The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders
Abstract
:- Introduction
- Discussion
1. Background and application
1.1. Virtual reality and neurocognitive disorders
1.2. Virtual reality and specific diagnostic domains
2. VESPA project - Virtual Environment for Superior neuro-Psychiatry
2.1. Specification and application of VR in the clinical fields
- -
- First degree, in which the subject can perceive his presence within the environment where he is “immersed”;
- -
- Second degree, in which the subject is able to navigate within the environment;
- -
- Third degree, in which the subject can control exercise over the environment through the user.
2.2. Virtual Environment for a Superior neuro-PsychiAtry 1st Generation
- -
- The neuropsychological test administration (A - baseline, e.g. prior to the assessment);
- -
- The administration of the VESPA tasks (B treatment, organized in sessions)
- -
- The neuropsychological test administration (A’- e.g. - post assessment)
2.3. Virtual Environment for a Superior neuro-PsychiAtry 2nd Generation
- -
- The neuropsychological test administration (A - baseline, e.g. prior to the assessment);
- -
- The administration of VESPA tasks (B treatment, organized in sessions)
- -
- The neuropsychological test administration (A’- e.g. post assessment)
2.3.1. VESPA System Infrastructure and IT Services
- A cognitive software (The VESPA Training Software), developed under several formats (VR 3D, VR 2.5D, etc.), mixing Tasks/Exercises and training specific Cognitive and Executive functions; rehabilitation paths (Protocols) are expressed in terms of training Sessions combining several Tasks in a time slot on a specific device.
- An e-Infrastructure built on top of a cloud computing solution and hosting the necessary services for system operation such as:
- ○
- A management Web Application where doctors and caregivers can define treatment paths and monitor the patient’s performances (the VESPA Portal);
- ○
- A clinical database storing metrics related to the patient’s cognitive training activities;
- ○
- Other web services necessary to the near real-time management of information produced by the system and the training activities.
- A set of dedicated visualization devices such as:
- ○
- A CAVE Virtual Environment, an immersive VR environment where projectors are directed to the 2 to 6 walls of a room-sized cube (source: https://it.wikipedia.org/wiki/Cave_Automatic_Virtual_Environment);
- ○
- Touchable devices such as Tables, TV sets and Tablet PCs;
- ○
- Oculus Rift, Quest and Quest2 Head Mounted Display;
- ○
- MS Windows 10+ Personal Computers.
- A fully immersive VR 3D cognitive rehabilitation software exploiting the power of CAVE Virtual Environment;
- An Oculus 3D VR rehabilitation App;
- A mobile VR 2.5 App for cognitive rehabilitation for Tablets, Touch-screen tables and TV sets;
- A MS Windows rehabilitation App for Personal Computers;
- A multi-user Web Portal for the management of rehabilitation paths (for doctors) and the monitoring of performances (for caregivers and patients as well).
3.1. Rehabilitation task batteries
- Conclusions
- -
- Fully Immersive experience in a comfortable environment (Virtual Room).
- -
- Patient’s finger and gesture tracking, not available on other systems.
- -
- Integration in a unique device of services usually spread over a number of devices.
- -
- Full digitalization of external tools to be used (e.g. tests, puzzles, toys, etc.).
- -
- Tele-supervision through video-conferencing.
- -
- Huge computing and storage capabilities through the integrated and scalable Cloud services.
- -
- Multi-user portal.
Conflict of interest disclosure
Compliance with ethical standards
References
- Arlati, S.; Greci, L.; Mondellini, M.; Zangiacomi, A.; Santo, S.G.D.; Franchini, F.; Marzorati, M.; Mrakic-Sposta, S.; Vezzoli, A. A virtual reality-based physical and cognitive training system aimed at preventing symptoms of dementia. In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Cham, November 2017; Springer; pp. 117–125. [Google Scholar] [CrossRef]
- Di Giacomo, D. Public Health emergencies and quarantine: virtual patient engagement as challenge and opportunity for Mental Health strategy. Mediterranean Journal of Clinical Psychology 2020, 8. [Google Scholar] [CrossRef]
- Kurz, A. Cognitive stimulation, training, and rehabilitation. Dialogues in Clinical Neuroscience. 2019, 21, 35–41. [Google Scholar] [CrossRef]
- Muratore, M.; Tuena, C.; Pedroli, E.; et al. Virtual reality as a possible tool for the assessment of self-awareness. Front Behav Neurosci. 2019, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.; Griffin, C.; Coggins, W.; et al. Virtual Reality in the Neurosciences: Current Practice and Future Directions. Frontiers in Surgery. 2021, 8, 807195–807195. [Google Scholar] [CrossRef]
- Zucchella, C.; Sinforiani, E.; Tamburin, S.; Federico, A.; Mantovani, E.; Bernini, S.; Casale, R.; Bartolo, M. The multidisciplinary approach to Alzheimer’s disease and dementia. A narrative review of non-pharmacological treatment. Frontiers in Neurology 1058. [Google Scholar] [CrossRef]
- Goharinejad, S.; Goharinejad, S.; Hajesmaeel-Gohari, S.; Bahaadinbeigy, K. The usefulness of virtual, augmented, and mixed reality technologies in the diagnosis and treatment of attention deficit hyperactivity disorder in children: an overview of relevant studies. BMC Psychiatry 2022, 22, 1–13. [Google Scholar] [CrossRef]
- Hundert, A.S.; Birnie, K.A.; Abla, O.; Positano, K.; Cassiani, C.; Lloyd, S.; et al. A Pilot Randomized Controlled Trial of Virtual Reality Distraction to Reduce Procedural Pain During Subcutaneous Port Access in Children and Adolescents With Cancer. Clin J Pain 2022, 38, 189–196. [Google Scholar] [CrossRef]
- Magrini, M.; Curzio, O.; Tampucci, M.; Donzelli, G.; Cori, L.; Imiotti, M.C.; Maestro, S.; Moroni, D. Anorexia Nervosa, Body Image Perception and Virtual Reality Therapeutic Applications: State of the Art and Operational Proposal. International Journal of Environmental Research and Public Health 2022, 19, 2533. [Google Scholar] [CrossRef]
- Merlo, E.M. Opinion Article: The role of psychological features in chronic diseases, advancements and perspectives. Mediterranean Journal of Clinical Psychology 2019, 7. [Google Scholar] [CrossRef]
- Myles, L.A.M.; Merlo, E.M. Alexithymia and physical outcomes in psychosomatic subjects: a cross-sectional study. Journal of Mind and Medical Sciences 2021, 8, 86–93. [Google Scholar] [CrossRef]
- Myles, L.A.M.; Connolly, J.; Stanulewicz, N. The Mediating Role of Perceived Control and Desire for Control in the Relationship between Personality and Depression. Mediterranean Journal of Clinical Psychology 2020, 8. [Google Scholar] [CrossRef]
- Myles, L.A.M.; Merlo, E.; Obele, A. Desire for Control Moderates the Relationship between Perceived Control and Depressive Symptomology. Journal of Mind and Medical Sciences 2021, 8, 229–305. [Google Scholar] [CrossRef]
- Pappalardo, S.M. Vlad-Virtual Reality Application for Treatment of Psychosomatic Conditions: A report at final stage of software validation process. Mediterranean Journal of Clinical Psychology. 2020, 8. [Google Scholar] [CrossRef]
- Settineri, S.; Merlo, E.M.; Frisone, F.; Alibrandi, A.; Carrozzino, D.; Diaconu, C.C.; Pappalardo, S.M. Suppression Mental Questionnaire App: a mobile web service-based application for automated real-time evaluation of adolescent and adult suppression. Mediterranean Journal of Clinical Psychology. 2019, 7. [Google Scholar] [CrossRef]
- Tokgöz, P.; Hrynyschyn, R.; Hafner, J.; Schönfeld, S.; Dockweiler, C. Digital Health Interventions in Prevention, Relapse, and Therapy of Mild and Moderate Depression: Scoping Review. JMIR Mental Health 2021, 8, e26268. [Google Scholar] [CrossRef]
- Fatima, S.; Bashir, M.; Khan, K.; Farooq, S.; Shoaib, S.; Farhan, S. Effect of presence and absence of parents on the emotional maturity and perceived loneliness in adolescents. Journal of Mind and Medical Sciences 2021, 8, 259–266. [Google Scholar] [CrossRef]
- Cammisuli, D.M.; Cipriani, G.; Castelnuovo, G. Technological Solutions for Diagnosis, Management and Treatment of Alzheimer’s Disease-Related Symptoms: A Structured Review of the Recent Scientific Literature. International Journal of Environmental Research and Public Health. 2022, 19, 3122. [Google Scholar] [CrossRef]
- Fernández Montenegro, J.M.; Villarini, B.; Angelopoulou, A.; Kapetanios, E.; Garcia-Rodriguez, J.; Argyriou, V. A survey of alzheimer’s disease early diagnosis methods for cognitive assessment. Sensors 2020, 20, 7292. [Google Scholar] [CrossRef]
- Myles, L.A.M. The Emerging Role of Computational Psychopathology in Clinical Psychology. Mediterranean Journal of Clinical Psychology. 2021, 9. [Google Scholar] [CrossRef]
- Myles, L.A.M. Using Prediction Error to Account for the Pervasiveness of Mood Congruent Thoughts. Mediterranean Journal of Clinical Psychology. 2021, 9. [Google Scholar] [CrossRef]
- Walker, J.; Schlebusch, L.; Gaede, B. Support for family members who are caregivers to relatives with acquired brain injury. Journal of Mind and Medical Sciences 2021, 8, 76–85. [Google Scholar] [CrossRef]
- van den Bergh, R.; Bloem, B.R.; Meinders, M.J.; Evers, L.J. The state of telemedicine for persons with Parkinson’s disease. Current Opinion in Neurology 2021, 34, 589. [Google Scholar] [CrossRef]
- Rus-Calafell, M.; Garety, P.; Sason, E.; et al. Virtual reality in the assessment and treatment of psychosis: a systematic review of its utility, acceptability and effectiveness. Psychological Medicine 2018, 48, 362–391. [Google Scholar] [CrossRef]
- Valmaggia, L.R.; Latif, L.; Kempton, M.J.; Rus-Calafell, M. Virtual reality in the psychological treatment for mental health problems: An systematic review of recent evidence. Psychiatry Research. 2016, 236, 189–195. [Google Scholar] [CrossRef]
- Spinrad, N. Songs from the Stars; ISBN-10: 0671828266; Pocket Books: New York, 1981; p. 218. [Google Scholar]
- Heersmink, R. Preserving narrative identity for dementia patients: Embodiment, active environments, and distributed memory. Neuroethics 2022, 15, 1–16. [Google Scholar] [CrossRef]
- Maggio, M.G.; Piazzitta, D.; Andaloro, A.; Latella, D.; et al. Embodied cognition in neurodegenerative disorders: What do we know so far? A narrative review focusing on the mirror neuron system and clinical applications. Journal of Clinical Neuroscience. 2022, 98, 66–72. [Google Scholar] [CrossRef]
- Parisi, F. Environmental Pictures for the Body. Reti, Saperi, Linguaggi 2020, 7, 295–309. [Google Scholar] [CrossRef]
- Parisi, F. La sintonia sensomotoria nella realtà virtuale. Reti, Saperi, Linguaggi 2020, 7, 85–102. [Google Scholar] [CrossRef]
- Díaz Pérez, E.; Flórez-Lozano, J.A. Realidad virtual y demencia. Revista de Neurologia 2018, 66, 344–352. [Google Scholar] [CrossRef]
- Fernandez-Alvarez, J.; Colombo, D.; Suso-Ribera, C.; Chirico, A.; Serino, S.; Di Lernia, D.; et al. Using virtual reality to target positive autobiographical memory in individuals with moderate-to-moderately severe depressive symptoms: A single case experimental design. Internet Interventions. 2021, 25, 100407. [Google Scholar] [CrossRef]
- Faw, M.H.; Buley, T.; Malinin, L.H. Being There: Exploring Virtual Symphonic Experience as a Salutogenic Design Intervention for Older Adults. Frontiers in Psychology 2021, 12, 541656–541656. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Jones, D.; Moro, C. Use of virtual and augmented reality-based interventions in health education to improve dementia knowledge and attitudes: an integrative review. BMJ Open 2021, 11, e053616. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, Z.; Kimura, K.; Lithgow, B. Egocentric spatial orientation differences between Alzheimer’s disease at early stages and mild cognitive impairment: a diagnostic aid. Medical & Biological Engineering & Computing 2022, 60, 501–509. [Google Scholar] [CrossRef]
- Pillette, L.; Moreau, G.; Normand, J.M.; Perrier, M.; Lecuyer, A.; Cogne, M. A Systematic Review of Navigation Assistance Systems for People with Dementia. IEEE Transactions on Visualization and Computer Graphics. 2022. [CrossRef]
- Afifi, T.; Collins, N.; Rand, K.; Otmar, C.; Mazur, A.; Dunbar, N.E.; et al. Using Virtual Reality to Improve the Quality of Life of Older Adults with Cognitive Impairments and their Family Members who Live at a Distance. Health Communication. 2022, 1–12. [Google Scholar] [CrossRef]
- Alexander, C.M.; Martyr, A.; Savage, S.A.; Morris, R.G.; Clare, L. Measuring awareness in people with dementia: results of a systematic scoping review. Journal of Geriatric Psychiatry and Neurology 2021, 34, 335–348. [Google Scholar] [CrossRef]
- Bayahya, A.Y.; Alhalabi, W.; AlAmri, S.H. Smart health system to detect dementia disorders using virtual reality. Healthcare 2021, 9, 810. [Google Scholar] [CrossRef]
- Lee, B.; Lee, T.; Jeon, H.; Lee, S.; Kim, K.; Cho, W.; et al. Synergy through Integration of Wearable EEG and Virtual Reality for Mild Cognitive Impairment and Mild Dementia Screening. IEEE J Biomed Health Inform. 2022. [Google Scholar] [CrossRef]
- Isernia, S.; Cabinio, M.; Di Tella, S.; Pazzi, S.; Vannetti, F.; Gerli, F.; et al. Diagnostic Validity of the Smart Aging Serious Game: An Innovative Tool for Digital Phenotyping of Mild Neurocognitive Disorder. Journal of Alzheimer’s Disease 2021, 83, 1789–1801. [Google Scholar] [CrossRef]
- Tsai, C.F.; Chen, C.C.; Wu, E.H.K.; Chung, C.R.; Huang, C.Y.; Tsai, P.Y.; Yeh, S.C. A Machine-Learning-Based Assessment Method for Early-Stage Neurocognitive Impairment by an Immersive Virtual Supermarket. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2021, 29, 2124–2132. [Google Scholar] [CrossRef]
- Zhuang, L.; Yang, Y.; Gao, J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol 2021, 268, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.Q.M.D.; Pompeu, J.E.; Viveiro, L.A.P.D.; Brucki, S.M.D. Spatial orientation tasks show moderate to high accuracy for the diagnosis of mild cognitive impairment: a systematic literature review. Arquivos de Neuro-Psiquiatria 2020, 78, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Maronnat, F.; Seguin, M.; Djemal, K. Cognitive tasks modelization and description in VR environment for Alzheimer’s disease state identification. In Proceedings of the 10th International Conference on Image Processing Theory; IEEE, 2020; pp. 1–7. [Google Scholar]
- Tuena, C.; Mancuso, V.; Stramba-Badiale, C.; et al. Egocentric and allocentric spatial memory in mild cognitive impairment with real-world and virtual navigation tasks: A systematic review. Journal of Alzheimer’s Disease 2021, 79, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Abbadessa, G.; Brigo, F.; Clerico, M.; De Mercanti, S.; Trojsi, F.; Tedeschi, G.; Bonavita, S.; Lavorgna, L. Digital therapeutics in neurology. J Neurol 2021, 269, 1209–1224. [Google Scholar] [CrossRef]
- Feitosa, J.A.; Fernandes, C.A.; Casseb, R.F.; Castellano, G. Effects of virtual reality-based motor rehabilitation: a systematic review of fMRI studies. Journal of Neural Engineering. 2021. [CrossRef]
- Hao, J.; Xie, H.; Harp, K.; Chen, Z.; Siu, K.C. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Archives of Physical Medicine and Rehabilitation. 2021. [Google Scholar] [CrossRef]
- Sevcenko, K.; Lindgren, I. The effects of virtual reality training in stroke and Parkinson’s disease rehabilitation: a systematic review and a perspective on usability. European Review of Aging and Physical Activity 2022, 19, 1–16. [Google Scholar] [CrossRef]
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home- based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta- analysis. Neurological Sciences. 2022, 1–12. [Google Scholar] [CrossRef]
- Kang, S.; Lee, Y.H.; Lee, J.E. Metabolism-centric overview of the pathogenesis of Alzheimer’s disease. Yonsei Medical Journal 2017, 58, 479–488. [Google Scholar] [CrossRef]
- Bartoli, E.; Caso, F.; Magnani, G.; Baud-Bovy, G. Low-cost robotic assessment of visuo-motor deficits in Alzheimer’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017, 25, 852–860. [Google Scholar] [CrossRef]
- da Costa, R.Q.M.; Pompeu, J.E.; Moretto, E.; Silva, J.M.; Dos Santos, M.D.; Nitrini, R.; Brucki, S.M.D. Two Immersive Virtual Reality Tasks for the Assessment of Spatial Orientation in Older Adults with and Without Cognitive Impairment: Concurrent Validity, Group Comparison, and Accuracy Results. Journal of the International Neuropsychological Society. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Erickson, C.M.; Chin, N.A.; Coughlin, D.M.; Conway, C.E.; Rosario, H.L.; Johnson, S.C.; Clark, L.R. Virtual disclosure of preclinical Alzheimer’s biomarkers: Preliminary experiences. Journal of the American Geriatrics Society 2021, 69, 2044. [Google Scholar] [CrossRef] [PubMed]
- Villarini, B.; Angelopoulou, A.; Kapetanios, E.; Garcia- Rodriguez, J.; Argyriou, V. A Survey of Alzheimer’s Disease Early Diagnosis Methods for Cognitive Assessment. Sensors (Basel, Switzerland) 2020, 20, 7292. [Google Scholar] [CrossRef]
- Zhou, H.; Sabbagh, M.; Wyman, R.; Liebsack, C.; Kunik, M.E.; Najafi, B. Instrumented trail-making task to differentiate persons with no cognitive impairment, amnestic mild cognitive impairment, and Alzheimer disease: A proof of concept study. Gerontology 2017, 63, 189–200. [Google Scholar] [CrossRef]
- Banville, F.; Provencher, M.; Verhulst, E.; Richard, P.; Couture, J.F.; Flores, T.; Allain, P. Using the Virtual Multitasking Test to Assess the Realization of Intentions: A Preliminary Psychometric Study. Annual Review of Cybertherapy And Telemedicine 2018, 16, 94–100. [Google Scholar]
- Jiang, J.; Zhai, G.; Jiang, Z. Modeling the Self-navigation Behavior of Patients with Alzheimer’s Disease in Virtual Reality. In Proceedings of the International Conference on VR/AR and 3D Displays; Springer: Singapore, 2020; pp. 121–136. [Google Scholar] [CrossRef]
- Lancioni, G.; Singh, N.; O’Reilly, M.; Sigafoos, J.; D’Amico, F.; Laporta, D.; Scordamaglia, A.; Pinto, K. Tablet-based intervention to foster music-related hand responses and positive engagement in people with advanced Alzheimer’s disease. Journal of Enabling Technologies 2019, 13, 17–28. [Google Scholar] [CrossRef]
- Frasson, C.; Ai, Y.; Abdessalem, H.B. Zoo Therapy for Alzheimer’s Disease with Real-Time Speech Instruction and Neurofeedback System. Frontiers in Artificial Intelligence and Applications 2021, 338, 84–94. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; D’Amico, F.; Renna, C.; Pinto, K. Technology-aided programs to support positive verbal and physical engagement in persons with moderate or severe Alzheimer’s disease. Frontiers in Aging Neuroscience 2016, 8, 87. [Google Scholar] [CrossRef]
- Serino, S.; Pedroli, E.; Tuena, C.; De Leo, G.; Stramba- Badiale, M.; Goulene, K.; Mariotti, N.G.; Riva, G. A novel virtual reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer’s disease: a development- of-concept trial. Frontiers in Aging Neuroscience. 2017, 9, 240. [Google Scholar] [CrossRef]
- Sahihi, M.; Gaci, F.; Navizet, I. Identification of new alpha-synuclein fibrillogenesis inhibitor using in silico structure-based virtual screening. Journal of Molecular Graphics and Modelling 2021, 108, 108010. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat Rev Dis Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Lewy, F.H. Paralysis agitans., I. Pathologische anatomie. Handbuch der neurologie; ed Lewandowsky M; Springer-Verlag: Berlin, 1912; pp. 920–933. [Google Scholar]
- Xu, L.; Pu, J. Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinson’s Disease. 2016, 2016. [Google Scholar] [CrossRef]
- van den Bergh, R.; Bloem, B.R.; Meinders, M.J.; Evers, L.J. The state of telemedicine for persons with Parkinson’s disease. Curr Opin Neurol 2021, 34, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Sui, Y.; Shen, Y.; Zhu, Y.; Ali, N.; Guo, C.; Wang, T. Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: a systematic review and meta- analysis. Frontiers in Aging Neuroscience 2021, 13, 586999. [Google Scholar] [CrossRef]
- Lei, C.; Sunzi, K.; Dai, F.; Liu, X.; Wang, Y.; Zhang, B.; He, L.; Ju, M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS One 2019, 14, e0224819. [Google Scholar] [CrossRef]
- Santos, P.; Scaldaferri, G.; Santos, L.; Ribeiro, N.; Neto, M.; Melo, A. Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson’s disease: a systematic review and meta-analysis. NeuroRehabilitation 2019, 44, 569–577. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. New England Journal of Medicine 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Rezaee, K.; Zolfaghari, S. A direct classification approach to recognize stress levels in virtual reality therapy for patients with multiple sclerosis. Computational Intelligence 2021, 38, 249–268. [Google Scholar] [CrossRef]
- Zhang, T.; Shirani, A.; Zhao, Y.; Karim, M.E.; Gustafson, P.; Petkau, J.; et al. Beta-interferon exposure and onset of secondary progressive multiple sclerosis. European Journal of Neurology 2015, 22, 990–1000. [Google Scholar] [CrossRef]
- Kalron, A.; Achiron, A.; Pau, M.; Cocco, E. The effect of a telerehabilitation virtual reality intervention on functional upper limb activities in people with multiple sclerosis: a study protocol for the TEAMS pilot randomized controlled trial. Trials 2020, 21, 1–9. [Google Scholar] [CrossRef]
- Lozano-Quilis, J.A.; Gil-Gómez, H.; Gil-Gómez, J.A.; Albiol-Pérez, S.; Palacios-Navarro, G.; Fardoun, H.M.; Mashat, A.S. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games 2014, 2, e12. [Google Scholar] [CrossRef] [PubMed]
- Schiza, E.; Matsangidou, M.; Neokleous, K.; Pattichis, C.S. Virtual reality applications for neurological disease: a review. Frontiers in Robotics and, A.I. 2019, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Pérez, I.; Sánchez-Alcalá, M.; Nieto-Escámez, F.A.; et al. Virtual Reality-Based Therapy Improves Fatigue, Impact, and Quality of Life in Patients with Multiple Sclerosis. A Systematic Review with a Meta-Analysis. Sensors 2021, 21, 7389. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Lavorgna, L.; Carotenuto, A.; Petruzzo, M.; Lanzillo, R.; Brescia Morra, V.; Moccia, M. Digital Technology in Clinical Trials for Multiple Sclerosis: Systematic Review. Journal of Clinical Medicine 2021, 10, 2328. [Google Scholar] [CrossRef]
- Manuli, A.; Maggio, M.G.; Tripoli, D.; Gullì, M.; Cannavò, A.; La Rosa, G.; Sciarrone, F.; Avena, G.; Calabrò, R.S. Patients’ perspective and usability of innovation technology in a new rehabilitation pathway: An exploratory study in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders 2020, 44, 102312. [Google Scholar] [CrossRef]
- Meca-Lallana, V.; Prefasi, D.; Alabarcez, W.; Hernández, T.; García-Vaz, F.; Portaña, A.; et al. A pilot study to explore patient satisfaction with a virtual rehabilitation program in multiple sclerosis: the RehabVR study protocol. Frontiers in Neurology 2020, 11, 900. [Google Scholar] [CrossRef]
- Pagliari, C.; Di Tella, S.; Jonsdottir, J.; et al. Effects of home- based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. J Telemed Telecare. 2021, 1357633X211054839. [Google Scholar] [CrossRef]
- Gybas, V.; Kostolányová, K.; Klubal, L. Using augmented reality for teaching pupils with special educational needs. In Proceedings of the ECEL 2019 18th European Conference on e- Learning; Academic Conferences and publishing limited, 2019; p. 185. [Google Scholar]
- Frisone, F.; Sicari, F.; Settineri, S.; Merlo, E.M. Clinical psychological assessment of stress: a narrative review of the last 5 years. Clinical Neuropsychiatry 2021, 18, 91. [Google Scholar] [CrossRef]
- Boat, T.F.; Wu, J.T. Mental disorders and disabilities among low-income children. National Academies of Sciences, Engineering, and Medicine. (2015). In Mental Disorders and Disabilities Among low-income Children; National Academies Press, 2015. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, J.; Wu, S.; Chai, H.; Xu, Y. Game system for rehabilitation based on Kinect is effective for mental retardation. In Proceedings of the MATEC Web of Conferences; EDP Sciences, 2015; Volume 22, p. 01036. [Google Scholar] [CrossRef]
- Lotan, M.; Yalon-Chamovitz, S.; Weiss, P.L.T. Virtual reality as means to improve physical fitness of individuals at a severe level of intellectual and developmental disability. Res Dev Disabil 2010, 31, 869–874. [Google Scholar] [CrossRef]
- Standen, P.J.; Brown, D.J. Virtual reality in the rehabilitation of people with intellectual disabilities. Cyberpsychology & Behavior 2005, 8, 272–282. [Google Scholar] [CrossRef]
- Elkind, J.S. Use of virtual reality to diagnose and habilitate people with neurological dysfunctions. CyberPsychol & Behav 1998, 1, 263–273. [Google Scholar] [CrossRef]
- Esposito, G.; Marschik, P.B.; Nordahl-Hansen, A. Technological advancements in the assessment and intervention of developmental disabilities. Research in Developmental Disabilities 2021, 119, 104088. [Google Scholar] [CrossRef]
- Lotan, M.; Weiss, P.L. Improving Balance in Adults With Intellectual Developmental Disorder via Virtual Environments. Perceptual and Motor Skills 2021, 128, 2638–2653. [Google Scholar] [CrossRef] [PubMed]
- Selick, A.; Bobbette, N.; Lunsky, Y.; Hamdani, Y.; Rayner, J.; Durbin, J. Virtual health care for adult patients with intellectual and developmental disabilities: A scoping review. Disability and Health Journal 2021, 14, 101132. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Iglesias, D.; Martínez-de-Quel, Ó.; Marin Moldes, J.R.; Ayan Perez, C. Effects of Videogaming on the Physical, Mental Health, and Cognitive Function of People with Intellectual Disability: A Systematic Review of Randomized Controlled Trials. Games for Health Journal 2021, 10, 295–313. [Google Scholar] [CrossRef]
- Yang, H.Y.; Yeh, S.C.; Wu, E.H.K.; Hong, W. The Effectiveness of Virtual Reality Technology Applying in Vocational Training on Occupational Competency among the Students with Intellectual Disability in Senior High School. In Proceedings of the 2021 IEEE International Conference on Social Sciences and Intelligent Management (SSIM); 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Jdaitawi, M.T.; Kan’an, A.F. A Decade of Research on the Effectiveness of Augmented Reality on Students with Special Disability in Higher Education. Contemporary Educational Technol. 2022, 14. [Google Scholar] [CrossRef]
- Karami, B.; Koushki, R.; Arabgol, F.; Rahmani, M.; Vahabie, A.H. Effectiveness of Virtual/Augmented Reality-based therapeutic interventions on individuals with autism spectrum disorder: A comprehensive meta- analysis. Frontiers in Psychiatry 2021, 12, 665326. [Google Scholar] [CrossRef]
- Vasudevan, S.K.; Pranav, B.; Saravanan, G.; John, M.K.; Sasidharan, A. Virtual reality-based real-time solution for children with learning disabilities and slow learners-an innovative attempt. International Journal of Medical Engineering and Informatics 2022, 14, 165–175. [Google Scholar] [CrossRef]
- Bryant, L.; Brunner, M.; Hemsley, B. A review of virtual reality technologies in the field of communication disability: implications for practice and research. Disabil Rehabil Assist Technol 2020, 15, 365–372. [Google Scholar] [CrossRef]
- du Sert, O.P.; Potvin, S.; Lipp, O.; Dellazizzo, L.; Laurelli, M.; Breton, R.; et al. Virtual reality therapy for refractory auditory verbal hallucinations in schizophrenia: a pilot clinical trial. Schizophrenia Research 2018, 197, 176–181. [Google Scholar] [CrossRef]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- North, M.M.; North, S.M. Virtual reality therapy for treatment of psychological disorders. In Career Paths in Telemental Health; Springer: Cham, 2017; pp. 263–268. [Google Scholar] [CrossRef]
- Ehrlich, J.A.; Miller, J.R. A virtual environment for teaching social skills: AViSSS. IEEE Computer Graphics and Applications 2009, 29, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Faras, H.; Al Ateeqi, N.; Tidmarsh, L. Autism spectrum disorders. Annals of Saudi Medicine 2010, 30, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Hassan, H.K.; Fallahi, A.; et al. The relationship between spiritual health and social trust among students. Journal of Mind and Medical Sciences 2021, 8, 100–107. [Google Scholar] [CrossRef]
- Alpert, K.; Kogan, A.; Parrish, T.; Marcus, D.; Wang, L. The northwestern university neuroimaging data archive (NUNDA). NeuroImage 2016, 124, 1131–1136. [Google Scholar] [CrossRef]
- Jordan, W.J. Mental Health & Drugs; A Map the Mind. Journal of Mind and Medical Sciences 2020, 7, 133–140. [Google Scholar] [CrossRef]
- Lei, B.; Wu, F.; Zhou, J.; Xiong, D.; Wang, K.; Kong, L.; et al. NEURO-LEARN: A solution for collaborative pattern analysis of neuroimaging data. Neuroinformatics 2021, 19, 79–91. [Google Scholar] [CrossRef]
© 2022 by the author. 2022 Emanuele Maria Merlo, Liam Alexander MacKenzie Myles, Salvatore Marco Pappalardo
Share and Cite
Merlo, E.M.; Myles, L.A.M.; Pappalardo, S.M. The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders. J. Mind Med. Sci. 2022, 9, 16-27. https://doi.org/10.22543/7674.91.P1627
Merlo EM, Myles LAM, Pappalardo SM. The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders. Journal of Mind and Medical Sciences. 2022; 9(1):16-27. https://doi.org/10.22543/7674.91.P1627
Chicago/Turabian StyleMerlo, Emanuele Maria, Liam Alexander MacKenzie Myles, and Salvatore Marco Pappalardo. 2022. "The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders" Journal of Mind and Medical Sciences 9, no. 1: 16-27. https://doi.org/10.22543/7674.91.P1627
APA StyleMerlo, E. M., Myles, L. A. M., & Pappalardo, S. M. (2022). The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders. Journal of Mind and Medical Sciences, 9(1), 16-27. https://doi.org/10.22543/7674.91.P1627