Biostimulation with Low-Level Laser Therapy and Its Effects on Soft and Hard Tissue Regeneration. Literature Review
Abstract
:Introduction
Materials and Methods
Results
Photobiomodulation and its use in oral pathologies
Discussion
Highlights
- ✓
- Low-Level Laser Therapy improves the osseous integration of biomaterials and their properties.
- ✓
- Low-Level Laser Therapy significantly increases cellular adhesion on implant surfaces, having a positive impact on the enduring quality of grafting materials.
Conclusions
Conflict of interest disclosure
Compliance with ethical standards
Acknowledgments
Acronyms and abbreviations
LLLT | Low-Level Laser Therapy |
LASER | Light Amplification by Stimulated Emission of Radiation |
ATP | Adenosine-Triphosphate |
OM | oral mucositis |
PBM | photobiomodulation |
IL-1b | Interleukin 1b |
TNF-α | Tumor Necrosis Factor |
IFN | Interferon |
OCN | Osteocalcin |
BMP-2 | Bone Morphogenic Protein 2 |
EMD | Enamel Matrix Derivate |
LED | Light-emitting Diode |
hMSC | Human Mesenchymal Stromal Cells |
WALT | World Association for Laser Therapy |
References
- Scarano, A.; Lorusso, F.; Inchingolo, F.; Postiglione, F.; Petrini, M. The Effects of Erbium-Doped Yttrium Aluminum Garnet Laser (Er: YAG) Irradiation on Sandblasted and Acid-Etched (SLA) Titanium, an In Vitro Study. Materials (Basel). 2020, 13, 4174. [Google Scholar] [CrossRef] [PubMed]
- Grassi, F.R.; Ciccolella, F.; D’Apolito, G.; Papa, F.; Iuso, A.; Salzo, A.E.; Trentadue, R.; Nardi, G.M.; Scivetti, M.; De Matteo, M.; Silvestris, F.; Ballini, A.; Inchingolo, F.; Dipalma, G.; Scacco, S.; Tetè, S. Effect of low-level laser irradiation on osteoblast proliferation and bone formation. J Biol Regul Homeost Agents. 2011, 25, 603–614. [Google Scholar]
- Tarullo, A.; Laino, L.; Tarullo, A.; Inchingolo, F.; Flace, P.; Inchingolo, A.M.; Inchingolo, A.D.; Dipalma, G.; Podo Brunetti, S.; Cagiano, R. Use of a diode laser in an excisional biopsy of two spoonlike neoformations on the tongue tip. Acta Biomed. 2011, 82, 63–68. [Google Scholar] [PubMed]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G. Comparison between traditional surgery, CO2 and Nd:Yag laser treatment for generalized gingival hyperplasia in Sturge-Weber syndrome: a retrospective study. J Investig Clin Dent. 2010, 1, 85–89. [Google Scholar] [CrossRef]
- Ardeleanu, V.; Andronache, L.F.; Gherghiceanu, F.; Paunica, S.; Balalau, C.; Stoian, A.P. Treatment of lipomas and diffuse lipomatosis with NDYAG 1064 NM laser and their impact on the quality of life. J Mind Med Sci. 2020, 7, 16–22. [Google Scholar] [CrossRef]
- De Benedittis, M.; Petruzzi, M.; Pastore, L.; Inchingolo, F.; Serpico, R. Nd:YAG laser for gingivectomy in Sturge-Weber syndrome. J Oral Maxillofac Surg. 2007, 65, 314–316. [Google Scholar] [CrossRef]
- Scarano, A.; Petrini, M.; Inchingolo, F.; Lorusso, F.; Amuso, D. A new technique for the treatment of nasal telangiectasia using atmospheric plasma (voltaic arc dermabrasion): Postoperative pain assessment by thermal infrared imaging. J Cosmet Dermatol. 2020, 19, 2912–2918. [Google Scholar] [CrossRef]
- Marina, C.N.; Mutu, D.E.; Raducu, L.; Scaunasu, R.V.; Jecan, C.R. Reconstruction of the periorbital region defects following excision of basal cell carcinomas. J Clin Invest Surg. 2020, 5, 51–55. [Google Scholar] [CrossRef]
- Ianosi, S.; Neagoe, D.; Branisteanu, D.E.; Popescu, M.; Calina, D.; Zlatian, O.; Docea, A.O.; Marinas, M.C.; Iordache, A.M.; Mitruț, P.; Ianosi, G. Comparative efficacy of oral contraceptive versus local treatment versus intense pulsed light combined with vacuum in endocrine acne in women. J Biol Regul Homeost Agents. 2018, 32, 711–718. [Google Scholar]
- Inchingolo, F.; Tarullo, A.; Cagiano, R.; Resta, G.; Dipalma, G.; Inchingolo, A.M.; Tarullo, A.; Scacco, S.; Marrelli, M.; Corti, L.; Tatullo, M. Successful use of a topical mixture with ozolipoile in the treatment of actinic ulcers. Clin Cosmet Investig Dermatol. 2015, 8, 147–150. [Google Scholar] [CrossRef]
- Indre, M.G.; Sampelean, D.; Taru, V.; Cozma, A.; Sampelean, D.; Milaciu, M.V.; Orasan, O.H. Non-dental oral cavity findings in gastroesophageal reflux disease: a systematic review and metaanalysis. J Mind Med Sci. 2021, 8, 60–70. [Google Scholar] [CrossRef]
- Chiniforush, N.; Pourhajibagher, M.; Parker, S.; Benedicenti, S.; Bahador, A.; Salagean, T.; Bordea, I.R. The Effect of Antimicrobial Photodynamic Therapy Using Chlorophyllin-Phycocyanin Mixture on Enterococcus faecalis: The Influence of Different Light Sources. Appl Sci. 2020, 10, 4290. [Google Scholar] [CrossRef]
- Dalvi, S.; Benedicenti, S.; Sălăgean, T.; Bordea, I.R.; Hanna, R. Effectiveness of Antimicrobial Photodynamic Therapy in the Treatment of Periodontitis: A Systematic Review and Meta-Analysis of In Vivo Human Randomized Controlled Clinical Trials. Pharmaceutics. 2021, 13, 836. [Google Scholar] [CrossRef]
- Bordea, I.R.; Hanna, R.; Chiniforush, N.; Grădinaru, E.; Câmpian, R.S.; Sîrbu, A.; Amaroli, A.; Benedicenti, S. Evaluation of the outcome of various laser therapy applications in root canal disinfection: A systematic review. Photodiagnosis Photodyn Ther. 2020, 29, 101611. [Google Scholar] [CrossRef]
- Hanna, R.; Dalvi, S.; Benedicenti, S.; Amaroli, A.; Sălăgean, T.; Pop, I.D.; Todea, D.; Bordea, I.R. Photobiomodulation Therapy in Oral Mucositis and Potentially Malignant Oral Lesions: A Therapy Towards the Future. Cancers (Basel). 2020, 12, 1949. [Google Scholar] [CrossRef]
- Popa, D.; Bordea, I.R.; Burde, A.V.; Crisan, B.; Campian, R.S.; Constantiniuc, M. Surface modification of zirconia after laser irradiation. Optoelectronics and Advanced Materials – Rapid Communications. 2016, 10, 785–788. [Google Scholar]
- Bordea, I.R.; Lucaciu, P.O.; Crisan, B.; Mirza, C.M.; Popa, D.; Mesaros, A.S.; Pelekanos, S.; Campian, R.S. The influence of chromophore presence in an experimental bleaching gel on laser assisted tooth whitening efficiency. Studia Universitatis Babes-Bolyai Chemia. 2016, 61, 215–223. [Google Scholar]
- Inchingolo, F.; Martelli, F.S.; Gargiulo Isacco, C.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; Pham, V.H.; Dipalma, G.; Ballini, A. Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines. 2020, 8, 115. [Google Scholar] [CrossRef]
- Pawelczyk-Madalińska, M.; Benedicenti, S.; Sălăgean, T.; Bordea, I.R.; Hanna, R. Impact of Adjunctive Diode Laser Application to Non-Surgical Periodontal Therapy on Clinical, Microbiological and Immunological Outcomes in Management of Chronic Periodontitis: A Systematic Review of Human Randomized Controlled Clinical Trials. J Inflamm Res. 2021, 14, 2515–2545. [Google Scholar] [CrossRef]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, S.; Klämpfl, F.; Schmidt, M.; Zeilhofer, H.F. Lasers in Oral and Maxillofacial Surgery; Springer International Publishing: Cham, 2020; pp. 45–57. ISBN 978-3-030-29604-9. [Google Scholar] [CrossRef]
- He, M.; Zhang, B.; Shen, N.; Wu, N.; Sun, J. A systematic review and meta-analysis of the effect of low-level laser therapy (LLLT) on chemotherapy-induced oral mucositis in pediatric and young patients. Eur J Pediatr. 2018, 177, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Kalhori, K.A.M.; Vahdatinia, F.; Jamalpour, M.R.; Vescovi, P.; Fornaini, C.; Merigo, E.; Fekrazad, R. Photobiomodulation in Oral Medicine. Photobiomodul Photomed Laser Surg. 2019, 37, 837–861. [Google Scholar] [CrossRef]
- Vale, F.A.; Moreira, M.S.; de Almeida, F.C.; Ramalho, K.M. Low-level laser therapy in the treatment of recurrent aphthous ulcers: a systematic review. ScientificWorldJournal. 2015, 2015, 150412. [Google Scholar] [CrossRef]
- Honarmand, M.; Farhadmollashahi, L.; Vosoughirahbar, E. Comparing the effect of diode laser against acyclovir cream for the treatment of herpes labialis. J Clin Exp Dent. 2017, 9, e729–e732. [Google Scholar] [CrossRef]
- Weber, J.B.; Camilotti, R.S.; Ponte, M.E. Efficacy of laser therapy in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ): a systematic review. Lasers Med Sci. 2016, 31, 1261–1272. [Google Scholar] [CrossRef]
- Tenore, G.; Zimbalatti, A.; Rocchetti, F.; Graniero, F.; Gaglioti, D.; Mohsen, A.; Caputo, M.; Lollobrigida, M.; Lamazza, L.; De Biase, A.; Barbato, E.; Romeo, U. Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte-and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. J Clin Med. 2020, 9, 3505. [Google Scholar] [CrossRef]
- Wibawa, A.; Sucharitakul, J.; Dansirikul, R.; Pisarnturakit, P.P.; Bhuridej, P.; Arirachakaran, P.; et al. Low-Level Laser Therapy to the Major Salivary Glands Increases Salivary Flow and MUC5B Protein Secretion in Diabetic Patients with Hyposalivation: A Preliminary Study. Makara J Health Res. 2018, 22, 14–21. [Google Scholar] [CrossRef]
- Falaki, F.; Nejat, A.H.; Dalirsani, Z. The Effect of Low-level Laser Therapy on Trigeminal Neuralgia: A Review of Literature. J Dent Res Dent Clin Dent Prospects. 2014, 8, 1–5. [Google Scholar] [CrossRef]
- Gholami, L.; Asefi, S.; Hooshyarfard, A.; Sculean, A.; Romanos, G.E.; Aoki, A.; Fekrazad, R. Photobiomodulation in Periodontology and Implant Dentistry: Part 1. Photobiomodul Photomed Laser Surg. 2019, 37, 739–765. [Google Scholar] [CrossRef]
- American Academy of Periodontology statement on the efficacy of lasers in the non-surgical treatment of inflammatory periodontal disease. J Periodontol. 2011, 82, 513–514. [CrossRef] [PubMed]
- Popescu, B.; Oașă, I.D.; Bertesteanu, S.V.; Balalau, C.; Manole, F.; Domuta, M.; Oancea, A.L. Strategies to improve activity and results of the head and neck tumor board. J Clin Invest Surg. 2020, 5, 9–12. [Google Scholar] [CrossRef]
- Munerato, M.S.; Biguetti, C.C.; Parra da Silva, R.B.; Rodrigues da Silva, A.C.; Zucon Bacelar, A.C.; Lima da Silva, J.; Rondina Couto, M.C.; Húngaro Duarte, M.A.; Santiago-Junior, J.F.; Bossini, P.S.; Matsumoto, M.A. Inflammatory response and macrophage polarization using different physicochemical biomaterials for oral and maxillofacial reconstruction. Mater Sci Eng C Mater Biol Appl. 2020, 107, 110229. [Google Scholar] [CrossRef]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001, 10 (Suppl 2), S96–101. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Zhang, Y.F. Osteoinduction: a review of old concepts with new standards. J Dent Res. 2012, 91, 736–744. [Google Scholar] [CrossRef]
- Nagata, M.J.; Santinoni, C.S.; Pola, N.M.; de Campos, N.; Messora, M.R.; Bomfim, S.R.; Ervolino, E.; Fucini, S.E.; Faleiros, P.L.; Garcia, V.G.; Bosco, A.F. Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. J Photochem Photobiol B. 2013, 121, 6–14. [Google Scholar] [CrossRef]
- Garcia, V.G.; Sahyon, A.S.; Longo, M.; Fernandes, L.A.; Gualberto Junior, E.C.; Novaes, V.C.; Ervolino, E.; de Almeida, J.M.; Theodoro, L.H. Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg. 2014, 42, 1196–1202. [Google Scholar] [CrossRef]
- Saygun, I.; Nizam, N.; Ural, A.U.; Serdar, M.A.; Avcu, F.; Tözüm, T.F. Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg. 2012, 30, 149–154. [Google Scholar] [CrossRef]
- Cunha, M.J.; Esper, L.A.; Sbrana, M.C.; de Oliveira, P.G.; do Valle, A.L.; de Almeida, A.L. Effect of low-level laser on bone defects treated with bovine or autogenous bone grafts: in vivo study in rat calvaria. Biomed Res Int. 2014, 2014, 104230. [Google Scholar] [CrossRef]
- de Oliveira, G.J.P.L.; Aroni, M.A.T.; Medeiros, M.C.; Marcantonio, E., Jr.; Marcantonio, R.A.C. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg Med. 2018. [Google Scholar] [CrossRef]
- de Oliveira, G.J.P.L.; Aroni, M.A.T.; Pinotti, F.E.; Marcantonio, E., Jr.; Marcantonio, R.A.C. Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration. Lasers Med Sci. 2020, 35, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Gerbi, M.E.; Pinheiro, A.L.; Marzola, C.; Limeira Júnior Fde, A.; Ramalho, L.M.; Ponzi, E.A.; Soares, A.O.; Carvalho, L.C.; Lima, H.V.; Gonçalves, T.O. Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg. 2005, 23, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Renno, A.C.; McDonnell, P.A.; Crovace, M.C.; Zanotto, E.D.; Laakso, L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010, 28, 131–133. [Google Scholar] [CrossRef]
- Grassi, F.R.; Ciccolella, F.; D’Apolito, G.; Papa, F.; Iuso, A.; Salzo, A.E.; Trentadue, R.; Nardi, G.M.; Scivetti, M.; De Matteo, M.; Silvestris, F.; Ballini, A.; Inchingolo, F.; Dipalma, G.; Scacco, S.; Tetè, S. Effect of low-level laser irradiation on osteoblast proliferation and bone formation. J Biol Regul Homeost Agents. 2011, 25, 603–614. [Google Scholar]
- Pagin, M.T.; de Oliveira, F.A.; Oliveira, R.C.; Sant’Ana, A.C.; de Rezende, M.L.; Greghi, S.L.; Damante, C.A. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci. 2014, 29, 55–59. [Google Scholar] [CrossRef]
- Queiroga, A.S.; Sousa, F.B.; Araújo, J.M.S.; Santos, S.D.; Sousa, C.D.F.S.; Quintans, T.C.; Almeida, T.P.; Nonaka, C.F.W.; Batista, L.V.; Limeira Junior, F.A. Evaluation of bone repair in the femur of rats submitted to laser therapy in different wavelengths: An image segmentation method of analysis. Laser Methods in Chemistry, Biology, and Medicine. 2008, 18, 1087–1091. [Google Scholar] [CrossRef]
- Mergoni, G.; Vescovi, P.; Belletti, S.; Uggeri, J.; Nammour, S.; and Gatti, R. Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci. 2018, 33, 1189–1195. [Google Scholar] [CrossRef]
- Jawad, M.M.; Husein, A.; Azlina, A.; Alam, M.K.; Hassan, R.; Shaari, R. Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt. 2013, 18, 128001. [Google Scholar] [CrossRef]
- Pereira, C.L.; Sallum, E.A.; Nociti, F.H., Jr.; Moreira, R.W. The effect of low-intensity laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac Implants. 2009, 24, 47–51. [Google Scholar]
- Mayer, L.; Gomes, F.V.; Carlsson, L.; Gerhardt-Oliveira, M. Histologic and Resonance Frequency Analysis of Peri-Implant Bone Healing After Low-Level Laser Therapy: An In Vivo Study. Int J Oral Maxillofac Implants. 2015, 30, 1028–1035. [Google Scholar] [CrossRef]
- Rajaei Jafarabadi, M.; Rouhi, G.; Kaka, G.; Sadraie, S.H.; Arum, J. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study. Lasers Med Sci. 2016, 31, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Maluf, A.P.; Maluf, R.P.; Brito Cda, R.; França, F.M.; de Brito, R.B., Jr. Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med Sci. 2010, 25, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Orsini, G.; Traini, T.; Scarano, A.; Degidi, M.; Perrotti, V.; Piccirilli, M.; Piattelli, A. Maxillary sinus augmentation with Bio-Oss particles: a light, scanning, and transmission electron microscopy study in man. J Biomed Mater Res B Appl Biomater. 2005, 74, 448–457. [Google Scholar] [CrossRef]
- Ursu, R.G.; Luca, C.M.; Luca, A.S.; Toader, E.; Simion, L.; Iancu, L.S. Laboratory Diagnosis for Optimize Therapy of B Hepatitis Virus Infection by Using Biochemical and Molecular Biology Methods. Rev Chim. (Bucharest) 2016, 67, 2614–2617. [Google Scholar]
- Márquez Martínez, M.E.; Pinheiro, A.L.; Ramalho, L.M. Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci. 2008, 23, 313–317. [Google Scholar] [CrossRef]
- Ozcelik, O.; Cenk Haytac, M.; Seydaoglu, G. Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: a randomized placebo-controlled clinical trial. J Clin Periodontol. 2008, 35, 147–156. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, Y.; Zhou, X.; Yang, Y.; Wang, Y. Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci. 2019, 34, 1473–1481. [Google Scholar] [CrossRef]
- Faria, P.E.; Felipucci, D.N.; Simioni, A.R.; Primo, F.L.; Tedesco, A.C.; Salata, L.A. Effects of Photodynamic Process (PDP) in Implant Osseointegration: A Histologic and Histometric Study in Dogs. Clin Implant Dent Relat Res. 2015, 17, 879–890. [Google Scholar] [CrossRef]
- Gerbi, M.E.M.M.; Miranda, J.M.; Arruda, J.A.A.; Moreno, L.M.M.; Carneiro, V.S.M.; Brasilino, N.C.; Menezes, R.F.; Brugnera Junior, A.; Pinheiro, A.L.B. Photobiomodulation Therapy in Bone Repair Associated with Bone Morphogenetic Proteins and Guided Bone Regeneration: A Histomorphometric Study. Photomed Laser Surg. 2018, 36, 581–588. [Google Scholar] [CrossRef]
- Barbosa, D.; de Souza, R.A.; Xavier, M.; da Silva, F.F.; Arisawa, E.A.; Villaverde, A.G. Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci. 2013, 28, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Motofei, I.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2021, S1044-579X(21)00253-4. [Google Scholar] [CrossRef]
- Maierean, A.; Ciumarnean, L.; Alexescu, T.G.; Domokos, B.; Rajnoveanu, R.; Arghir, O.; Todea, D.; Buzoianu, A.D.; Dogaru, G.; Bordea, R.I. Complementary therapeutic approaches in asthma. Balneo Research Journal. 2019, 10, 204–212. [Google Scholar] [CrossRef]
- Renno, A.C.; McDonnell, P.A.; Parizotto, N.A.; Laakso, E.L. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg. 2007, 25, 275–280. [Google Scholar] [CrossRef]
- Tani, A.; Chellini, F.; Giannelli, M.; Nosi, D.; Zecchi-Orlandini, S.; Sassoli, C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci. 2018, 19, 1946. [Google Scholar] [CrossRef] [PubMed]
- Ghidini, G.; Setti, G.; Sala, A.; Giovannacci, I.; Veneri, F.; Greco Lucchina, A.; Sala, R.; Vescovi, P. Absorption and diffusion of a 645 nm diode laser beam in the bone. An ex vivo study. J Biol Regul Homeost Agents. 2019, 33 (Suppl. 2), 137–141. [Google Scholar]
- Bjordal, J.M. Low level laser therapy (LLLT) and World Association for Laser Therapy (WALT) dosage recommendations. Photomed Laser Surg. 2012, 30, 61–62. [Google Scholar] [CrossRef]
Type of LLLT/ Irradiation | Group study | Results | Conclusion | ||||||
Nagata et al. [37] | InGaAIP λ 660nm Power 35mW/point energy density 4.9 J/cm2/point | 1-LLLT alone 2-(BMA) bone marrow aspirate 3-LLLT/BMA 4-control group with blood clot | − Not suitable for the proliferation of osteoblast cell − Proliferation & differentiation were seen only for the MSC present in BMA | The use of LLLT alone did not induce osteoblast proliferation, but BMA/LLLT is a promising tool if combined with therapy in bone regeneration | |||||
Garcia et al. [38] | InGaAIP λ 660nm Power 35mW/point energy density 4,9J/cm2/point | 1-control group with blood clot 2-dexamethasone with blood clot 3-dexamethasone + autologous bone 4-dexamethasone + LLLT 5-autologus bone + LLLT | − The dexamethasone group shows less bone formation with a reduction of osteoblasts − The group treated with AB/LLLT osteogenic potential | LLLT protects bone from the inhibitory effects of dexamethasone LLLT improves bone healing in critical defects | |||||
Saygyn et al. [39] | Diode laser λ 685nm Power 25mW/point energy density 2J/cm2/point | 1-MSC single dose irradiated 2-MSC double dose irradiated 3-control group | − The double dose group stimulates the release of IGFBP3, IGF-1 and bFGF − It stimulates osteoblastproliferation | LLLT improves wound healing and bone regeneration | |||||
Cunha et al. [40] | GaAIAs λ 780nm Power 100mW/point energy density 6J/cm2/point | 1-LLLT group 2-autogenous bone 3-autogenous bone + LLLT 4-inorganic bovine bone 5-inorganic bovine bone + LLLT 6-contol group | − LLLT stimulates new bone formation | Laser accelerated graft material particles and bone healing | |||||
de Olivera et al. [41] | GaAlAs λ 808nm Power 100mW/point energy density 4J/cm2/session | 1-LLLT major group 2-control major group (each major group divided into three group coagulum, 3-inorganic bovine bone, HA/TPC) | − LLLT group shows osteogenic potential -expression of BMP2, Osteocalcin, ALP and genes (Runx2, Jagged1) -Maintained the volume of biomaterials − Osteoblastic differentiation | LLLT stimulated bone formation in grafted area with osteoconductive materials | |||||
de Olivera et al. [42] | GaAlAs λ 808nm Power 100mW/point energy density 4J/cm2/session | 1-deproteinized bovine bone (DBB) 2-HA/TCP 3-LLLT+DBB 4-LLLT+HA/TCP | − LLLT group osteogenic potential with the expression of BMP2 and OCN − It increases implant osteointegration | LLLT increases osteointegration in grafted areas with osteoconductive materials | |||||
Gerbi et al. [43] | GaAlAs diode laser λ 830nm Power 40m/W/point energy density 4J/cm2/point | 1-control group 2-LLLT group 3-BMP+membrane 4-BMP+membrane +LLLT group | − Osteogenic potential | LLLT combined with the use of biomaterials accelerated the bone regeneration process | |||||
Renno et al. [44] | GaAlAs diode laser λ 830 Power 30m/W energy density 10J/cm2 | 1-MC3T3 grown on biosilicate + LLLT 2-control group | − LLLT GROUP 13% decreases cell proliferation | LLLT group resulted in a reduction of cell growth | |||||
Grassi et al. [45] | Laser diode λ 920nm Power 0,1W energy density 3J/cm2 | 1-Osteoblast-like cells seeded on zirconia or titanium surface + LLLT 2-control group | − Osteogenic potential -cell proliferation − cell differentiation − ALP expression − the mRNA of RUNX2 and OSTERIX | LLLT significantly increases cellular adhesion on the implant surface | |||||
Pagin et al. [46] | Visible red λ 660nm Infrared λ 780nm LED λ 630± 10nm Laser: Power 1W/cm2 energy density 3J and 5J/cm2 LED: Power 60mW/cm2 energy: 3J and 5J/cm2 | MC3T3 irradiated with red/ infrared laser and LED | Red/ infrared & LED -influenced ALP -no effect on cell differentiation | Red/ infrared laser & LED had similar effects et early periods of time on stimulating pre-osteoblasts | |||||
Queiroga et al. [47] | Red spectrum λ 660 nm Infrared λ 780nm Power 40mW energy density 2J/point | 1-LILT 660nm 2-LILT 780nm 3-Control group | − LILT with 780nm newly formed bone − LILT with 660 nm, no difference from control group | LLLT with 780nm wavelength promote bone reparation | |||||
Mergoni et al. [48] | Diode laser GaAs λ 915nm Power 0.12 and 1,25W/cm 25.15 and 45J/cm2 | -Osteoblasts isolated from mandibular cortical LLLT treated -control group | − No osteoblast cell proliferation − no osteoblast cell differentiation | LLLT induces more bone nodules formation | |||||
Jawad et al. [49] | Diode laser GaAlAsλ940nm Power + energy 100mW/45,85J/cm2 200mW/91,79J/cm2 3000mW/137,57J/cm2 | -LLLT groups -Control group | − Cell proliferation − cell differentiation − ALP & osteocalcin expression | LLLT improved bone formation by stimulating osteoblast cells |
© 2022 by the author. 2022 Anida-Maria Babtan, Aranka Ilea, Claudia Nicoleta Feurdean, Sabino Ceci, Berate Pula, Sebastian Candrea, Daniela Azzollini, Fabio Piras, Luigi Curatoli, Alberto Corriero, Assunta Patano, Francesco Valente, Maria Elena Maggiore, Antonio Mancini, Delia Giovanniello, Ludovica Nucci, Rossella Elia, Adina Sirbu, Nausica Bianca Petrescu, Codruta Mirica, Andrea Galderisi, Filippo Cardarelli
Share and Cite
Babtan, A.M.; Ilea, A.; Feurdean, C.N.; Ceci, S.; Pula, B.; Candrea, S.; Azzollini, D.; Piras, F.; Curatoli, L.; Corriero, A.; et al. Biostimulation with Low-Level Laser Therapy and Its Effects on Soft and Hard Tissue Regeneration. Literature Review. J. Mind Med. Sci. 2022, 9, 28-37. https://doi.org/10.22543/7674.91.P2837
Babtan AM, Ilea A, Feurdean CN, Ceci S, Pula B, Candrea S, Azzollini D, Piras F, Curatoli L, Corriero A, et al. Biostimulation with Low-Level Laser Therapy and Its Effects on Soft and Hard Tissue Regeneration. Literature Review. Journal of Mind and Medical Sciences. 2022; 9(1):28-37. https://doi.org/10.22543/7674.91.P2837
Chicago/Turabian StyleBabtan, Anida Maria, Aranka Ilea, Claudia Nicoleta Feurdean, Sabino Ceci, Berate Pula, Sebastian Candrea, Daniela Azzollini, Fabio Piras, Luigi Curatoli, Alberto Corriero, and et al. 2022. "Biostimulation with Low-Level Laser Therapy and Its Effects on Soft and Hard Tissue Regeneration. Literature Review" Journal of Mind and Medical Sciences 9, no. 1: 28-37. https://doi.org/10.22543/7674.91.P2837
APA StyleBabtan, A. M., Ilea, A., Feurdean, C. N., Ceci, S., Pula, B., Candrea, S., Azzollini, D., Piras, F., Curatoli, L., Corriero, A., Patano, A., Valente, F., Maggiore, M. E., Mancini, A., Giovanniello, D., Nucci, L., Elia, R., Sirbu, A., Petrescu, N. B., ... Cardarelli, F. (2022). Biostimulation with Low-Level Laser Therapy and Its Effects on Soft and Hard Tissue Regeneration. Literature Review. Journal of Mind and Medical Sciences, 9(1), 28-37. https://doi.org/10.22543/7674.91.P2837