New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center
Abstract
:1. Introduction
2. Patients and Methods
Newborn Screening for Tyrosinemia Type I (HT1) Based on Succinylacetone
3. Results
3.1. Results of Succinylacetone-Based NBS for HT1 over 53 Months
3.2. Index Case
3.3. Molecular Genetic Investigations
3.4. Father of Index Patient
3.5. Suspected Additional Case with MAAI Deficiency
3.6. Treatment and Follow-Up in the Index Patient
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DBS | Dried blood spots |
HT1 | Tyrosinemia type I |
MAAI | Maleylacetoacetate isomerase |
NBS | Newborn screening |
P | Percentile |
Succ. | Succinylacetone |
References
- De Jesus, V.R.; Adam, B.W.; Mandel, D.; Cuthbert, C.D.; Matern, D. Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol. Genet. Metab. 2014, 113, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.A.; Mitchell, G.A.; Tanguay, R.M. Tyrosinemia: A review. Pediatr. Dev. Pathol. 2001, 4, 212–221. [Google Scholar] [CrossRef] [PubMed]
- de Laet, C.; Dionisi-Vici, C.; Leonard, J.V.; McKiernan, P.; Mitchell, G.; Monti, L.; de Baulny, H.O.; Pintos-Morell, G.; Spiekerkotter, U. Recommendations for the management of tyrosinaemia type 1. Orphanet J. Rare Dis. 2013, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Al-Hertani, W.; Cyr, D.; Laframboise, R.; Parizeault, G.; Wang, S.P.; Rossignol, F.; Berthier, M.T.; Giguere, Y.; Waters, P.J.; et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J. Med. Genet. 2017, 54, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Canon, J.M.; Baetscher, M.W.; Finegold, M.; Burlingame, T.; Gibson, K.M.; Grompe, M. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol. Cell Biol. 2002, 22, 4943–4951. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.E.; Matthaei, K.I.; Blackburn, A.C.; Davis, R.P.; Dahlstrom, J.E.; Koina, M.E.; Anders, M.W.; Board, P.G. Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. Am. J. Pathol. 2004, 165, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Michals, K.; Galbraeth, J.; Matalon, R. Tyrosinemia type Ib caused by maleylacetoacetate isomerase deficiency: A new enzyme defect. Pediatr. Res. 1988, 23, 328A. [Google Scholar]
- Röschinger, W.; Sonnenschein, S.; Schuhmann, E.; Nennstiel-Ratzel, U.; Roscher, A.A.; Olgemöller, B. Neue Zielerkrankungen im Neugeborenenscreening-Empfehlungen aus einem Pilotprojekt. Mon. Kinderheilkd 2015, 2, 142–149. [Google Scholar] [CrossRef]
- Gramer, G.; Fang-Hoffmann, J.; Feyh, P.; Klinke, G.; Monostori, P.; Mütze, U.; Posset, R.; Weiss, K.H.; Hoffmann, G.F.; Okun, J.G. Newborn Screening for Vitamin B12 Deficiency in Germany-Strategies, Results, and Public Health Implications. J. Pediatr. 2020, 216, 165–172.e164. [Google Scholar] [CrossRef]
- Schulze, A.; Lindner, M.; Kohlmüller, D.; Olgemöller, K.; Mayatepek, E.; Hoffmann, G.F. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: Results, outcome, and implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef]
- Haack, T.B.; Haberberger, B.; Frisch, E.M.; Wieland, T.; Iuso, A.; Gorza, M.; Strecker, V.; Graf, E.; Mayr, J.A.; Herberg, U.; et al. Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J. Med. Genet. 2012, 49, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Berutti, R.; Lorenz-Depiereux, B.; Graf, E.; Eckstein, G.; Mayr, J.A.; Meitinger, T.; Ahting, U.; Prokisch, H.; Strom, T.M.; et al. Mitochondrial DNA mutation analysis from exome sequencing-A more holistic approach in diagnostics of suspected mitochondrial disease. J. Inherit. Metab. Dis. 2019, 42, 909–917. [Google Scholar] [CrossRef]
- Reinken, L.; van Oost, G. Longitudinal physical development of healthy children 0 to 18 years of age. Body length/height, body weight and growth velocity. Klin. Padiatr. 1992, 204, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Mon. Kinderheilkd. 2001, 149, 807–818. [Google Scholar] [CrossRef]
- Cole, T.J.; Freeman, J.V.; Preece, M.A. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat. Med. 1998, 17, 407–429. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- AWMF Leitlinie Konfirmationsdiagnostik bei Verdacht auf angeborene Stoffwechselkrankheiten aus dem Neugeborenenscreening. Registernummer 027–021, Stand: 31.12.2019, valid until 30.12.2024. Available online: https://www.awmf.org/leitlinien/detail/anmeldung/1/ll/027-021.html (accessed on 21 February 2024).
- Cambra Conejero, A.; Martinez Figueras, L.; Ortiz Temprado, A.; Blanco Soto, P.; Martin Rivada, A.; Palomino Perez, L.; Canedo Villarroya, E.; Pedron Giner, C.; Quijada Fraile, P.; Martin-Hernandez, E.; et al. Newborn Screening Program in the Community of Madrid: Evaluation of positive cases. Rev. Esp. Salud. Publica 2020, 94, e202012185. [Google Scholar]
- Sander, J.; Janzen, N.; Peter, M.; Sander, S.; Steuerwald, U.; Holtkamp, U.; Schwahn, B.; Mayatepek, E.; Trefz, F.K.; Das, A.M. Newborn screening for hepatorenal tyrosinemia: Tandem mass spectrometric quantification of succinylacetone. Clin. Chem. 2006, 52, 482–487. [Google Scholar] [CrossRef]
- McHugh, D.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Ahlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef]
- Turgeon, C.; Magera, M.J.; Allard, P.; Tortorelli, S.; Gavrilov, D.; Oglesbee, D.; Raymond, K.; Rinaldo, P.; Matern, D. Combined newborn screening for succinylacetone, amino acids, and acylcarnitines in dried blood spots. Clin. Chem. 2008, 54, 657–664. [Google Scholar] [CrossRef]
- Priestley, J.R.C.; Alharbi, H.; Callahan, K.P.; Guzman, H.; Payan-Walters, I.; Smith, L.; Ficicioglu, C.; Ganetzky, R.D.; Ahrens-Nicklas, R.C. The Importance of Succinylacetone: Tyrosinemia Type I Presenting with Hyperinsulinism and Multiorgan Failure Following Normal Newborn Screening. Int. J. Neonatal Screen 2020, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Cassiman, D.; Zeevaert, R.; Holme, E.; Kvittingen, E.A.; Jaeken, J. A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): A case report. Orphanet. J. Rare Dis. 2009, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, F.; Boisson, B.; Gregor, A.; Beziat, V.; Boisson-Dupuis, S.; Bustamante, J.; Jouanguy, E.; Puel, A.; Rosain, J.; Zhang, Q.; et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc. Natl. Acad. Sci. USA 2021, 118, e2001248118. [Google Scholar] [CrossRef] [PubMed]
Publication | Number of Individuals | Age at Last Follow-Up (Years) | Clinical Information |
---|---|---|---|
Yang et al. 2017 [4] | 6 | 1–13 years | No relevant clinical complaints |
1 | 41 years | None | |
Gramer et al. 2024 (this publication) | 2 | 16 months; 32 years | No relevant clinical complaints |
Disorder/Group | Succinylacetone in First NBS DBS (µmol/L) | Succinylacetone in First Plasma Sample after NBS (µmol/L) | Reference |
---|---|---|---|
Tyrosinemia type I n = 2 | 14.15/24.52 | Gramer et al. 2024 (this publication) | |
n = 15 | Information not provided | 16.9–74.4 | Yang et al. 2017 [4] |
n = 3 | 10.3–13.7 | Cambra Conejero et al. 2020 [18] | |
n = 4 | 46–271 | Sander et al. 2006 [19] | |
n = 11 | 13–81 | Turgeon et al. 2008 [21] | |
n = 1 | 4.65–5.23 | Priestley et al. 2020 [22] | |
“Mild” Tyrosinemia type I (n = 1) | 0.88 (taken age 4 months, N < 0.1) | Cassiman et al. 2009 [23] | |
MAAI (confirmed n = 1, suspected n = 1) | 2.61/2.48 | Gramer et al. 2024 (this publication) | |
n = 6 | Information not provided | 0.23–1.28 | Yang et al. 2017 [4] |
Controls | 0.21–1.4 (P.1–P.99) | Mc Hugh et al. 2011 [20] (Region 4S MSMS Collaborative Project) | |
1.25 (mean) | Turgeon et al. 2008 [21] |
Substrate | Enzyme | CoNeS | Disease |
---|---|---|---|
phenylalanine | PAH | −0.23 | PKU |
tyrosine | TAT | −0.48 | TYRSN2 |
hydroxyphenylpyruvate | HPD | +0.23 | TYRSN3 HWKS |
homogentisic acid | HGD | −0.22 | AKU |
maleylacetoacetate | MAAI | +1.87 | MAAID |
fumarylacetoacetate | FAH | −0.24 | TYRSN1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gramer, G.; Wortmann, S.B.; Fang-Hoffmann, J.; Kohlmüller, D.; Okun, J.G.; Prokisch, H.; Meitinger, T.; Hoffmann, G.F. New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center. Int. J. Neonatal Screen. 2024, 10, 17. https://doi.org/10.3390/ijns10010017
Gramer G, Wortmann SB, Fang-Hoffmann J, Kohlmüller D, Okun JG, Prokisch H, Meitinger T, Hoffmann GF. New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center. International Journal of Neonatal Screening. 2024; 10(1):17. https://doi.org/10.3390/ijns10010017
Chicago/Turabian StyleGramer, Gwendolyn, Saskia B. Wortmann, Junmin Fang-Hoffmann, Dirk Kohlmüller, Jürgen G. Okun, Holger Prokisch, Thomas Meitinger, and Georg F. Hoffmann. 2024. "New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center" International Journal of Neonatal Screening 10, no. 1: 17. https://doi.org/10.3390/ijns10010017
APA StyleGramer, G., Wortmann, S. B., Fang-Hoffmann, J., Kohlmüller, D., Okun, J. G., Prokisch, H., Meitinger, T., & Hoffmann, G. F. (2024). New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center. International Journal of Neonatal Screening, 10(1), 17. https://doi.org/10.3390/ijns10010017