 40% | 17.5% | 2.5% | [5] Expert opinion | |
MSUD Intermediate | Symptomatic ally detected | 35% | 55% | 10% | 0% | [5] Expert opinion |
Screen-detected | 100% | 0% | 0% | 0% | [5] Expert opinion | |
Condition | Outcome | Normal | Learning disability | Mild developmental delay | Severe Developmental delay | |
QALY decrement | 0 | 0.145 | 0.302 | 0.712 | [24] | |
IVA | Symptomatic ally detected | 33% | 44% | 11% | 11% | [2] |
Screen-detected | 82% | 9% | 9% | 0% | [2] | |
HCU | Symptomatic ally detected | 25% | 0% | 25% | 50% | [3,19] |
Screen-detected | 85% | 0% | 15% | 0% | [3,19] |
Condition | No Screening | Screening | Incremental | Cost-Effectiveness (ICER) | Probability Cost Saving/Dominating | Probability Cost-Effective | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cost | QALYs | Cost | QALYs | Cost | QALYs | £15,000 per QALY | £20,000 per QALY | £25,000 per QALY | £30,000 per QALY | ||||
Basecase analysis | MSUD | £7.58 (£5.65, £9.96) | 41.79340 (40.13948, 43.44516) | £7.30 (£5.50, £9.44) | 41.79347 (40.13953, 43.44524) | −£0.28 (−£2.42, £1.76) | 0.000069 (0.000012, 0.000097) | Dominating | 0.564 | 0.884 | 0.935 | 0.957 | 0.97 |
HCU | £6.31 (£4.25, £9.01) | 41.79146 (40.14842, 43.43173) | £2.98 (£1.89, £5.18) | 41.79156 (40.14852, 43.43182) | −£3.33 (−£5.76, −£1.08) | 0.000101 (0.000051, 0.000153) | Dominating | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | |
IVA | £1.31 (£0.69, £2.12) | 41.79356 (40.13962, 43.44532) | £1.20 (£0.90, £1.69) | 41.79358 (40.13964, 43.44534) | −£0.10 (−£0.97, £0.63) | 0.000014 (−0.000011, 0.000041) | Dominating | 0.59 | 0.72 | 0.75 | 0.77 | 0.787 | |
GA1 | £2.87 (£1.48, £4.89) | 41.79344 (40.13949, 43.44511) | £2.72 (£2.05, £3.67) | 41.79356 (40.13962, 43.44534) | −£0.15 (−£2.14, £1.37) | 0.000120 (0.000034, 0.000218) | Dominating | 0.542 | 0.933 | 0.967 | 0.981 | 0.99 | |
LCHADD | £3.94 (£2.65, £5.54) | 41.79347 (40.13955, 43.44524) | £1.54 (£1.00, £3.04) | 41.79358 (40.13966, 43.44536) | −£2.40 (−£4.04, −£0.76) | 0.000114 (0.000046, 0.000158) | Dominating | 0.997 | 1 | 1 | 1 | 1 | |
Increased uncertainty sensitivity analysis | MSUD | £7.60 (£4.69, £11.73) | 41.79340 (40.13947, 43.44516) | £7.30 (£4.64, £10.94) | 41.79347 (40.13953, 43.44524) | −£0.30 (−£4.53, £3.83) | 0.000069 (0.000012, 0.000105) | Dominating | 0.512 | 0.726 | 0.778 | 0.832 | 0.87 |
HCU | £6.31 (£3.51, £10.62) | 41.79146 (40.14843, 43.43173) | £2.99 (£1.65, £5.38) | 41.79156 (40.14852, 43.43181) | −£3.32 (−£7.47, −£0.44) | 0.000101 (0.000031, 0.000164) | Dominating | 0.991 | 0.999 | 0.999 | 0.999 | 0.999 | |
IVA | £1.31 (£0.62, £2.35) | 41.79156 (40.14853, 43.43183) | £1.20 (£0.78, £1.87) | 41.79157 (40.14841, 43.43183) | −£0.11 (−£1.21, £0.79) | 0.000010 (−0.000049, 0.000048) | Dominating | 0.568 | 0.649 | 0.665 | 0.676 | 0.686 | |
GA1 | £2.86 (£1.25, £5.58) | 41.79144 (40.14842, 43.43162) | £2.72 (£1.73, £4.23) | 41.79155 (40.14838, 43.43182) | −£0.13 (−£2.81, £1.92) | 0.000114 (0.000018, 0.000218) | Dominating | 0.518 | 0.899 | 0.932 | 0.956 | 0.977 | |
LCHADD | £3.94 (£2.14, £6.70) | 41.79146 (40.14844, 43.43172) | £1.53 (£0.87, £3.10) | 41.79158 (40.14847, 43.43185) | −£2.40 (−£5.13, −£0.46) | 0.000111 (0.000041, 0.000161) | Dominating | 0.996 | 1 | 1 | 1 | 1 | |
UK incidence rates: 2014–2018 | MSUD | £5.18 | 41.79346 | £5.03 | 41.79351 | −£0.15 | 0.000047 | Dominating | N/A | N/A | N/A | N/A | N/A |
HCU | £3.05 | 41.79153 | £1.61 | 41.79158 | −£1.44 | 0.000051 | Dominating | N/A | N/A | N/A | N/A | N/A | |
IVA | £0.67 | 41.79358 | £0.68 | 41.79359 | £0.01 | 0.000008 | £776 | N/A | N/A | N/A | N/A | N/A | |
GA1 | £1.90 | 41.79350 | £1.07 | 41.79358 | −£0.83 | 0.000087 | Dominating | N/A | N/A | N/A | N/A | N/A |
Basecase ANALYSIS | ||||||
---|---|---|---|---|---|---|
Parameter | GA1 | HCU | IVA | LCHADD | MSUD | |
Cost IEM | No screening | £0 | £0 | £0 | £0 | £0 |
Screening | £0 | £0 | £0 | £0 | £206 | |
Cost Management | No screening | £0 | £0 | £0 | £0 | £0 |
Screening | £0 | £0 | £13 | £0 | £1229 | |
QALYs | No screening | £0 | £0 | £0 | £0 | £0 |
Screening | £0 | £0 | £17,483 | £0 | £0 | |
Screening Test | Sensitivity | £202 | £336 | £1421 | £21 | £3469 |
Specificity | £77,769 | £1753 | £48,069 | £0 | £0 | |
Cost | £0 | £0 | £0 | £0 | £0 | |
Incidence | Screening | £0 | £0 | £0 | £0 | £0 |
No screening | £3078 | £0 | £162,786 | £0 | £0 | |
Increased uncertainty sensitivity analysis | ||||||
Parameter | GA1 | HCU | IVA | LCHADD | MSUD | |
Cost IEM | No screening | £0 | £0 | £3218 | £0 | £5985 |
Screening | £255 | £0 | £3936 | £0 | £64,737 | |
Cost Management | No screening | £0 | £0 | £6 | £0 | £19 |
Screening | £0 | £0 | £16,837 | £0 | £122,995 | |
QALYs | No screening | £0 | £0 | £19,594 | £0 | £0 |
Screening | £5793 | £0 | £319,310 | £0 | £0 | |
Screening Test | Sensitivity | £349 | £59 | £2756 | £54 | £6262 |
Specificity | £8628 | £1716 | £56,129 | £0 | £0 | |
Cost | £0 | £0 | £0 | £0 | £0 | |
Incidence | Screening | £0 | £0 | £894 | £0 | £0 |
No screening | £9569 | £0 | £260,748 | £0 | £0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessey, A.; Chilcott, J.; Pandor, A.; Paisley, S. The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism. Int. J. Neonatal Screen. 2020, 6, 93. https://doi.org/10.3390/ijns6040093
Bessey A, Chilcott J, Pandor A, Paisley S. The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism. International Journal of Neonatal Screening. 2020; 6(4):93. https://doi.org/10.3390/ijns6040093
Chicago/Turabian StyleBessey, Alice, James Chilcott, Abdullah Pandor, and Suzy Paisley. 2020. "The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism" International Journal of Neonatal Screening 6, no. 4: 93. https://doi.org/10.3390/ijns6040093
APA StyleBessey, A., Chilcott, J., Pandor, A., & Paisley, S. (2020). The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism. International Journal of Neonatal Screening, 6(4), 93. https://doi.org/10.3390/ijns6040093