Inflammatory Bowel Disease: Pathogenesis, Diagnosis and Current Therapeutic Approach
Abstract
:Introduction
Discussion
Pathogenesis
Genetic factors
Environmental factors
Immunological factors
Clinical aspects of IBD
Intestinal manifestations of IBD
Extra-intestinal manifestations of IBD
The diagnosis of IBD
The endoscopic procedures
Imaging evaluation
Computed tomography
Magnetic resonance imaging
The treatment of IBD
Aminosalicylates
Corticosteroids
Immunomodulators
Thiopurines
Methotrexate
Calcineurin inhibitors
Biologics
Novel Therapies
Changing the intestinal microbiota
Conclusions
Conflict of interest disclosure
Compliance with ethical standards
References
- Jostins, L.; Ripke, S.; Weersma, R.K.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012, 491, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; Foster, S.J.; Moran, A.P.; Fernandez-Luna, J.L.; Nuñez, G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem. 2003, 278, 5509–5512. [Google Scholar] [CrossRef] [PubMed]
- Kuballa, P.; Huett, A.; Rioux, J.D.; Daly, M.J.; Xavier, R.J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One. 2008, 3, e3391. [Google Scholar] [CrossRef] [PubMed]
- Sergiu, M.I.; Elena, M.M.; Marilena, M.; Andrada, D.; Emanuela, P.R. Microbiota: the missing link in the etiology of inflammatory bowel disease. J Mind Med Sci. 2020, 7, 29–33. [Google Scholar] [CrossRef]
- Duerr, R.H.; Taylor, K.D.; Brant, S.R.; Rioux, J.D.; Silverberg, M.S.; Daly, M.J.; Steinhart, A.H.; Abraham, C.; Regueiro, M.; Griffiths, A.; Dassopoulos, T.; Bitton, A.; Yang, H.; Targan, S.; Datta, L.W.; Kistner, E.O.; Schumm, L.P.; Lee, A.T.; Gregersen, P.K.; Barmada, M.M.; Rotter, J.I.; Nicolae, D.L.; Cho, J.H. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006, 314, 1461–1463. [Google Scholar] [CrossRef]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef]
- Brand, S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 2009, 58, 1152–1167. [Google Scholar] [CrossRef]
- Loftus, E.V., Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004, 126, 1504–1517. [Google Scholar] [CrossRef]
- Cosnes, J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol. 2004, 18, 481–496. [Google Scholar] [CrossRef]
- Peneş, N.O.; Weber, B.; Păun, S.D. Role of genetic polymorphism in nutritional supplementation therapy in personalized medicine. Rom J Morphol Embryol. 2017, 58, 53–58. [Google Scholar]
- Birrenbach, T.; Böcker, U. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis. 2004, 10, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Higuchi, L.M.; Huang, E.S.; Khalili, H.; Richter, J.M.; Fuchs, C.S.; Chan, A.T. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med. 2012, 156, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.Y.; Blanchard, J.F.; Bernstein, C.N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010, 105, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Thia, K.T.; Loftus, E.V., Jr.; Sandborn, W.J.; Yang, S.K. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol. 2008, 103, 3167–3182. [Google Scholar] [CrossRef]
- Tan, W.C.; Qiu, D.; Liam, B.L.; Ng, T.P.; Lee, S.H.; van Eeden, S.F.; D'Yachkova, Y.; Hogg, J.C. The human bone marrow response to acute air pollution caused by forest fires. Am J Respir Crit Care Med. 2000, 161 Pt 1, 1213–1217. [Google Scholar] [CrossRef]
- van Eeden, S.F.; Tan, W.C.; Suwa, T.; Mukae, H.; Terashima, T.; Fujii, T.; Qui, D.; Vincent, R.; Hogg, J.C. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am J Respir Crit Care Med. 2001, 164, 826–830. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Hubbard, J.; Korzenik, J.; Sands, B.E.; Panaccione, R.; Ghosh, S.; Wheeler, A.J.; Villeneuve, P.J. The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol. 2010, 105, 2412–2419. [Google Scholar] [CrossRef]
- Vernia, F.; Valvano, M.; Longo, S.; Cesaro, N.; Viscido, A.; Latella, G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients. 2022, 14, 269. [Google Scholar] [CrossRef]
- Prevention and management of osteoporosis. World Health Organ Tech Rep Ser. 2003, 921, 1–164.
- Domazetovic, V.; Iantomasi, T.; Bonanomi, A.G.; Stio, M. Vitamin D regulates claudin-2 and claudin-4 expression in active ulcerative colitis by p-Stat-6 and Smad-7 signaling. Int J Colorectal Dis. 2020, 35, 1231–1242. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, P.Y.; Zhu, J.; Chen, G.W.; Zhang, J.L.; Chen, Z.Y.; Zuo, S.; Liu, Y.C.; Pan, Y.S. Protective effect of 1,25-dihydroxyvitamin d3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in caco-2 cell monolayers. Inflammation. 2015, 38, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Chen, Y.; Shi, Y.; Liu, T.; Cao, Y.; Tang, Y.; Ge, X.; Nie, H.; Zheng, C.; Li, Y.C. 1,25-Dihydroxyvitamin D Protects Intestinal Epithelial Barrier by Regulating the Myosin Light Chain Kinase Signaling Pathway. Inflamm Bowel Dis. 2015, 21, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Lu, R.; Xia, Y.; Zhou, D.; Petrof, E.; Claud, E.C.; Sun, J. Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. Inflamm Bowel Dis. 2019, 25, 97–110. [Google Scholar] [CrossRef]
- Garg, M.; Royce, S.G.; Tikellis, C.; Shallue, C.; Sluka, P.; Wardan, H.; Hosking, P.; Monagle, S.; Thomas, M.; Lubel, J.S.; Gibson, P.R. The intestinal vitamin D receptor in inflammatory bowel disease: inverse correlation with inflammation but no relationship with circulating vitamin D status. Therap Adv Gastroenterol. 2019, 12, 1756284818822566. [Google Scholar] [CrossRef]
- Abreu-Delgado, Y.; Isidro, R.A.; Torres, E.A.; González, A.; Cruz, M.L.; Isidro, A.A.; González-Keelan, C.I.; Medero, P.; Appleyard, C.B. Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease. World J Gastroenterol. 2016, 22, 3581–3591. [Google Scholar] [CrossRef]
- Chen, Y.; Du, J.; Zhang, Z.; Liu, T.; Shi, Y.; Ge, X.; Li, Y.C. MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm Bowel Dis. 2014, 20, 1910–1918. [Google Scholar] [CrossRef]
- Raftery, T.; Martineau, A.R.; Greiller, C.L.; Ghosh, S.; McNamara, D.; Bennett, K.; Meddings, J.; O'Sullivan, M. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn's disease: Results from a randomised double-blind placebo-controlled study. United European Gastroenterol J. 2015, 3, 294–302. [Google Scholar] [CrossRef]
- Garg, M.; Rosella, O.; Rosella, G.; Wu, Y.; Lubel, J.S.; Gibson, P.R. Evaluation of a 12-week targeted vitamin D supplementation regimen in patients with active inflammatory bowel disease. Clin Nutr. 2018, 37, 1375–1382. [Google Scholar] [CrossRef]
- Li, M.; Weigmann, B. A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites. 2022, 12, 31. [Google Scholar] [CrossRef]
- Alzoghaibi, M.A. Concepts of oxidative stress and antioxidant defense in Crohn's disease. World J Gastroenterol. 2013, 19, 6540–6547. [Google Scholar] [CrossRef]
- Veljaca, M.; Lesch, C.A.; Pllana, R.; Sanchez, B.; Chan, K.; Guglietta, A. BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats. J Pharmacol Exp Ther. 1995, 272, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Tanabe, S.; Suzuki, T. Differential effects of flavonoids on barrier integrity in human intestinal Caco-2 cells. J Agric Food Chem. 2012, 60, 4628–4633. [Google Scholar] [CrossRef]
- Brückner, M.; Westphal, S.; Domschke, W.; Kucharzik, T.; Lügering, A. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohns Colitis. 2012, 6, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Guazelli, C.F.S.; Fattori, V.; Ferraz, C.R.; Borghi, S.M.; Casagrande, R.; Baracat, M.M.; Verri, W.A., Jr. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021, 333, 109315. [Google Scholar] [CrossRef]
- Hong, Z.; Piao, M. Effect of Quercetin Monoglycosides on Oxidative Stress and Gut Microbiota Diversity in Mice with Dextran Sodium Sulphate-Induced Colitis. Biomed Res Int. 2018, 2018, 8343052. [Google Scholar] [CrossRef]
- Ren, J.; Yue, B.; Wang, H.; Zhang, B.; Luo, X.; Yu, Z.; Zhang, J.; Ren, Y.; Mani, S.; Wang, Z.; Dou, W. Acacetin Ameliorates Experimental Colitis in Mice via Inhibiting Macrophage Inflammatory Response and Regulating the Composition of Gut Microbiota. Front Physiol. 2021, 11, 577237. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C., Jr. Innate immunity. N Engl J Med. 2000, 343, 338–344. [Google Scholar] [CrossRef]
- Bonen, D.K.; Ogura, Y.; Nicolae, D.L.; Inohara, N.; Saab, L.; Tanabe, T.; Chen, F.F.; Foster, S.J.; Duerr, R.H.; Brant, S.R.; Cho, J.H.; Nuñez, G. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003, 124, 140–146. [Google Scholar] [CrossRef]
- Wehkamp, J.; Harder, J.; Weichenthal, M.; Schwab, M.; Schäffeler, E.; Schlee, M.; Herrlinger, K.R.; Stallmach, A.; Noack, F.; Fritz, P.; Schröder, J.M.; Bevins, C.L.; Fellermann, K.; Stange, E.F. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004, 53, 1658–1664. [Google Scholar] [CrossRef]
- Abraham, C.; Cho, J.H. Functional consequences of NOD2 (CARD15) mutations. Inflamm Bowel Dis. 2006, 12, 641–650. [Google Scholar] [CrossRef]
- Watanabe, T.; Kitani, A.; Murray, P.J.; Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol. 2004, 5, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu Rev Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Breese, E.; Braegger, C.P.; Corrigan, C.J.; Walker-Smith, J.A.; MacDonald, T.T. Interleukin-2-and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993, 78, 127–131. [Google Scholar]
- Heller, F.; Florian, P.; Bojarski, C.; Richter, J.; Christ, M.; Hillenbrand, B.; Mankertz, J.; Gitter, A.H.; Bürgel, N.; Fromm, M.; Zeitz, M.; Fuss, I.; Strober, W.; Schulzke, J.D. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005, 129, 550–564. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Biancheri, P.; Rovedatti, L.; MacDonald, T.T.; Corazza, G.R. New pathogenic paradigms in inflammatory bowel disease. Inflamm Bowel Dis. 2012, 18, 368–371. [Google Scholar] [CrossRef]
- Rovedatti, L.; Kudo, T.; Biancheri, P.; Sarra, M.; Knowles, C.H.; Rampton, D.S.; Corazza, G.R.; Monteleone, G.; Di Sabatino, A.; Macdonald, T.T. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009, 58, 1629–1636. [Google Scholar] [CrossRef]
- Vainer, B.; Nielsen, O.H.; Hendel, J.; Horn, T.; Kirman, I. Colonic expression and synthesis of interleukin 13 and interleukin 15 in inflammatory bowel disease. Cytokine. 2000, 12, 1531–1536. [Google Scholar] [CrossRef]
- Bernardo, D.; Vallejo-Díez, S.; Mann, E.R.; Al-Hassi, H.O.; Martínez-Abad, B.; Montalvillo, E.; Tee, C.T.; Murugananthan, A.U.; Núñez, H.; Peake, S.T.; Hart, A.L.; Fernández-Salazar, L.; Garrote, J.A.; Arranz, E.; Knight, S.C. IL-6 promotes immune responses in human ulcerative colitis and induces a skin-homing phenotype in the dendritic cells and Tcells they stimulate. Eur J Immunol. 2012, 42, 1337–1353. [Google Scholar] [CrossRef]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef]
- Mekhjian, H.S.; Switz, D.M.; Melnyk, C.S.; Rankin, G.B.; Brooks, R.K. Clinical features and natural history of Crohn's disease. Gastroenterology. 1979, 77 Pt 2, 898–906. [Google Scholar] [CrossRef]
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg Clin North Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef]
- Greenstein, A.J.; Sachar, D.B.; Gibas, A.; Schrag, D.; Heimann, T.; Janowitz, H.D.; Aufses, A.H., Jr. Outcome of toxic dilatation in ulcerative and Crohn's colitis. J Clin Gastroenterol. 1985, 7, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, F.A.; Micu, S.I.; Popoiag, R.E.; Musat, M.; Caloian, A.D.; Calu, D.; Constantin, V.D.; Balan, D.G.; Nitipir, C.; Enache, F. Intestinal dysbiosis – a new treatment target in the prevention of colorectal cancer. J Mind Med Sci. 2021, 8, 221–228. [Google Scholar] [CrossRef]
- Tozer, P.J.; Whelan, K.; Phillips, R.K.; Hart, A.L. Etiology of perianal Crohn's disease: role of genetic, microbiological, and immunological factors. Inflamm Bowel Dis. 2009, 15, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Beaugerie, L.; Seksik, P.; Nion-Larmurier, I.; Gendre, J.P.; Cosnes, J. Predictors of Crohn's disease. Gastroenterology. 2006, 130, 650–656. [Google Scholar] [CrossRef]
- Mishra, N.; Parmar, K.K.; Huda, T. The comparison between the medical and the surgical management of chronic anal fissures. J Clin Invest Surg. 2021, 6, 11–16. [Google Scholar] [CrossRef]
- De Dombal, F.T.; Watts, J.M.; Watkinson, G.; Goligher, J.C. Local complications of ulcerative colitis: stricture, pseudopolyposis, and carcinoma of colon and rectum. Br Med J. 1966, 1, 1442–1447. [Google Scholar] [CrossRef]
- Bernstein, C.N.; Blanchard, J.F.; Rawsthorne, P.; Yu, N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol. 2001, 96, 1116–1122. [Google Scholar] [CrossRef]
- Park, S.K.; Wong, Z.; Park, S.H.; Vu, K.V.; Bang, K.B.; Piyachaturawat, P.; Myint, T.; Hilmi, I.; Park, D.I. Extraintestinal manifestation of inflammatory bowel disease in Asian patients: A multinational study. Dig Liver Dis. 2021, 53, 196–201. [Google Scholar] [CrossRef]
- Biancone, L.; Mandal, A.; Yang, H.; Dasgupta, T.; Paoluzi, A.O.; Marcheggiano, A.; Paoluzi, P.; Pallone, F.; Das, K.M. Production of immunoglobulin G and G1 antibodies to cytoskeletal protein by lamina propria cells in ulcerative colitis. Gastroenterology. 1995, 109, 3–12. [Google Scholar] [CrossRef]
- Manea, M.; Marcu, D.; Motofei, I.; et al. Cardiovascular risk in patients with inflammatory bowel diseases: a review. Romanian Biotechnological Letters. 2019, 24, 366–373. [Google Scholar] [CrossRef]
- Geng, X.; Biancone, L.; Dai, H.H.; Lin, J.J.; Yoshizaki, N.; Dasgupta, A.; Pallone, F.; Das, K.M. Tropomyosin isoforms in intestinal mucosa: production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology. 1998, 114, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Roussomoustakaki, M.; Satsangi, J.; Welsh, K.; Louis, E.; Fanning, G.; Targan, S.; Landers, C.; Jewell, D.P. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology. 1997, 112, 1845–1853. [Google Scholar] [CrossRef]
- Ott, C.; Schölmerich, J. Extraintestinal manifestations and complications in IBD. Nat Rev Gastroenterol Hepatol. 2013, 10, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.R.; Thiyagaraja, S.; Welsh, K.I.; Wordsworth, B.P.; Hill Gaston, J.S.; Jewell, D.P. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology. 2000, 118, 274–278. [Google Scholar] [CrossRef]
- Smale, S.; Natt, R.S.; Orchard, T.R.; Russell, A.S.; Bjarnason, I. Inflammatory bowel disease and spondylarthropathy. Arthritis Rheum. 2001, 44, 2728–2736. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Schoepfer, A.; Scharl, M.; Lakatos, P.L.; Navarini, A.; Rogler, G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015, 21, 1982–1992. [Google Scholar] [CrossRef]
- Su, C.G.; Judge, T.A.; Lichtenstein, G.R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Clin North Am. 2002, 31, 307–327. [Google Scholar] [CrossRef]
- Rodríguez-Reyna, T.S.; Martínez-Reyes, C.; Yamamoto-Furusho, J.K. Rheumatic manifestations of inflammatory bowel disease. World J Gastroenterol. 2009, 15, 5517–5524. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Stenson, W.F.; Brynskov, J.; Lorenz, R.G.; Steidle, G.M.; Robbins, J.L.; Kent, J.D.; Bloom, B.J. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clin Gastroenterol Hepatol. 2006, 4, 203–211. [Google Scholar] [CrossRef]
- Farmer, R.G.; Hawk, W.A.; Turnbull, R.B., Jr. Clinical patterns in Crohn's disease: a statistical study of 615 cases. Gastroenterology. 1975, 68 Pt 1, 627–635. [Google Scholar] [CrossRef]
- Fornaciari, G.; Salvarani, C.; Beltrami, M.; Macchioni, P.; Stockbrügger, R.W.; Russel, M.G. Muscoloskeletal manifestations in inflammatory bowel disease. Can J Gastroenterol. 2001, 15, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Sieper, J. The sacroiliac joint in the spondyloarthropathies. Curr Opin Rheumatol. 1996, 8, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Breban, M.; Gombert, B.; Amor, B.; Dougados, M. Efficacy of thalidomide in the treatment of refractory ankylosing spondylitis. Arthritis Rheum. 1999, 42, 580–581. [Google Scholar] [CrossRef]
- Karslioglu, B.; Tekin, A.C.; Tekin, E.; Tasatan, E. Ankle arthrodesis using computer assisted external fixator in patients with end-stage ankle arthrosis. J Clin Invest Surg. 2021, 6, 116–120. [Google Scholar] [CrossRef]
- Van den Bosch, F.; Kruithof, E.; De Vos, M.; De Keyser, F.; Mielants, H. Crohn's disease associated with spondyloarthropathy: effect of TNF-alpha blockade with infliximab on articular symptoms. Lancet. 2000, 356, 1821–1822. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Brun, L.; Ballabeni, P.; Pittet, V.; Prinz Vavricka, B.M.; Zeitz, J.; Rogler, G.; Schoepfer, A.M. Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am J Gastroenterol. 2011, 106, 110–119. [Google Scholar] [CrossRef]
- Greenstein, A.J.; Janowitz, H.D.; Sachar, D.B. The extra-intestinal complications of Crohn's disease and ulcerative colitis: a study of 700 patients. Medicine (Baltimore). 1976, 55, 401–412. [Google Scholar] [CrossRef]
- Timani, S.; Mutasim, D.F. Skin manifestations of inflammatory bowel disease. Clin Dermatol. 2008, 26, 265–273. [Google Scholar] [CrossRef]
- Kugathasan, S.; Miranda, A.; Nocton, J.; Drolet, B.A.; Raasch, C.; Binion, D.G. Dermatologic manifestations of Crohn disease in children: response to infliximab. J Pediatr Gastroenterol Nutr. 2003, 37, 150–154. [Google Scholar] [CrossRef]
- Ortego-Centeno, N.; Callejas-Rubio, J.L.; Sanchez-Cano, D.; Caballero-Morales, T. Refractory chronic erythema nodosum successfully treated with adalimumab. J Eur Acad Dermatol Venereol. 2007, 21, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Quin, A.; Kane, S.; Ulitsky, O. A case of fistulizing Crohn's disease and erythema nodosum managed with adalimumab. Nat Clin Pract Gastroenterol Hepatol. 2008, 5, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Callen, J.P. Pyoderma gangrenosum. Lancet. 1998, 351, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Orlov-Slavu, C.; Parosanu, A.; Olaru, M.; et al. How opportune is multigene testing in metastatic colorectal cancer? A review. J Mind Med Sci. 2021, 8, 215–220. [Google Scholar] [CrossRef]
- Bennett, M.L.; Jackson, J.M.; Jorizzo, J.L.; Fleischer, A.B., Jr.; White, W.L.; Callen, J.P. Pyoderma gangrenosum. A comparison of typical and atypical forms with an emphasis on time to remission. Case review of 86 patients from 2 institutions. Medicine (Baltimore). 2000, 79, 37–46. [Google Scholar] [CrossRef]
- Farhi, D.; Cosnes, J.; Zizi, N.; Chosidow, O.; Seksik, P.; Beaugerie, L.; Aractingi, S.; Khosrotehrani, K. Significance of erythema nodosum and pyoderma gangrenosum in inflammatory bowel diseases: a cohort study of 2402 patients. Medicine (Baltimore). 2008, 87, 281–293. [Google Scholar] [CrossRef]
- Powell, R.J.; Holbrook, M.R.; Stevens, A. Pyoderma gangrenosum and its treatment. Lancet. 1997, 350, 1720–1721. [Google Scholar] [CrossRef]
- Wollina, U.; Haroske, G. Pyoderma gangraenosum. Curr Opin Rheumatol. 2011, 23, 50–56. [Google Scholar] [CrossRef]
- Motofei, I.G.; Rowland, D.L.; Georgescu, S.R.; Tampa, M.; Paunica, S.; Constantin, V.D.; Balalau, C.; Manea, M.; Baleanu, B.C.; Sinescu, I. Post-Finasteride Adverse Effects in Male Androgenic Alopecia: A Case Report of Vitiligo. Skin Pharmacol Physiol. 2017, 30, 42–45. [Google Scholar] [CrossRef]
- Becuwe, C.; Delaporte, E.; Colombel, J.F.; Piette, F.; Cortot, A.; Bergoend, H. Sweet's syndrome associated with Crohn's disease. Acta Derm Venereol. 1989, 69, 444–445. [Google Scholar]
- Benton, E.C.; Rutherford, D.; Hunter, J.A. Sweet's syndrome and pyoderma gangrenosum associated with ulcerative colitis. Acta Derm Venereol. 1985, 65, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Kemmett, D.; Hunter, J.A. Sweet's syndrome: a clinicopathologic review of twenty-nine cases. J Am Acad Dermatol. 1990, 23 Pt 1, 503–507. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Manser, C.N.; Hediger, S.; et al. Periodontitis and gingivitis in inflammatory bowel disease: a case-control study. Inflamm Bowel Dis. 2013, 19, 2768–2777. [Google Scholar] [CrossRef] [PubMed]
- Thrash, B.; Patel, M.; Shah, K.R.; Boland, C.R.; Menter, A. Cutaneous manifestations of gastrointestinal disease: part II. J Am Acad Dermatol. 2013, 68, e1–e33. [Google Scholar] [CrossRef]
- Petrelli, E.A.; McKinley, M.; Troncale, F.J. Ocular manifestations of inflammatory bowel disease. Ann Ophthalmol. 1982, 14, 356–360. [Google Scholar]
- Fries, W.; Giofré, M.R.; Catanoso, M.; Lo Gullo, R. Treatment of acute uveitis associated with Crohn's disease and sacroileitis with infliximab. Am J Gastroenterol. 2002, 97, 499–500. [Google Scholar] [CrossRef]
- Yarur, A.J.; Czul, F.; Levy, C. Hepatobiliary manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2014, 20, 1655–1667. [Google Scholar] [CrossRef]
- Olsson, R.; Danielsson, A.; Järnerot, G.; Lindström, E.; Lööf, L.; Rolny, P.; Rydén, B.O.; Tysk, C.; Wallerstedt, S. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology. 1991, 100 Pt 1, 1319–1323. [Google Scholar] [CrossRef]
- Tischendorf, J.J.; Hecker, H.; Krüger, M.; Manns, M.P.; Meier, P.N. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: A single center study. Am J Gastroenterol. 2007, 102, 107–114. [Google Scholar] [CrossRef]
- Lindor, K.D. Ursodiol for primary sclerosing cholangitis. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med. 1997, 336, 691–695. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Tandon, P.; Kulkarni, G.; Rivas, J.; Charles, R. The role of endoscopy in inflammatory bowel disease. J Dig Dis. 2015, 16, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Mowat, C.; Cole, A.; Windsor, A.; Ahmad, T.; Arnott, I.; Driscoll, R.; Mitton, S.; Orchard, T.; Rutter, M.; Younge, L.; Lees, C.; Ho, G.T.; Satsangi, J.; Bloom, S.; IBD Section of the British Society of, Gastroenterology. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011, 60, 571–607. [Google Scholar] [CrossRef] [PubMed]
- Spiceland, C.M.; Lodhia, N. Endoscopy in inflammatory bowel disease: Role in diagnosis, management, and treatment. World J Gastroenterol. 2018, 24, 4014–4020. [Google Scholar] [CrossRef]
- Waye, J.D. The role of colonoscopy in the differential diagnosis of inflammatory bowel disease. Gastrointest Endosc. 1977, 23, 150–154. [Google Scholar] [CrossRef]
- Pera, A.; Bellando, P.; Caldera, D.; Ponti, V.; Astegiano, M.; Barletti, C.; David, E.; Arrigoni, A.; Rocca, G.; Verme, G. Colonoscopy in inflammatory bowel disease. Diagnostic accuracy and proposal of an endoscopic score. Gastroenterology. 1987, 92, 181–185. [Google Scholar] [CrossRef]
- Iacucci, M.; Furfaro, F.; Matsumoto, T.; Uraoka, T.; Smith, S.; Ghosh, S.; Kiesslich, R. Advanced endoscopic techniques in the assessment of inflammatory bowel disease: new technology, new era. Gut. 2019, 68, 562–572. [Google Scholar] [CrossRef]
- Subramanian, V.; Mannath, J.; Ragunath, K.; Hawkey, C.J. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment Pharmacol Ther. 2011, 33, 304–312. [Google Scholar] [CrossRef]
- Kiesslich, R.; Fritsch, J.; Holtmann, M.; Koehler, H.H.; Stolte, M.; Kanzler, S.; Nafe, B.; Jung, M.; Galle, P.R.; Neurath, M.F. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology. 2003, 124, 880–888. [Google Scholar] [CrossRef]
- Ibarra-Palomino, J.; Barreto-Zúñiga, R.; Elizondo-Rivera, J.; Bobadilla-Díaz, J.; Villegas-Jiménez, A. Aplicación de la cromoendoscopia para evaluar la gravedad y variabilidad interobservador en la colitis ulcerativa crónica inespecífica (CUCI) [Application of chromoendoscopy to evaluate the severity and interobserver variation in chronic non-specific ulcerative colitis]. Rev Gastroenterol Mex. 2002, 67, 236–240. [Google Scholar]
- Neumann, H.; Neurath, M.F.; Mudter, J. New endoscopic approaches in IBD. World J Gastroenterol. 2011, 17, 63–68. [Google Scholar] [CrossRef]
- Neumann, H.; Fujishiro, M.; Wilcox, C.M.; Mönkemüller, K. Present and future perspectives of virtual chromoendoscopy with i-scan and optical enhancement technology. Dig Endosc. 2014, 26 (Suppl. 1), 43–51. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Matsumoto, T.; Esaki, M.; Yao, T.; Iida, M. Mucosal vascular pattern in ulcerative colitis: observations using narrow band imaging colonoscopy with special reference to histologic inflammation. Int J Colorectal Dis. 2009, 24, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Sasanuma, S.; Ohtsuka, K.; Kudo, S.E.; Ogata, N.; Maeda, Y.; Misawa, M.; Mori, Y.; Kudo, T.; Hisayuki, T.; Wakamura, K.; Hayashi, T.; Katagiri, A.; Miyachi, H.; Baba, T.; Ishida, F. Narrow band imaging efficiency in evaluation of mucosal healing/relapse of ulcerative colitis. Endosc Int Open. 2018, 6, E518–E523. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Kiesslich, R.; Gui, X.; Panaccione, R.; Heatherington, J.; Akinola, O.; Ghosh, S. Beyond white light: optical enhancement in conjunction with magnification colonoscopy for the assessment of mucosal healing in ulcerative colitis. Endoscopy. 2017, 49, 553–559. [Google Scholar] [CrossRef]
- Klenske, E.; Atreya, R.; Hartmann, A.; Fischer, S.; Hirschmann, S.; Zundler, S.; Iaccuci, M.; Neurath, M.F.; Rath, T. Magnification endoscopy with optical chromoendoscopy shows strong correlation with histologic inflammation in patients with inflammatory bowel disease. Endosc Int Open. 2019, 7, E1018–E1026. [Google Scholar] [CrossRef]
- Neumann, H.; Vieth, M.; Neurath, M.F.; Atreya, R. Endocytoscopy allows accurate in vivo differentiation of mucosal inflammatory cells in IBD: a pilot study. Inflamm Bowel Dis. 2013, 19, 356–362. [Google Scholar] [CrossRef]
- Nakazato, Y.; Naganuma, M.; Sugimoto, S.; Bessho, R.; Arai, M.; Kiyohara, H.; Ono, K.; Nanki, K.; Mutaguchi, M.; Mizuno, S.; Kobayashi, T.; Hosoe, N.; Shimoda, M.; Abe, T.; Inoue, N.; Ogata, H.; Iwao, Y.; Kanai, T. Endocytoscopy can be used to assess histological healing in ulcerative colitis. Endoscopy. 2017, 49, 560–563. [Google Scholar] [CrossRef]
- Neumann, H.; Fuchs, F.S.; Vieth, M.; Atreya, R.; Siebler, J.; Kiesslich, R.; Neurath, M.F. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011, 33, 1183–1193. [Google Scholar] [CrossRef]
- Macé, V.; Ahluwalia, A.; Coron, E.; Le Rhun, M.; Boureille, A.; Bossard, C.; Mosnier, J.F.; Matysiak-Budnik, T.; Tarnawski, A.S. Confocal laser endomicroscopy: a new gold standard for the assessment of mucosal healing in ulcerative colitis. J Gastroenterol Hepatol. 2015, 30 (Suppl. 1), 85–92. [Google Scholar] [CrossRef]
- Hundorfean, G.; Chiriac, M.T.; Mihai, S.; Hartmann, A.; Mudter, J.; Neurath, M.F. Development and Validation of a Confocal Laser Endomicroscopy-Based Score for In Vivo Assessment of Mucosal Healing in Ulcerative Colitis Patients. Inflamm Bowel Dis. 2017, 24, 35–44. [Google Scholar] [CrossRef]
- Annunziata, M.L.; Caviglia, R.; Papparella, L.G.; Cicala, M. Upper gastrointestinal involvement of Crohn's disease: a prospective study on the role of upper endoscopy in the diagnostic work-up. Dig Dis Sci. 2012, 57, 1618–1623. [Google Scholar] [CrossRef] [PubMed]
- Paerregaard, A. What does the IBD patient hide in the upper gastrointestinal tract? Inflamm Bowel Dis. 2009, 15, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Nugent, F.W.; Roy, M.A. Duodenal Crohn's disease: an analysis of 89 cases. Am J Gastroenterol. 1989, 84, 249–254. [Google Scholar] [PubMed]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; Buderus, S.; Greer, M.L.; Dias, J.A.; Veereman-Wauters, G.; Lionetti, P.; Sladek, M.; Martin de Carpi, J.; Staiano, A.; Ruemmele, F.M.; Wilson, D.C.; European Society of Pediatric Gastroenterology, Hepatology, and Nutrition. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; Burisch, J.; Castiglione, F.; Eliakim, R.; Ellul, P.; González-Lama, Y.; Gordon, H.; Halligan, S.; Katsanos, K.; Kopylov, U.; Kotze, P.G.; Krustinš, E.; Laghi, A.; Limdi, J.K.; Rieder, F.; Rimola, J.; Taylor, S.A.; Tolan, D.; van Rheenen, P.; Verstockt, B.; Stoker, J.; European Crohn’s and Colitis Organisation [ECCO] and the European Society of Gastrointestinal and Abdominal Radiology [ESGAR]. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis. 2019, 13, 144–164. [Google Scholar] [CrossRef]
- Hilmi, I.; Kobayashi, T. Capsule endoscopy in inflammatory bowel disease: when and how. Intest Res. 2020, 18, 265–274. [Google Scholar] [CrossRef]
- Efthymiou, A.; Viazis, N.; Mantzaris, G.; Papadimitriou, N.; Tzourmakliotis, D.; Raptis, S.; Karamanolis, D.G. Does clinical response correlate with mucosal healing in patients with Crohn's disease of the small bowel? A prospective, case-series study using wireless capsule endoscopy. Inflamm Bowel Dis. 2008, 14, 1542–1547. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.D.; Fournier, L.; Smaïl-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology. 2020, 158, 76–94.e2. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Saito, H.; Kumagai, Y.; Shichijo, S.; Aoyama, K.; Tada, T. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc. 2019, 89, 416–421.e1. [Google Scholar] [CrossRef]
- Bossuyt, P.; Nakase, H.; Vermeire, S.; de Hertogh, G.; Eelbode, T.; Ferrante, M.; Hasegawa, T.; Willekens, H.; Ikemoto, Y.; Makino, T.; Bisschops, R. Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut. 2020, 69, 1778–1786. [Google Scholar] [CrossRef]
- Biernacka, K.B.; Barańska, D.; Grzelak, P.; Czkwianianc, E.; Szabelska-Zakrzewska, K. Up-to-date overview of imaging techniques in the diagnosis and management of inflammatory bowel diseases. Prz Gastroenterol. 2019, 14, 19–25. [Google Scholar] [CrossRef]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; Rieder, F.; Almer, S.; Armuzzi, A.; Harbord, M.; Langhorst, J.; Sans, M.; Chowers, Y.; Fiorino, G.; Juillerat, P.; Mantzaris, G.J.; Rizzello, F.; Vavricka, S.; Gionchetti, P.; ECCO. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn's Disease 2016: Part 1: Diagnosis and Medical Management. J Crohns Colitis. 2017, 11, 3–25. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, A.Y.; Yang, S.K.; Chung, J.W.; Kim, S.Y.; Park, S.H.; Ha, H.K. Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques. Radiology. 2009, 251, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.; Rubesova, E.; Bass, D. Role of imaging in the evaluation of inflammatory bowel disease: How much is too much? World J Radiol. 2016, 8, 124–131. [Google Scholar] [CrossRef]
- Deepak, P.; Bruining, D.H. Radiographical evaluation of ulcerative colitis. Gastroenterol Rep (Oxf). 2014, 2, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Lim, J.S. Computed tomography enterography for evaluation of inflammatory bowel disease. Clin Endosc. 2013, 46, 327–366. [Google Scholar] [CrossRef] [PubMed]
- Panés, J.; Bouzas, R.; Chaparro, M.; García-Sánchez, V.; Gisbert, J.P.; Martínez de Guereñu, B.; Mendoza, J.L.; Paredes, J.M.; Quiroga, S.; Ripollés, T.; Rimola, J. Systematic review: the use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn's disease. Aliment Pharmacol Ther. 2011, 34, 125–145. [Google Scholar] [CrossRef]
- Andersen, K.; Vogt, C.; Blondin, D.; Beck, A.; Heinen, W.; Aurich, V.; Häussinger, D.; Mödder, U.; Cohnen, M. Multi-detector CT-colonography in inflammatory bowel disease: prospective analysis of CT-findings to high-resolution video colonoscopy. Eur J Radiol. 2006, 58, 140–146. [Google Scholar] [CrossRef]
- Deepak, P.; Axelrad, J.E.; Ananthakrishnan, A.N. The Role of the Radiologist in Determining Disease Severity in Inflammatory Bowel Diseases. Gastrointest Endosc Clin N Am. 2019, 29, 447–470. [Google Scholar] [CrossRef]
- Desmond, A.N.; O'Regan, K.; Curran, C.; McWilliams, S.; Fitzgerald, T.; Maher, M.M.; Shanahan, F. Crohn's disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008, 57, 1524–1529. [Google Scholar] [CrossRef]
- Jamieson, D.H.; Shipman, P.; Jacobson, K. Magnetic resonance imaging of the perineum in pediatric patients with inflammatory bowel disease. Can J Gastroenterol. 2013, 27, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.S.; Harisinghani, M.G. MRI in patients with inflammatory bowel disease. J Magn Reson Imaging. 2011, 33, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Horsthuis, K.; Bipat, S.; Bennink, R.J.; Stoker, J. Inflammatory bowel disease diagnosed with, U.S.; MR, scintigraphy, and CT: meta-analysis of prospective studies. Radiology. 2008, 247, 64–79. [Google Scholar] [CrossRef]
- Oussalah, A.; Laurent, V.; Bruot, O.; Bressenot, A.; Bigard, M.A.; Régent, D.; Peyrin-Biroulet, L. Diffusion-weighted magnetic resonance without bowel preparation for detecting colonic inflammation in inflammatory bowel disease. Gut. 2010, 59, 1056–1065. [Google Scholar] [CrossRef]
- Buisson, A.; Joubert, A.; Montoriol, P.F.; Da Ines, D.; Hordonneau, C.; Pereira, B.; Garcier, J.M.; Bommelaer, G.; Petitcolin, V. Diffusion-weighted magnetic resonance imaging for detecting and assessing ileal inflammation in Crohn's disease. Aliment Pharmacol Ther. 2013, 37, 537–545. [Google Scholar] [CrossRef]
- Hordonneau, C.; Buisson, A.; Scanzi, J.; Goutorbe, F.; Pereira, B.; Borderon, C.; Da Ines, D.; Montoriol, P.F.; Garcier, J.M.; Boyer, L.; Bommelaer, G.; Petitcolin, V. Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn's disease: validation of quantitative index of activity. Am J Gastroenterol. 2014, 109, 89–98. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front Med (Lausanne). 2021, 8, 765474. [Google Scholar] [CrossRef]
- Ionescu, M.; Ionescu, P.; Suceveanu, A.P.; Stoian, A.P.; Motofei, I.; Ardeleanu, V.; Parepa, I.R. Cardiovascular risk estimation in young patients with ankylosing spondylitis: A new model based on a prospective study in Constanta County, Romania. Exp Ther Med. 2021, 21, 529. [Google Scholar] [CrossRef]
- Oh-Oka, K.; Kojima, Y.; Uchida, K.; Yoda, K.; Ishimaru, K.; Nakajima, S.; Hemmi, J.; Kano, H.; Fujii-Kuriyama, Y.; Katoh, R.; Ito, H.; Nakao, A. Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocarbon Receptor. Cell Mol Gastroenterol Hepatol. 2017, 4, 135–151. [Google Scholar] [CrossRef]
- Murray, A.; Nguyen, T.M.; Parker, C.E.; Feagan, B.G.; MacDonald, J.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2020, 8, CD000543. [Google Scholar] [CrossRef]
- Eaden, J.; Abrams, K.; Ekbom, A.; Jackson, E.; Mayberry, J. Colorectal cancer prevention in ulcerative colitis: a case-control study. Aliment Pharmacol Ther. 2000, 14, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Akobeng, A.K.; Zhang, D.; Gordon, M.; MacDonald, J.K. Oral 5-aminosalicylic acid for maintenance of medically-induced remission in Crohn's disease. Cochrane Database Syst Rev. 2016, 9, CD003715. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Ng, S.C.; Watkins, J.; Paridaens, K.; Edwards, J.O.; Fullarton, J.R.; Sonderegger, Y.L.Y.; Ghatnekar, O.; Ghosh, S. The use of 5-aminosalicylates in Crohn's disease: a retrospective study using the UK Clinical Practice Research Datalink. Ann Gastroenterol. 2020, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Coward, S.; Kuenzig, M.E.; Hazlewood, G.; Clement, F.; McBrien, K.; Holmes, R.; Panaccione, R.; Ghosh, S.; Seow, C.H.; Rezaie, A.; Kaplan, G.G. Comparative Effectiveness of Mesalamine, Sulfasalazine, Corticosteroids, and Budesonide for the Induction of Remission in Crohn's Disease: A Bayesian Network Meta-analysis. Inflamm Bowel Dis. 2017, 23, 461–472. [Google Scholar] [CrossRef]
- Hayashi, R.; Wada, H.; Ito, K.; Adcock, I.M. Effects of glucocorticoids on gene transcription. Eur J Pharmacol. 2004, 500, 51–62. [Google Scholar] [CrossRef]
- Barrett, K.; Saxena, S.; Pollok, R. Using corticosteroids appropriately in inflammatory bowel disease: a guide for primary care. Br J Gen Pract. 2018, 68, 497–498. [Google Scholar] [CrossRef]
- Curkovic, I.; Egbring, M.; Kullak-Ublick, G.A. Risks of inflammatory bowel disease treatment with glucocorticosteroids and aminosalicylates. Dig Dis. 2013, 31, 368–373. [Google Scholar] [CrossRef]
- Motofei, I.G. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf. 2021, 1–14. [Google Scholar] [CrossRef]
- Chhaya, V.; Saxena, S.; Cecil, E.; Subramanian, V.; Curcin, V.; Majeed, A.; Pollok, R.C. Steroid dependency and trends in prescribing for inflammatory bowel disease - a 20-year national population-based study. Aliment Pharmacol Ther. 2016, 44, 482–494. [Google Scholar] [CrossRef]
- Travis, S.P.; Danese, S.; Kupcinskas, L.; Alexeeva, O.; D'Haens, G.; Gibson, P.R.; Moro, L.; Jones, R.; Ballard, E.D.; Masure, J.; Rossini, M.; Sandborn, W.J. Once-daily budesonide MMX in active, mild-to-moderate ulcerative colitis: results from the randomised CORE II study. Gut. 2014, 63, 433–441. [Google Scholar] [CrossRef]
- Shin, J.Y.; Wey, M.; Umutesi, H.G.; Sun, X.; Simecka, J.; Heo, J. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function. J Biol Chem. 2016, 291, 13699–13714. [Google Scholar] [CrossRef]
- Yamada, S.; Yoshino, T.; Matsuura, M.; Kimura, M.; Koshikawa, Y.; Minami, N.; Toyonaga, T.; Honzawa, Y.; Nakase, H. Efficacy and Safety of Long-Term Thiopurine Maintenance Treatment in Japanese Patients With Ulcerative Colitis. Intest Res. 2015, 13, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Aliuș, C.; Bacalbașa, N.; Bălălău, C. Innovative Device for Indocianyne Green Navigational Surgery. J Mind Med Sci. 2020, 7, 40–45. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Niño, P.; Cara, C.; Rodrigo, L. Comparative effectiveness of azathioprine in Crohn's disease and ulcerative colitis: prospective, long-term, follow-up study of 394 patients. Aliment Pharmacol Ther. 2008, 28, 228–238. [Google Scholar] [CrossRef]
- Pugliese, D.; Aratari, A.; Festa, S.; Ferraro, P.M.; Monterubbianesi, R.; Guidi, L.; Scribano, M.L.; Papi, C.; Armuzzi, A. Sustained Clinical Efficacy and Mucosal Healing of Thiopurine Maintenance Treatment in Ulcerative Colitis: A Real-Life Study. Gastroenterol Res Pract. 2018, 2018, 4195968. [Google Scholar] [CrossRef]
- Pinto, A.L.; Chebli, L.A.; Ribeiro, M.S.; Pace, F.H.; Moraes, J.P.; do Amaral, F.J., Jr.; Gaburri, P.D.; Meirelles de Souza, A.F.; Chebli, J.M. Azathioprine therapy in steroid-dependent patients with Crohn disease: results of a 10-year longitudinal follow-up study. Med Sci Monit. 2009, 15, PI19–PI26. [Google Scholar] [PubMed]
- Connell, W.R.; Kamm, M.A.; Ritchie, J.K.; Lennard-Jones, J.E. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut. 1993, 34, 1081–1085. [Google Scholar] [CrossRef]
- Walker, T.R.; Leichter, A.M. 6-Thioguanine can cause serious liver injury in inflammatory bowel disease patients. J Pediatr Gastroenterol Nutr. 2004, 38, 232–233. [Google Scholar] [CrossRef]
- Jharap, B.; Seinen, M.L.; de Boer, N.K.; van Ginkel, J.R.; Linskens, R.K.; Kneppelhout, J.C.; Mulder, C.J.; van Bodegraven, A.A. Thiopurine therapy in inflammatory bowel disease patients: analyses of two 8-year intercept cohorts. Inflamm Bowel Dis. 2010, 16, 1541–1549. [Google Scholar] [CrossRef]
- van Dieren, J.M.; Kuipers, E.J.; Samsom, J.N.; Nieuwenhuis, E.E.; van der Woude, C.J. Revisiting the immunomodulators tacrolimus, methotrexate, and mycophenolate mofetil: their mechanisms of action and role in the treatment of IBD. Inflamm Bowel Dis. 2006, 12, 311–327. [Google Scholar] [CrossRef]
- Feagan, B.G.; Fedorak, R.N.; Irvine, E.J.; Wild, G.; Sutherland, L.; Steinhart, A.H.; Greenberg, G.R.; Koval, J.; Wong, C.J.; Hopkins, M.; Hanauer, S.B.; McDonald, J.W. A comparison of methotrexate with placebo for the maintenance of remission in Crohn's disease. North American Crohn's Study Group Investigators. N Engl J Med. 2000, 342, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Chande, N.; Wang, Y.; MacDonald, J.K.; McDonald, J.W. Methotrexate for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2014, 2014, CD006618. [Google Scholar] [CrossRef]
- Naganuma, M.; Fujii, T.; Watanabe, M. The use of traditional and newer calcineurin inhibitors in inflammatory bowel disease. J Gastroenterol. 2011, 46, 129–137. [Google Scholar] [CrossRef]
- Yoshino, T.; Nakase, H.; Honzawa, Y.; Matsumura, K.; Yamamoto, S.; Takeda, Y.; Ueno, S.; Uza, N.; Masuda, S.; Inui, K.; Chiba, T. Immunosuppressive effects of tacrolimus on macrophages ameliorate experimental colitis. Inflamm Bowel Dis. 2010, 16, 2022–2033. [Google Scholar] [CrossRef]
- Lichtiger, S.; Present, D.H.; Kornbluth, A.; Gelernt, I.; Bauer, J.; Galler, G.; Michelassi, F.; Hanauer, S. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med. 1994, 330, 1841–1845. [Google Scholar] [CrossRef]
- Van Assche, G.; D'Haens, G.; Noman, M.; Vermeire, S.; Hiele, M.; Asnong, K.; Arts, J.; D'Hoore, A.; Penninckx, F.; Rutgeerts, P. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology. 2003, 125, 1025–1031. [Google Scholar] [CrossRef]
- Stange, E.F.; Modigliani, R.; Peña, A.S.; Wood, A.J.; Feutren, G.; Smith, P.R. European trial of cyclosporine in chronic active Crohn's disease: a 12-month study. The European Study Group. Gastroenterology. 1995, 109, 774–782. [Google Scholar] [CrossRef]
- Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987, 40, 1256–1265. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakase, H.; Mikami, S.; Inoue, S.; Yoshino, T.; Takeda, Y.; Kasahara, K.; Ueno, S.; Uza, N.; Kitamura, H.; Tamaki, H.; Matsuura, M.; Inui, K.; Chiba, T. Long-term effect of tacrolimus therapy in patients with refractory ulcerative colitis. Aliment Pharmacol Ther. 2008, 28, 589–597. [Google Scholar] [CrossRef]
- Komaki, Y.; Komaki, F.; Ido, A.; Sakuraba, A. Efficacy and Safety of Tacrolimus Therapy for Active Ulcerative Colitis; A Systematic Review and Meta-analysis. J Crohns Colitis. 2016, 10, 484–494. [Google Scholar] [CrossRef]
- McSharry, K.; Dalzell, A.M.; Leiper, K.; El-Matary, W. Systematic review: the role of tacrolimus in the management of Crohn's disease. Aliment Pharmacol Ther. 2011, 34, 1282–1294. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Matsui, T.; Nakamura, M.; Iida, M.; Takazoe, M.; Suzuki, Y.; Hibi, T. A randomised dose finding study of oral tacrolimus (FK506) therapy in refractory ulcerative colitis. Gut. 2006, 55, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012, 119, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Rutgeerts, P.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Lu, J.; Horgan, K.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; de Villiers, W.J.; Present, D.; Sands, B.E.; Colombel, J.F. Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology. 2009, 137, 1250–1260. [Google Scholar] [CrossRef]
- Present, D.H.; Rutgeerts, P.; Targan, S.; Hanauer, S.B.; Mayer, L.; van Hogezand, R.A.; Podolsky, D.K.; Sands, B.E.; Braakman, T.; DeWoody, K.L.; Schaible, T.F.; van Deventer, S.J. Infliximab for the treatment of fistulas in patients with Crohn's disease. N Engl J Med. 1999, 340, 1398–1405. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Marano, C.; Zhang, H.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Colombel, J.F.; Reinisch, W.; Gibson, P.R.; Collins, J.; Järnerot, G.; Rutgeerts, P.; PURSUIT-Maintenance Study Group. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014, 146, 96–109.e1. [Google Scholar] [CrossRef]
- Limdi, J.K. Golimumab for ulcerative colitis: adding perspective to the pursuit. Frontline Gastroenterol. 2018, 9, 232–233. [Google Scholar] [CrossRef]
- Martineau, C.; Flourié, B.; Wils, P.; Vaysse, T.; Altwegg, R.; Buisson, A.; Amiot, A.; Pineton de Chambrun, G.; Abitbol, V.; Fumery, M.; Hébuterne, X.; Viennot, S.; Laharie, D.; Beaugerie, L.; Nancey, S.; Sokol, H.; Goli-Crohn Study Group. Efficacy and safety of golimumab in Crohn's disease: a French national retrospective study. Aliment Pharmacol Ther 2017, 46, 1077–084. [Google Scholar] [CrossRef]
- Adegbola, S.O.; Sahnan, K.; Warusavitarne, J.; Hart, A.; Tozer, P. Anti-TNF Therapy in Crohn's Disease. Int J Mol Sci. 2018, 19, 2244. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Kopylov, U.; Chowers, Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev. 2014, 13, 24–30. [Google Scholar] [CrossRef]
- Yamada, S.; Yoshino, T.; Matsuura, M.; Minami, N.; Toyonaga, T.; Honzawa, Y.; Tsuji, Y.; Nakase, H. Long-term efficacy of infliximab for refractory ulcerative colitis: results from a single center experience. BMC Gastroenterol. 2014, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. IL-23: a master regulator in Crohn disease. Nat Med. 2007, 13, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Almradi, A.; Hanzel, J.; Sedano, R.; Parker, C.E.; Feagan, B.G.; Ma, C.; Jairath, V. Clinical Trials of IL-12/IL-23 Inhibitors in Inflammatory Bowel Disease. BioDrugs. 2020, 34, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Rutgeerts, P.; Gasink, C.; Chan, D.; Lang, Y.; Pollack, P.; Colombel, J.F.; Wolf, D.C.; Jacobstein, D.; Johanns, J.; Szapary, P.; Adedokun, O.J.; Feagan, B.G.; Sandborn, W.J. Efficacy of Ustekinumab for Inducing Endoscopic Healing in Patients With Crohn's Disease. Gastroenterology. 2018, 155, 1045–1058. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Ferrante, M.; Bhandari, B.R.; Berliba, E.; Feagan, B.G.; Hibi, T.; Tuttle, J.L.; Klekotka, P.; Friedrich, S.; Durante, M.; Morgan-Cox, M.; Laskowski, J.; Schmitz, J.; D'Haens, G.R. Efficacy and Safety of Mirikizumab in a Randomized Phase 2 Study of Patients With Ulcerative Colitis. Gastroenterology. 2020, 158, 537–549.e10. [Google Scholar] [CrossRef]
- Wyant, T.; Fedyk, E.; Abhyankar, B. An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab. J Crohns Colitis. 2016, 10, 1437–1444. [Google Scholar] [CrossRef]
- Tang, M.T.; Keir, M.E.; Erickson, R.; Stefanich, E.G.; Fuh, F.K.; Ramirez-Montagut, T.; McBride, J.M.; Danilenko, D.M. Review article: nonclinical and clinical pharmacology, pharmacokinetics and pharmacodynamics of etrolizumab, an anti-β7 integrin therapy for inflammatory bowel disease. Aliment Pharmacol Ther. 2018, 47, 1440–1452. [Google Scholar] [CrossRef]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.J.; Danese, S.; Fox, I.; Milch, C.; Sankoh, S.; Wyant, T.; Xu, J.; Parikh, A.; GEMINI 1 Study Group. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013, 369, 699–710. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; Fox, I.; Rosario, M.; Sankoh, S.; Xu, J.; Stephens, K.; Milch, C.; Parikh, A.; GEMINI 2 Study Group. Vedolizumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 2013, 369, 711–721. [Google Scholar] [CrossRef]
- Scribano, M.L. Vedolizumab for inflammatory bowel disease: From randomized controlled trials to real-life evidence. World J Gastroenterol. 2018, 24, 2457–2467. [Google Scholar] [CrossRef]
- Christensen, B.; Gibson, P.R.; Micic, D.; Colman, R.J.; Goeppinger, S.R.; Kassim, O.; Yarur, A.; Weber, C.R.; Cohen, R.D.; Rubin, D.T. Safety and Efficacy of Combination Treatment With Calcineurin Inhibitors and Vedolizumab in Patients With Refractory Inflammatory Bowel Disease. Clin Gastroenterol Hepatol. 2019, 17, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Pellet, G.; Stefanescu, C.; Carbonnel, F.; Peyrin-Biroulet, L.; Roblin, X.; Allimant, C.; Nachury, M.; Nancey, S.; Filippi, J.; Altwegg, R.; Brixi, H.; Fotsing, G.; de Rosamel, L.; Shili, S.; Laharie, D.; Groupe d'Etude Thérapeutique des Affections Inflammatoires du tube Digestif. Efficacy and Safety of Induction Therapy With Calcineurin Inhibitors in Combination With Vedolizumab in Patients With Refractory Ulcerative Colitis. Clin Gastroenterol Hepatol. 2019, 17, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; O'Byrne, S.; Keir, M.; Williams, M.; Lu, T.T.; Mansfield, J.C.; Lamb, C.A.; Feagan, B.G.; Panes, J.; Salas, A.; Baumgart, D.C.; Schreiber, S.; Dotan, I.; Sandborn, W.J.; Tew, G.W.; Luca, D.; Tang, M.T.; Diehl, L.; Eastham-Anderson, J.; De Hertogh, G.; Perrier, C.; Egen, J.G.; Kirby, J.A.; van Assche, G.; Rutgeerts, P. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014, 384, 309–318. [Google Scholar] [CrossRef]
- Tran, V.; Shammas, R.M.; Sauk, J.S.; Padua, D. Evaluating tofacitinib citrate in the treatment of moderate-to-severe active ulcerative colitis: design, development and positioning of therapy. Clin Exp Gastroenterol. 2019, 12, 179–191. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D'Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; Friedman, G.; Lawendy, N.; Yu, D.; Woodworth, D.; Mukherjee, A.; Zhang, H.; Healey, P.; Panés, J.; OCTAVE Induction 1, OCTAVE Induction 2, and OCTAVE Sustain Investigators. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Vermeire, S.; Schreiber, S.; Petryka, R.; Kuehbacher, T.; Hebuterne, X.; Roblin, X.; Klopocka, M.; Goldis, A.; Wisniewska-Jarosinska, M.; Baranovsky, A.; Sike, R.; Stoyanova, K.; Tasset, C.; Van der Aa, A.; Harrison, P. Clinical remission in patients with moderate-to-severe Crohn's disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet. 2017, 389, 266–275. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Ghosh, S.; Panes, J.; Schreiber, S.; D'Haens, G.; Tanida, S.; Siffledeen, J.; Enejosa, J.; Zhou, W.; Othman, A.A.; Huang, B.; Higgins, P.D.R. Efficacy of Upadacitinib in a Randomized Trial of Patients With Active Ulcerative Colitis. Gastroenterology. 2020, 158, 2139–2149.e14. [Google Scholar] [CrossRef]
- Naganuma, M.; Yokoyama, Y.; Motoya, S.; Watanabe, K.; Sawada, K.; Hirai, F.; Yamamoto, T.; Hanai, H.; Omori, T.; Kanai, T.; Hibi, T.; CAPTAIN study Group. Efficacy of apheresis as maintenance therapy for patients with ulcerative colitis in an open-label prospective multicenter randomised controlled trial. J Gastroenterol. 2020, 55, 390–400. [Google Scholar] [CrossRef]
- Yoshino, T.; Nakase, H.; Minami, N.; Yamada, S.; Matsuura, M.; Yazumi, S.; Chiba, T. Efficacy and safety of granulocyte and monocyte adsorption apheresis for ulcerative colitis: a meta-analysis. Dig Liver Dis. 2014, 46, 219–226. [Google Scholar] [CrossRef]
- Fukuchi, T.; Nakase, H.; Ubukata, S.; Matsuura, M.; Yoshino, T.; Toyonaga, T.; Shimazu, K.; Koga, H.; Yamashita, H.; Ito, D.; Ashida, K. Therapeutic effect of intensive granulocyte and monocyte adsorption apheresis combined with thiopurines for steroid-and biologics-naïve Japanese patients with early-diagnosed Crohn's disease. BMC Gastroenterol. 2014, 13, 124. [Google Scholar] [CrossRef]
- Ocansey, D.K.W.; Wang, L.; Wang, J.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Mesenchymal stem cell-gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin Transl Med. 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.J.; Ullman, T.A.; Ford, A.C.; Abreu, M.T.; Abadir, A.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011, 106, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Uchino, M.; Ikeuchi, H.; Bando, T.; Chohno, T.; Sasaki, H.; Horio, Y.; Nakajima, K.; Takesue, Y. Efficacy of Preoperative Oral Antibiotic Prophylaxis for the Prevention of Surgical Site Infections in Patients With Crohn Disease: A Randomized Controlled Trial. Ann Surg. 2019, 269, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Townsend, C.M.; Parker, C.E.; MacDonald, J.K.; Nguyen, T.M.; Jairath, V.; Feagan, B.G.; Khanna, R. Antibiotics for induction and maintenance of remission in Crohn's disease. Cochrane Database Syst Rev. 2019, 2, CD012730. [Google Scholar] [CrossRef]
- Zhang, X.F.; Guan, X.X.; Tang, Y.J.; Sun, J.F.; Wang, X.K.; Wang, W.D.; Fan, J.M. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis. Eur J Nutr. 2021, 60, 2855–2875. [Google Scholar] [CrossRef]
- Mardini, H.E.; Grigorian, A.Y. Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis. 2014, 20, 1562–1567. [Google Scholar] [CrossRef]
- Yılmaz, İ.; Dolar, M.E.; Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk J Gastroenterol. 2019, 30, 242–253. [Google Scholar] [CrossRef]
- Kaur, L.; Gordon, M.; Baines, P.A.; Iheozor-Ejiofor, Z.; Sinopoulou, V.; Akobeng, A.K. Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2020, 3, CD005573. [Google Scholar] [CrossRef]
- Dumitriu, B.; Valcea, S.; Andrei, G.; Beuran, M. Evaluation of anemia as a postoperative risk factor in the evolution of patients with gastric resection for malignancies. J Clin Invest Surg. 2021, 6, 136–140. [Google Scholar] [CrossRef]
- Haifer, C.; Kelly, C.R.; Paramsothy, S.; Andresen, D.; Papanicolas, L.E.; McKew, G.L.; Borody, T.J.; Kamm, M.; Costello, S.P.; Andrews, J.M.; Begun, J.; Chan, H.T.; Connor, S.; Ghaly, S.; Johnson, P.D.; Lemberg, D.A.; Paramsothy, R.; Redmond, A.; Sheorey, H.; van der Poorten, D.; Leong, R.W. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020, 69, 801–810. [Google Scholar] [CrossRef]
- Stoian, A.P.; Hainarosie, R.; Pietrosanu, C.; Rusescu, A.; Andronache, L.F.; et al. Modern concepts in non-surgical esthetics; a review. J Mind Med Sci. 2019, 6, 190–195. [Google Scholar] [CrossRef]
- Paramsothy, S.; Paramsothy, R.; Rubin, D.T.; Kamm, M.A.; Kaakoush, N.O.; Mitchell, H.M.; Castaño-Rodríguez, N. Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. J Crohns Colitis. 2017, 11, 1180–1199. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; Lee, C.H. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015, 149, 102–109.e6. [Google Scholar] [CrossRef] [PubMed]
- Keskin, A.; Karslioglu, B. Did Covid-19 pandemic narrow the spectrum of surgical indications? J Clin Invest Surg. 2021, 6, 58–63. [Google Scholar] [CrossRef]
- Vermeire, S.; Joossens, M.; Verbeke, K.; Wang, J.; Machiels, K.; Sabino, J.; Ferrante, M.; Van Assche, G.; Rutgeerts, P.; Raes, J. Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. J Crohns Colitis. 2016, 10, 387–394. [Google Scholar] [CrossRef]
- Nagaishi, K.; Arimura, Y.; Fujimiya, M. Stem cell therapy for inflammatory bowel disease. J Gastroenterol. 2015, 50, 280–286. [Google Scholar] [CrossRef]
- Brierley, C.K.; Castilla-Llorente, C.; Labopin, M.; Badoglio, M.; Rovira, M.; Ricart, E.; Dierickx, D.; Vermeire, S.; Hasselblatt, P.; Finke, J.; Onida, F.; Cassinotti, A.; Satsangi, J.; Kazmi, M.; López-Sanromán, A.; Schmidt, C.; Farge, D.; Travis, S.P.L.; Hawkey, C.J.; Snowden, J.A.; European Society for Blood and Marrow Transplantation [EBMT] Autoimmune Diseases Working Party [ADWP]. Autologous Haematopoietic Stem Cell Transplantation for Crohn's Disease: A Retrospective Survey of Long-term Outcomes From the European Society for Blood and Marrow Transplantation. J Crohns Colitis. 2018, 12, 1097–1103. [Google Scholar] [CrossRef]
- Lindsay, J.O.; Allez, M.; Clark, M.; Labopin, M.; Ricart, E.; Rogler, G.; Rovira, M.; Satsangi, J.; Farge, D.; Hawkey, C.J.; ASTIC trial group; European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party; European Crohn's and Colitis Organisation. Autologous stem-cell transplantation in treatment-refractory Crohn's disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol Hepatol. 2017, 2, 399–406. [Google Scholar] [CrossRef]
- Snowden, J.A.; Ansari, A.; Sachchithanantham, S.; Jackson, G.; Thompson, N.; Lobo, A.; Sanderson, J.; Kazmi, M. Autologous stem cell transplantation in severe treatment-resistant Crohn's disease: long-term follow-up of UK patients treated on compassionate basis. QJM. 2014, 107, 871–877. [Google Scholar] [CrossRef]
- López-García, A.; Rovira, M.; Jauregui-Amezaga, A.; Marín, P.; Barastegui, R.; Salas, A.; Ribas, V.; Feu, F.; Elizalde, J.I.; Fernández-Avilés, F.; Martínez, C.; Gutiérrez, G.; Rosiñol, L.; Carreras, E.; Urbano, A.; Lozano, M.; Cid, J.; Suárez-Lledó, M.; Masamunt, M.C.; Comas, D.; Giner, A.; Gallego, M.; Alfaro, I.; Ordás, I.; Panés, J.; Ricart, E. Autologous Haematopoietic Stem Cell Transplantation for Refractory Crohn's Disease: Efficacy in a Single-Centre Cohort. J Crohns Colitis. 2017, 11, 1161–1168. [Google Scholar] [CrossRef]
- Mishra, R.; Dhawan, P.; Srivastava, A.S.; Singh, A.B. Inflammatory bowel disease: Therapeutic limitations and prospective of the stem cell therapy. World J Stem Cells. 2020, 12, 1050–1066. [Google Scholar] [CrossRef] [PubMed]
- Vautrin, A.; Manchon, L.; Garcel, A.; Campos, N.; Lapasset, L.; Laaref, A.M.; Bruno, R.; Gislard, M.; Dubois, E.; Scherrer, D.; Ehrlich, J.H.; Tazi, J. Both anti-inflammatory and antiviral properties of novel drug candidate ABX464 are mediated by modulation of RNA splicing. Sci Rep. 2019, 9, 792. [Google Scholar] [CrossRef] [PubMed]
- Begon-Pescia, C.; Mielle, J.; Campose, N.; Chebli, K.; Manchon, L.; Santo, J.; Apolit, C.; Martin, K.; Lapasset, L.; Vautrin, A.; Scherrer, D.; Garcel, A.; Tazi, J.; Daien, C. THU0199 ABX464, a novel drug in the field of inflammation, increases MIR-124 and modulates macrophages and T-cell functions. Ann Rheum Dis. 2020, 79 (Suppl 1), 321–322. [Google Scholar] [CrossRef]
- Uysal, E.; Dokur, M.; Maralcan, G. Abdominal surgery in autoimmune and autoimmune related diseases; A review. J Clin Invest Surg. 2021, 6, 76–87. [Google Scholar] [CrossRef]
- Vermeire, S.; Hébuterne, X.; Napora, P.; Wisniewska-Jarosinska, M.; Kiss, G.; Bourreille, A.; Przemysław, Z.; Nitcheu, J.; Gineste, P.; Steens, J.M.; Ehrlich, H. OP21 ABX464 is safe and efficacious in a proof-of-concept study in ulcerative colitis patients. Journal of Crohn’s and Colitis. 2019, 13 (Suppl. 1), S014–S015. [Google Scholar] [CrossRef]
- Fay, N.C.; Muthusamy, B.P.; Nyugen, L.P.; Desai, R.C.; Taverner, A.; MacKay, J.; Seung, M.; Hunter, T.; Liu, K.; Chandalia, A.; Coyle, M.P.; Kim, H.L.; Postlethwaite, S.; Mangat, K.; Song, L.; Seto, E.; Alam, A.; Olson, C.V.; Feng, W.; Saberi, M.; Mahmood, T.A.; Mrsny, R.J. A Novel Fusion of IL-10 Engineered to Traffic across Intestinal Epithelium to Treat Colitis. J Immunol. 2020, 205, 3191–3204. [Google Scholar] [CrossRef]
© 2022 by the author. 2022 Adrian Silaghi, Vlad Denis Constantin, Bogdan Socea, Petrișor Banu, Vladimir Sandu, Liliana Florina Andronache, Anca Silvia Dumitriu, Stana Paunica
Share and Cite
Silaghi, A.; Constantin, V.D.; Socea, B.; Banu, P.; Sandu, V.; Andronache, L.F.; Dumitriu, A.S.; Paunica, S. Inflammatory Bowel Disease: Pathogenesis, Diagnosis and Current Therapeutic Approach. J. Mind Med. Sci. 2022, 9, 56-77. https://doi.org/10.22543/7674.91.P5677
Silaghi A, Constantin VD, Socea B, Banu P, Sandu V, Andronache LF, Dumitriu AS, Paunica S. Inflammatory Bowel Disease: Pathogenesis, Diagnosis and Current Therapeutic Approach. Journal of Mind and Medical Sciences. 2022; 9(1):56-77. https://doi.org/10.22543/7674.91.P5677
Chicago/Turabian StyleSilaghi, Adrian, Vlad Denis Constantin, Bogdan Socea, Petrișor Banu, Vladimir Sandu, Liliana Florina Andronache, Anca Silvia Dumitriu, and Stana Paunica. 2022. "Inflammatory Bowel Disease: Pathogenesis, Diagnosis and Current Therapeutic Approach" Journal of Mind and Medical Sciences 9, no. 1: 56-77. https://doi.org/10.22543/7674.91.P5677
APA StyleSilaghi, A., Constantin, V. D., Socea, B., Banu, P., Sandu, V., Andronache, L. F., Dumitriu, A. S., & Paunica, S. (2022). Inflammatory Bowel Disease: Pathogenesis, Diagnosis and Current Therapeutic Approach. Journal of Mind and Medical Sciences, 9(1), 56-77. https://doi.org/10.22543/7674.91.P5677