The Involvement of Oxidative Stress in Non-Hodgkin’s Lymphomas; A Review of the Literature
Abstract
:Introduction
Discussion
What is known about the B cell receptor (BCR) signaling pathways in normal B-lymphocytes?
The involvement of oxidative stress in NHL
Oxidative stress and NHL management
Highlights
- ✓
- Lymphomagenesis is associated with increased oxidative stress levels.
- ✓
- Oxidative stress can also be involved in the action of several chemotherapeutic drugs.
- ✓
- The involvement of oxidative stress has been studied in DLBCL, FL, MCL, MALT and small lymphocytic lymphomas.
Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Chihara, D.R.; Nastoupil, L.J.; Williams, J.N.; Lee, P.; Koff, J.L.; Flowers, C.R. New insights into the epidemiology of non-Hodgkin lymphoma and implicatios for therapy. Expert Rev Anticancer Ther. 2015, 15, 531–544. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer facts and figures [online]. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (accessed on 29 May 2019).
- National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin’s Lymphoma Pathologic Classification Project. Cancer. 1982, 49, 2112–2135. [Google Scholar] [CrossRef]
- Harris, N.L.; Jaffe, E.S.; Stein, H.; Banks, P.M.; Chan, J.K.; Cleary, M.L.; Delsol, G.; De Wolf-Peeters, C.; Falini, B.; Gatter, K.C.; et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994, 84, 1361–1392. [Google Scholar]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Ansell, S.M. Non-Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc. 2015, 90, 1152–1163. [Google Scholar] [CrossRef]
- Connors, J.M. Non-Hodgkin lymphoma: the clinician’s perspective--a view from the receiving end. Mod Pathol. 2013, 26 (Suppl 1), S111–S118. [Google Scholar] [CrossRef]
- Schmitz, N.; Zeynalova, S.; Nickelsen, M.; Kansara, R.; Villa, D.; Sehn, L.H.; Glass, B.; Scott, D.W.; Gascoyne, R.D.; Connors, J.M.; Ziepert, M.; Pfreundschuh, M.; Loeffler, M.; Savage, K.J. CNS International Prognostic Index: A Risk Model for CNS Relapse in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP. J Clin Oncol. 2016, 34, 3150–3156. [Google Scholar] [CrossRef]
- Freedman, A.; Jacobsen, E. Follicular lymphoma: 2020 update on diagnosis and management. Am J Hematol. 2020, 95, 316–327. [Google Scholar] [CrossRef]
- Antoine-Poirel, H.; Heimann, P. Cytogenetic and molecular testing in lymphoma patients. Belg J Hematol. 2018, 9, 266–278. [Google Scholar]
- Velavan, T.P. Epstein-Barr virus, malaria and endemic Burkitt lymphoma. EBioMedicine. 2019, 39, 13–14. [Google Scholar] [CrossRef]
- Yamagishi, M.; Fujikawa, D.; Watanabe, T.; Uchimaru, K. HTLV-1-Mediated Epigenetic Pathway to Adult T-Cell Leukemia-Lymphoma. Front Microbiol. 2018, 9, 1686. [Google Scholar] [CrossRef] [PubMed]
- Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi sarcoma. Nat Rev Dis Primers. 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Taborelli, M.; Polesel, J.; Montella, M.; Libra, M.; Tedeschi, R.; Battiston, M.; Spina, M.; Di Raimondo, F.; Pinto, A.; Crispo, A.; Grimaldi, M.; Franceschi, S.; Dal Maso, L.; Serraino, D. Hepatitis B and C viruses and risk of non-Hodgkin lymphoma: a case-control study in Italy. Infect Agent Cancer 2016, 11, 27. [Google Scholar] [CrossRef]
- Salar, A. Gastric MALT lymphoma and Helicobacter Pylori. Medicina Clinica (Barcelona). 2019, 152, 65–71. [Google Scholar] [CrossRef]
- Koller, M.C.; Aigelsreiter, A. Chlamydia psittaci in ocular adnexal MALT lymphoma: a possible causative agent in the pathogenesis of this disease. Current Clinical Microbiology Reports. 2018, 5, 261–267. [Google Scholar] [CrossRef]
- Remy, R.; Sylvain, C.; Bachy, E.; Bardel, E. Chronic Borrelia Burgdorferi infection triggers NKT lymphomagenenis. Blood. 2018, 132, 2691–2695. [Google Scholar] [CrossRef]
- Melenotte, C.; Mezouar, S.; Mege, J.L.; Gorvel, J.P.; Kroemer, G.; Raoult, D. Bacterial infection and non-Hodgkin’s lymphoma. Crit Rev Microbiol. 2020, 46, 270–287. [Google Scholar] [CrossRef]
- Re, A.; Cattaneo, C.; Rossi, G. Hiv and Lymphoma: from Epidemiology to Clinical Management. Mediterr J Hematol Infect Dis. 2019, 11, e2019004. [Google Scholar] [CrossRef]
- Travaglino, A.; Pace, M.; Varricchio, S.; Insabato, L.; Giordano, C.; Picardi, M.; Pane, F.; Staibano, S.; Mascolo, M. Hashimoto Thyroiditis in Primary Thyroid Non-Hodgkin Lymphoma. Am J Clin Pathol. 2020, 153, 156–164. [Google Scholar] [CrossRef]
- Dopart, P.J.; Locke, S.J.; Cocco, P.; Bassig, B.A.; Josse, P.R.; Stewart, P.A.; Purdue, M.P.; Lan, Q.; Rothman, N.; Friesen, M.C. Estimation of Source-Specific Occupational Benzene Exposure in a Population-Based Case-Control Study of Non-Hodgkin Lymphoma. Ann Work Expo Health. 2019, 63, 842–855. [Google Scholar] [CrossRef]
- Qin, L.; Deng, H.Y.; Chen, S.J.; Wei, W. A Meta-Analysis on the Relationship Between Hair Dye and the Incidence of Non-Hodgkin’s Lymphoma. Med Princ Pract. 2019, 28, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat Res Rev Mutat Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Luo, D.; Zhou, T.; Tao, Y.; Feng, J.; Mei, S. The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis. Environ Pollut. 2017, 231 Pt 1, 319–328. [Google Scholar] [CrossRef]
- Rhoades, M.G.; Meza, J.L.; Beseler, C.L.; Shea, P.J.; Kahle, A.; Vose, J.M.; Eskridge, K.M.; Spalding, R.F. Atrazine and nitrate in public drinking water supplies and non-hodgkin lymphoma in nebraska, USA. Environ Health Insights. 2013, 7, 15–27. [Google Scholar] [CrossRef]
- Ma, E.S. Recurrent Cytogenetic Abnormalities in Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukemia. Methods Mol Biol. 2017, 1541, 279–293. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood. 2018, 131, 2307–2319. [Google Scholar] [CrossRef]
- López, C.; Kleinheinz, K.; Aukema, S.M.; et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun. 2019, 10, 1459. [Google Scholar] [CrossRef]
- Kourentzi, K.; Crum, M.; Patil, U.; Prebisch, A.; Chavan, D.; Vu, B.; Zeng, Z.; Litvinov, D.; Zu, Y.; Willson, R.C. Recombinant expression, characterization, and quantification in human cancer cell lines of the Anaplastic Large-Cell Lymphoma-characteristic NPM-ALK fusion protein. Sci Rep. 2020, 10, 5078. [Google Scholar] [CrossRef]
- Jain, A.G.; Chang, C.C.; Ahmad, S.; Mori, S. Leukemic Non-nodal Mantle Cell Lymphoma: Diagnosis and Treatment. Curr Treat Options Oncol. 2019, 20, 85. [Google Scholar] [CrossRef]
- Candi, E.; Agostini, M.; Melino, G.; Bernassola, F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat. 2014, 35, 702–714. [Google Scholar] [CrossRef]
- Voropaeva, E.N.; Pospelova, T.I.; Voevoda, M.I.; Maksimov, V.N.; Orlov, Y.L.; Seregina, O.B. Clinical aspects of TP53 gene inactivation in diffuse large B-cell lymphoma. BMC Med Genomics. 2019, 12 (Suppl 2). [Google Scholar] [CrossRef]
- Chen, P.T.; Jorsan, K.; Avezbakiyev, B.; Akhtar, C.; Wang, J.C. Aggressive Diffuse Intermediate Size B-Cell Lymphoma With P53 Mutation Presented as Primary Bone Marrow Lymphoma. J Investig Med High Impact Case Rep. 2020, 8, 2324709620982765. [Google Scholar] [CrossRef] [PubMed]
- Brachet-Botineau, M.; Polomski, M.; Heidi, A.N.; Juen, L.; Hédou, D.; Viaud-Massuard, M.C.; Prié, G.; Gouilleux, F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancer. 2020, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Küçük, C.; Jiang, B.; Hu, X.; et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015, 6, 6025. [Google Scholar] [CrossRef]
- Waldmann, T.A.; Chen, J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol. 2017, 35, 533–550. [Google Scholar] [CrossRef]
- Gomes de Castro, M.A.; Wildhagen, H.; Sograte-Idrissi, S.; Hitzing, C.; Binder, M.; Trepel, M.; Engels, N.; Opazo, F. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun. 2019, 10, 820. [Google Scholar] [CrossRef]
- Lee, J.; Sengupta, P.; Brzostowski, J.; Lippincott-Schwartz, J.; Pierce, S.K. The nanoscale spatial organization of B-cell receptors on immunoglobulin M-and G-expressing human B-cells. Mol Biol Cell. 2017, 28, 511–523. [Google Scholar] [CrossRef]
- Efremov, D.G.; Turkalj, S.; Laurenti, L. Mechanisms of B cell receptor activation and responses to B cell receptor inhibitors in B cell malignancies. Cancers. 2020, 12, 1396. [Google Scholar] [CrossRef]
- Derudder, E.; Herzog, S.; Labi, V.; Yasuda, T.; Köchert, K.; Janz, M.; Villunger, A.; Schmidt-Supprian, M.; Rajewsky, K. Canonical NF-κB signaling is uniquely required for the long-term persistence of functional mature B cells. Proc Natl Acad Sci U S A. 2016, 113, 5065–5070. [Google Scholar] [CrossRef]
- Lenz, G. Novel NF-κB regulator in ABC DLBCL. Blood. 2016, 127, 2785–2786. [Google Scholar] [CrossRef]
- Jattani, R.P.; Tritapoe, J.M.; Pomerantz, J.L. Intramolecular Interactions and Regulation of Cofactor Binding by the Four Repressive Elements in the Caspase Recruitment Domain-containing Protein 11 (CARD11) Inhibitory Domain. J Biol Chem. 2016, 291, 8338–8348. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hutcherson, S.M.; Yang, C.; Jattani, R.P.; Tritapoe, J.M.; Yang, Y.K.; Pomerantz, J.L. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem. 2019, 294, 14648–14660. [Google Scholar] [CrossRef] [PubMed]
- Janovská, P.; Bryja, V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br J Pharmacol. 2017, 174, 4701–4715. [Google Scholar] [CrossRef] [PubMed]
- Frenquelli, M.; Tonon, G. WNT Signaling in Hematological Malignancies. Front Oncol. 2020, 10, 615190. [Google Scholar] [CrossRef]
- Mathur, R.; Sehgal, L.; Braun, F.K.; Berkova, Z.; Romaguerra, J.; Wang, M.; Rodriguez, M.A.; Fayad, L.; Neelapu, S.S.; Samaniego, F. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015, 8, 63. [Google Scholar] [CrossRef]
- Undi, R.B.; Gutti, U.; Sahu, I.; Sarvothaman, S.; Pasupuleti, S.R.; Kandi, R.; Gutti, R.K. Wnt Signaling: Role in Regulation of Haematopoiesis. Indian J Hematol Blood Transfus. 2016, 32, 123–134. [Google Scholar] [CrossRef]
- Soares-Lima, S.C.; Pombo-de-Oliveira, M.S.; Carneiro, F.R.G. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol. 2020, 108, 1081–1099. [Google Scholar] [CrossRef]
- Yan, K.; Tian, J.; Shi, W.; Xia, H.; Zhu, Y. LncRNA SNHG6 is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing p27 and Sponging miR-101-3p. Cell Physiol Biochem. 2017, 42, 999–1012. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Wu, Z.; Chen, C.; Liu, J.; Wu, G.; Zhai, J.; Liu, F.; Li, G. miR-101-3p Suppresses HOX Transcript Antisense RNA (HOTAIR)-Induced Proliferation and Invasion Through Directly Targeting SRF in Gastric Carcinoma Cells. Oncol Res. 2017, 25, 1383–1390. [Google Scholar] [CrossRef]
- Motofei, I.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol. 2021, 23, S1044. [Google Scholar] [CrossRef]
- Bao, R.F.; Shu, Y.J.; Hu, Y.P.; Wang, X.A.; Zhang, F.; Liang, H.B.; Ye, Y.Y.; Li, H.F.; Xiang, S.S.; Weng, H.; Cao, Y.; Wu, X.S.; Li, M.L.; Wu, W.G.; Zhang, Y.J.; Jiang, L.; Dong, Q.; Liu, Y.B. miR-101 targeting ZFX suppresses tumor proliferation and metastasis by regulating the MAPK/Erk and Smad pathways in gallbladder carcinoma. Oncotarget. 2016, 7, 22339–22354. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zou, Y.; Lin, L.; Ma, X.; Zheng, R. miR-101 regulates cell proliferation and apoptosis by targeting KDM1A in diffuse large B cell lymphoma. Cancer Manag Res. 2019, 11, 2739–2746. [Google Scholar] [CrossRef] [PubMed]
- Parascandolo, A.; Laukkanen, M.O. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal. 2019, 30, 443–486. [Google Scholar] [CrossRef]
- Lang, J.Y.; Ma, K.; Guo, J.X.; Sun, H. Oxidative stress induces B lymphocyte DNA damage and apoptosis by upregulating p66shc. Eur Rev Med Pharmacol Sci. 2018, 22, 1051–1060. [Google Scholar] [CrossRef]
- Zhou, F.; Shen, Q.; Claret, F.X. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol. 2013, 94, 423–429. [Google Scholar] [CrossRef]
- Wang, L.; Howell, M.E.A.; Sparks-Wallace, A.; Hawkins, C.; Nicksic, C.A.; Kohne, C.; Hall, K.H.; Moorman, J.P.; Yao, Z.Q.; Ning, S. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog. 2019, 15, e1007541. [Google Scholar] [CrossRef]
- Moniczewski, A.; Gawlik, M.; Smaga, I.; Niedzielska, E.; Krzek, J.; Przegaliński, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep. 2015, 67, 560–568. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014, 6, 222ra18. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, J.; Wang, X. Dietary Antioxidants: Potential Anticancer Agents. Nutr Cancer. 2017, 69, 521–533. [Google Scholar] [CrossRef]
- Breitenbach, M.; Eckl, P. Introduction to Oxidative Stress in Biomedical and Biological Research. Biomolecules. 2015, 5, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Simoncini, C.; Orsucci, D.; Caldarazzo Ienco, E.; Siciliano, G.; Bonuccelli, U.; Mancuso, M. Alzheimer’s pathogenesis and its link to the mitochondrion. Oxid Med Cell Longev. 2015, 2015, 803942. [Google Scholar] [CrossRef] [PubMed]
- Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, J.; Przegaliński, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, T.A.; Bohiltea, R.; Munteanu, O.; Grigoriu, C.; Paunica, I.; Sajin, M. A mini-review regarding the carcinogenesis and morphology of serous tumors of the ovary, fallopian tube and peritoneum. J Mind Med Sci. 2021, 8, 44–52. [Google Scholar] [CrossRef]
- Tucker, P.S.; Scanlan, A.T.; Dalbo, V.J. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev. 2015, 2015, 806358. [Google Scholar] [CrossRef]
- Kleinstern, G.; Maurer, M.J.; Liebow, M.; Habermann, T.M.; Koff, J.L.; Allmer, C.; Witzig, T.E.; Nowakowski, G.S.; Micallef, I.N.; Johnston, P.B.; Inwards, D.J.; Thompson, C.A.; Feldman, A.L.; Link, B.K.; Flowers, C.; Slager, S.L.; Cerhan, J.R. History of autoimmune conditions and lymphoma prognosis. Blood Cancer, J. 2018, 8, 73. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.Y.; Xu, W. Role of BAFF/BAFF-R axis in B-cell non-Hodgkin lymphoma. Crit Rev Oncol Hematol. 2014, 91, 113–122. [Google Scholar] [CrossRef]
- Liu, K.; Liu, X.; Wang, M.; Wang, X.; Kang, H.; Lin, S.; Yang, P.; Dai, C.; Xu, P.; Li, S.; Dai, Z. Two common functional catalase gene polymorphisms (rs1001179 and rs794316) and cancer susceptibility: evidence from 14,942 cancer cases and 43,285 controls. Oncotarget. 2016, 7, 62954–62965. [Google Scholar] [CrossRef]
- Makgoeng, S.B.; Bolanos, R.S.; Jeon, C.Y.; Weiss, R.E.; Arah, O.A.; Breen, E.C.; Martínez-Maza, O.; Hussain, S.K. Markers of Immune Activation and Inflammation, and Non-Hodgkin Lymphoma: A Meta-Analysis of Prospective Studies. JNCI Cancer Spectr. 2018, 2, pky082. [Google Scholar] [CrossRef]
- Gerondakis, S.; Siebenlist, U. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb Perspect Biol. 2010, 2, a000182. [Google Scholar] [CrossRef]
- Gaman, M.A.; Epingeac, M.E.; Gaman, A.M. Evaluation of oxidative stress and high-density lipoprotein cholesterol levels in diffuse large B-cell lymphoma. Rev Chim. 2019, 70, 977–980. [Google Scholar] [CrossRef]
- Wang, S.S.; Davis, S.; Cerhan, J.R.; Hartge, P.; Severson, R.K.; Cozen, W.; Lan, Q.; Welch, R.; Chanock, S.J.; Rothman, N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. 2006, 27, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Kim, N.Y.; Yu, L.; Kim, Y.K.; Lee, I.K.; Yang, D.H.; Lee, J.J.; Shin, M.H.; Park, K.S.; Choi, J.S.; Kim, H.J. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma. Int J Mol Sci. 2014, 15, 6703–6716. [Google Scholar] [CrossRef] [PubMed]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef]
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Murata, M. Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. Int J Mol Sci. 2017, 18, 1808. [Google Scholar] [CrossRef]
- Benzer, F.; Kandemir, F.M.; Ozkaraca, M.; Kucukler, S.; Caglayan, C. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. J Biochem Mol Toxicol. 2018, 32. [Google Scholar] [CrossRef]
- Mumcu, U.Y.; Kocer, I.; Ates, O.; Alp, H.H. Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int J Ophthalmol. 2016, 9, 1518–1520. [Google Scholar] [CrossRef]
- Black, C.N.; Bot, M.; Révész, D.; Scheffer, P.G.; Penninx, B. The association between three major physiological stress systems and oxidative DNA and lipid damage. Psychoneuroendocrinology. 2017, 80, 56–66. [Google Scholar] [CrossRef]
- El-Mezayen, H.A.; Darwish, H.; Hasheim, M.; El-Baz, H.A. Oxidant/Antioxidant Status and their Relations to Chemotherapy in Non-Hodgkin’s Lymphoma. International Journal of Pharmaceutical and Clinical Research. 2015, 7, 269–274. [Google Scholar]
- Jakovcevic, D.; Dedic-Plavetic, N.; Vrbanec, D.; Jakovcevic, A.; Jakic-Razumovic, J. Breast Cancer Molecular Subtypes and Oxidative DNA Damage. Appl Immunohistochem Mol Morphol. 2015, 23, 696–703. [Google Scholar] [CrossRef]
- Ma-On, C.; Sanpavat, A.; Whongsiri, P.; Suwannasin, S.; Hirankarn, N.; Tangkijvanich, P.; Boonla, C. Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression. Med Oncol. 2017, 34, 57. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhao, Y.; Wang, N.; Zhang, L.; Wang, C. 8-Hydroxy-2’-deoxyguanosine expression predicts outcome of esophageal cancer. Ann Diagn Pathol. 2014, 18, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Kale, I. The predictive role of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in postmenopausal osteoporosis. J Clin Invest Surg. 2021, 6, 141–147. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Costa, C. Benzene exposure is associated with epigenetic changes (Review). Mol Med Rep. 2016, 13, 3401–3405. [Google Scholar] [CrossRef]
- Arakaki, H.; Osada, Y.; Takanashi, S.; Ito, C.; Aisa, Y.; Nakazato, T. Oxidative Stress Is Associated with Poor Prognosis in Patients with Follicular Lymphoma. Blood. 2016, 128, 1787. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Teodoro, M.; Rapisarda, V.; Golokhvast, K.; Docea, A.O.; Tsatsakis, A.M.; Costa, C. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep. 2017, 4, 291–295. [Google Scholar] [CrossRef]
- Kantner, H.P.; Warsch, W.; Delogu, A.; Bauer, E.; Esterbauer, H.; Casanova, E.; Sexl, V.; Stoiber, D. ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia. 2013, 15, 1292–1300. [Google Scholar] [CrossRef]
- Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/ trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015, 36, 326–348. [Google Scholar] [CrossRef]
- Geybels, M.S.; van den Brandt, P.A.; van Schooten, F.J.; Verhage, B.A. Oxidative stress-related genetic variants, pro-and antioxidant intake and status, and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2015, 24, 178–186. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, R.; Chen, N.; Yang, L.; Wang, Y.; Sun, Y.; Huang, L.; Zhu, M.; Ji, Y.; Li, W. Association between glutathione peroxidase-1 (GPX1) Rs1050450 polymorphisms and cancer risk. Int J Clin Exp Pathol. 2017, 10, 9527–9540. [Google Scholar]
- Tasaki, E.; Sakurai, H.; Nitao, M.; Matsuura, K.; Iuchi, Y. Uric acid, an important antioxidant contributing to survival in termites. PLoS One. 2017, 12, e0179426. [Google Scholar] [CrossRef]
- Liu, D.; Yun, Y.; Yang, D.; Hu, X.; Dong, X.; Zhang, N.; Zhang, L.; Yin, H.; Duan, W. What Is the Biological Function of Uric Acid? An Antioxidant for Neural Protection or a Biomarker for Cell Death. Dis Markers. 2019, 2019, 4081962. [Google Scholar] [CrossRef] [PubMed]
- Yasutake, Y.; Tomita, K.; Higashiyama, M.; Furuhashi, H.; Shirakabe, K.; Takajo, T.; Maruta, K.; Sato, H.; Narimatsu, K.; Yoshikawa, K.; Okada, Y.; Kurihara, C.; Watanabe, C.; Komoto, S.; Nagao, S.; Matsuo, H.; Miura, S.; Hokari, R. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity. J Gastroenterol Hepatol. 2017, 32, 1839–1845. [Google Scholar] [CrossRef]
- Itahana, Y.; Han, R.; Barbier, S.; Lei, Z.; Rozen, S.; Itahana, K. The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene. 2015, 34, 1799–1810. [Google Scholar] [CrossRef]
- Trzeciecka, A.; Klossowski, S.; Bajor, M.; Zagozdzon, R.; Gaj, P.; Muchowicz, A.; Malinowska, A.; Czerwoniec, A.; Barankiewicz, J.; Domagala, A.; Chlebowska, J.; Prochorec-Sobieszek, M.; Winiarska, M.; Ostaszewski, R.; Gwizdalska, I.; Golab, J.; Nowis, D.; Firczuk, M. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016, 7, 1717–1731. [Google Scholar] [CrossRef]
- Muchowicz, A.; Firczuk, M.; Chlebowska, J.; Nowis, D.; Stachura, J.; Barankiewicz, J.; Trzeciecka, A.; Kłossowski, S.; Ostaszewski, R.; Zagożdżon, R.; Pu, J.X.; Sun, H.D.; Golab, J. Adenanthin targets proteins involved in the regulation of disulphide bonds. Biochem Pharmacol. 2014, 89, 210–216. [Google Scholar] [CrossRef]
- Fiskus, W.; Saba, N.; Shen, M.; Ghias, M.; Liu, J.; Gupta, S.D.; Chauhan, L.; Rao, R.; Gunewardena, S.; Schorno, K.; Austin, C.P.; Maddocks, K.; Byrd, J.; Melnick, A.; Huang, P.; Wiestner, A.; Bhalla, K.N. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 2014, 74, 2520–2532. [Google Scholar] [CrossRef]
- Celegato, M.; Borghese, C.; Casagrande, N.; Mongiat, M.; Kahle, X.U.; Paulitti, A.; Spina, M.; Colombatti, A.; Aldinucci, D. Preclinical activity of the repurposed drug auranofin in classical Hodgkin lymphoma. Blood. 2015, 126, 1394–1397. [Google Scholar] [CrossRef]
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018, 217, 2291–2298. [Google Scholar] [CrossRef]
- Kiebala, M.; Skalska, J.; Casulo, C.; Brookes, P.S.; Peterson, D.R.; Hilchey, S.P.; Dai, Y.; Grant, S.; Maggirwar, S.B.; Bernstein, S.H. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp Hematol. 2015, 43, 89–99. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.W.; King, R.L.; Staiger, A.M.; Ben-Neriah, S.; Jiang, A.; Horn, H.; Mottok, A.; Farinha, P.; Slack, G.W.; Ennishi, D.; Schmitz, N.; Pfreundschuh, M.; Nowakowski, G.S.; Kahl, B.S.; Connors, J.M.; Gascoyne, R.D.; Ott, G.; Macon, W.R.; Rosenwald, A. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018, 131, 2060–2064. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; Hodson, D.J.; Xiao, W.; Yu, X.; Yang, Y.; Zhao, H.; Xu, W.; Liu, X.; Zhou, B.; Du, W.; Chan, W.C.; Jaffe, E.S.; Gascoyne, R.D.; Connors, J.M.; Campo, E.; Lopez-Guillermo, A.; Rosenwald, A.; Ott, G.; Delabie, J.; Rimsza, L.M.; Tay Kuang Wei, K.; Zelenetz, A.D.; Leonard, J.P.; Bartlett, N.L.; Tran, B.; Shetty, J.; Zhao, Y.; Soppet, D.R.; Pittaluga, S.; Wilson, W.H.; Staudt, L.M. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef]
- Kinowaki, Y.; Kurata, M.; Ishibashi, S.; Ikeda, M.; Tatsuzawa, A.; Yamamoto, M.; Miura, O.; Kitagawa, M.; Yamamoto, K. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab Invest. 2018, 98, 609–619. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci. 2017, 38, 794–808. [Google Scholar] [CrossRef]
- Jia, J.J.; Geng, W.S.; Wang, Z.Q.; Chen, L.; Zeng, X.S. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol. 2019, 84, 453–470. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Woods, K.; Di Trapani, G.; Tonissen, K.F. Investigating the Thioredoxin and Glutathione Systems’ Response in Lymphoma Cells after Treatment with [Au(d2pype)2]CL. Antioxidants (Basel). 2021, 10, 104. [Google Scholar] [CrossRef]
- Sewastianik, T.; Szydlowski, M.; Jablonska, E.; Bialopiotrowicz, E.; Kiliszek, P.; Gorniak, P.; Polak, A.; Prochorec-Sobieszek, M.; Szumera-Cieckiewicz, A.; Kaminski, T.S.; Markowicz, S.; Nowak, E.; Grygorowicz, M.A.; Warzocha, K.; Juszczynski, P. FOXO1 is a TXN-and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism. Oncogene. 2016, 35, 5989–6000. [Google Scholar] [CrossRef]
- Chan, M.C.; Savela, J.; Ollikainen, R.K.; Teppo, H.R.; Miinalainen, I.; Pirinen, R.; Kari, E.J.M.; Kuitunen, H.; Turpeenniemi-Hujanen, T.; Kuittinen, O.; Kuusisto, M.E.L. Testis-Specific Thioredoxins TXNDC2, TXNDC3, and TXNDC6 Are Expressed in Both Testicular and Systemic DLBCL and Correlate with Clinical Disease Presentation. Oxid Med Cell Longev. 2021, 2021, 8026941. [Google Scholar] [CrossRef]
- Mai, Y.; Yu, J.J.; Bartholdy, B.; Xu-Monette, Z.Y.; Knapp, E.E.; Yuan, F.; Chen, H.; Ding, B.B.; Yao, Z.; Das, B.; Zou, Y.; Young, K.H.; Parekh, S.; Ye, B.H. An oxidative stress-based mechanism of doxorubicin cytotoxicity suggests new therapeutic strategies in ABC-DLBCL. Blood. 2016, 128, 2797–2807. [Google Scholar] [CrossRef]
- Freedman, A. Follicular lymphoma: 2018 update on diagnosis and management. Am J Hematol. 2018, 93, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Louissaint, A., Jr.; Schafernak, K.T.; Geyer, J.T.; Kovach, A.E.; Ghandi, M.; Gratzinger, D.; Roth, C.G.; Paxton, C.N.; Kim, S.; Namgyal, C.; Morin, R.; Morgan, E.A.; Neuberg, D.S.; South, S.T.; Harris, M.H.; Hasserjian, R.P.; Hochberg, E.P.; Garraway, L.A.; Harris, N.L.; Weinstock, D.M. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood. 2016, 128, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Peroja, P.; Haapasaari, K.M.; Mannisto, S.; Miinalainen, I.; Koivunen, P.; Leppä, S.; Karjalainen-Lindsberg, M.L.; Kuusisto, M.E.; Turpeenniemi-Hujanen, T.; Kuittinen, O.; Karihtala, P. Total peroxiredoxin expression is associated with survival in patients with follicular lymphoma. Virchows Arch. 2016, 468, 623–630. [Google Scholar] [CrossRef]
- Pieters, T.; T’Sas, S.; Vanhee, S.; Almeida, A.; Driege, Y.; Roels, J.; Van Loocke, W.; Daneels, W.; Baens, M.; Marchand, A.; Van Trimpont, M.; Matthijssens, F.; Morscio, J.; Lemeire, K.; Lintermans, B.; Reunes, L.; Chaltin, P.; Offner, F.; Van Dorpe, J.; Hochepied, T.; Berx, G.; Beyaert, R.; Staal, J.; Van Vlierberghe, P.; Goossens, S. Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. J Exp Med. 2021, 218, e20202280. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Miranda, R.N.; Medeiros, L.J.; McCarty, N. Bifurcated BACH2 control coordinates mantle cell lymphoma survival and dispersal during hypoxia. Blood. 2017, 130, 763–776. [Google Scholar] [CrossRef]
- Tafani, M.; Sansone, L.; Limana, F.; Arcangeli, T.; De Santis, E.; Polese, M.; Fini, M.; Russo, M.A. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev. 2016, 2016, 3907147. [Google Scholar] [CrossRef]
- Marcelis, L.; Tousseyn, T.; Sagaert, X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol. 2019, 421, 77–106. [Google Scholar] [CrossRef]
- Violeta Filip, P.; Cuciureanu, D.; Sorina Diaconu, L.; Maria Vladareanu, A.; Silvia Pop, C. MALT lymphoma: epidemiology, clinical diagnosis and treatment. J Med Life. 2018, 11, 187–193. [Google Scholar] [CrossRef]
- Juárez-Salcedo, L.M.; Sokol, L.; Chavez, J.C.; Dalia, S. Primary Gastric Lymphoma, Epidemiology, Clinical Diagnosis, and Treatment. Cancer Control. 2018, 25, 1073274818778256. [Google Scholar] [CrossRef]
- Delgado, J.; Nadeu, F.; Colomer, D.; Campo, E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica. 2020, 105, 2205–2217. [Google Scholar] [CrossRef]
- Baliakas, P.; Jeromin, S.; Iskas, M.; Puiggros, A.; Plevova, K.; Nguyen-Khac, F.; Davis, Z.; Rigolin, G.M.; Visentin, A.; Xochelli, A.; Delgado, J.; Baran-Marszak, F.; Stalika, E.; Abrisqueta, P.; Durechova, K.; Papaioannou, G.; Eclache, V.; Dimou, M.; Iliakis, T.; Collado, R.; Doubek, M.; Calasanz, M.J.; Ruiz-Xiville, N.; Moreno, C.; Jarosova, M.; Leeksma, A.C.; Panayiotidis, P.; Podgornik, H.; Cymbalista, F.; Anagnostopoulos, A.; Trentin, L.; Stavroyianni, N.; Davi, F.; Ghia, P.; Kater, A.P.; Cuneo, A.; Pospisilova, S.; Espinet, B.; Athanasiadou, A.; Oscier, D.; Haferlach, C.; Stamatopoulos, K.; ERIC, the European Research Initiative on CLL. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019, 133, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Sabry, S.A.; El-Senduny, F.; Abousamra, N.; El-Din, M.S. Interaction between Th9, interleukin-9 and oxidative stress in chronic lymphocytic leukemia. Trends in Applied Sciences Research. 2019, 14, 56–69. [Google Scholar] [CrossRef]
- Zhevak, T.; Shelekhova, T.; Chesnokova, N.; Tsareva, O.; Chanturidze, A.; Litvitsky, P.; Andriutsa, N.; Samburova, N.; Budnik, I. The relationship between oxidative stress and cytogenetic abnormalities in B-cell chronic lymphocytic leukemia. Exp Mol Pathol. 2020, 116, 104524. [Google Scholar] [CrossRef]
- Sabry, S.A.; El-Senduny, F.F.; Abousamra, N.K.; Salah El-Din, M.; Youssef, M.M. Oxidative stress in CLL patients leads to activation of Th9 cells: an experimental and comprehensive survey. Immunol Med. 2020, 43, 36–46. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, W.; Chen, X.; Wang, S.; Qian, W. Oxidative stress response induced by chemotherapy in leukemia treatment. Mol Clin Oncol. 2018, 8, 391–399. [Google Scholar] [CrossRef]
- Moignet, A.; Hasanali, Z.; Zambello, R.; Pavan, L.; Bareau, B.; Tournilhac, O.; Roussel, M.; Fest, T.; Awwad, A.; Baab, K.; Semenzato, G.; Houot, R.; Loughran, T.P., Jr.; Lamy, T. Cyclophosphamide as a first-line therapy in LGL leukemia. Leukemia. 2014, 28, 1134–1136. [Google Scholar] [CrossRef]
- Alqahtani, S.; Mahmoud, A.M. Gamma-Glutamylcysteine Ethyl Ester Protects against Cyclophosphamide-Induced Liver Injury and Hematologic Alterations via Upregulation of PPARγ and Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Oxid Med Cell Longev. 2016, 2016, 4016209. [Google Scholar] [CrossRef]
- Mohammad, M.K.; Avila, D.; Zhang, J.; Barve, S.; Arteel, G.; McClain, C.; Joshi-Barve, S. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol. 2012, 265, 73–82. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Teppo, H.R.; Soini, Y.; Karihtala, P. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. Oxid Med Cell Longev. 2017, 2017, 1485283. [Google Scholar] [CrossRef]
- Spiers, J.G.; Chen, H.J.; Sernia, C.; Lavidis, N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. 2015, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Hubenak, J.R.; Zhang, Q.; Branch, C.D.; Kronowitz, S.J. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg. 2014, 133, 49e–56e. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, S.A.; Freitas, J.R.; Conchinha, N.V.; Madureira, P.A. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems. Oxid Med Cell Longev. 2016, 2016, 8413032. [Google Scholar] [CrossRef]
- ALHaithloul, H.A.S.; Alotaibi, M.F.; Bin-Jumah, M.; Elgebaly, H.; Mahmoud, A.M. Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomed Pharmacother. 2019, 111, 676–685. [Google Scholar] [CrossRef]
- Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology. 2020, 81, 137–146. [Google Scholar] [CrossRef]
- Găman, A.M.; Egbuna, C.; Găman, M.A. Natural bioactive lead compounds effective against haematological malignancies. In Egbuna, C.; Kumar, S., Ifemeje, J.C., Ezzat, S.M., Kaliyaperumal, S. (Eds.). Phytochemicals as Lead Compounds for New Drug Discovery, Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 95–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Li, X.; Găman, M.A.; Kord-Varkaneh, H.; Rahmani, J.; Salehi-Sahlabadi, A.; Day, A.S.; Xu, Y. Serum Vitamin D Levels and Risk of Liver Cancer: A Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. Nutr Cancer. 2021, 73, 1–9. [Google Scholar] [CrossRef]
- Tofolean, I.T.; Ganea, C.; Ionescu, D.; Filippi, A.; Garaiman, A.; Goicea, A.; Gaman, M.A.; Dimancea, A.; Baran, I. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells. Pharmacol Res. 2016, 103, 300–17. [Google Scholar] [CrossRef]
- Motofei, I.G. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf. 2021, 1–14. [Google Scholar] [CrossRef]
- Montazeri, R.S.; Fatahi, S.; Sohouli, M.H.; Abu-Zaid, A.; Santos, H.O.; Găman, M.A.; Shidfar, F. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem. 2021, 45, e13625. [Google Scholar] [CrossRef]
- Sánchez, A.; Calpena, A.C.; Clares, B. Evaluating the Oxidative Stress in Inflammation: Role of Melatonin. Int J Mol Sci. 2015, 16, 16981–17004. [Google Scholar] [CrossRef]
- 143Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016, 56, 361–83. [Google Scholar] [CrossRef]
- Wang, T.H.; Hsueh, C.; Chen, C.C.; Li, W.S.; Yeh, C.T.; Lian, J.H.; Chang, J.L.; Chen, C.Y. Melatonin Inhibits the Progression of Hepatocellular Carcinoma through MicroRNA Let7i-3p Mediated RAF1 Reduction. Int J Mol Sci. 2018, 19, 2687. [Google Scholar] [CrossRef]
- Sánchez, D.I.; González-Fernández, B.; Crespo, I.; San-Miguel, B.; Álvarez, M.; González-Gallego, J.; Tuñón, M.J. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res. 2018, 65, e12506. [Google Scholar] [CrossRef]
- Yan, G.; Lei, H.; He, M.; Gong, R.; Wang, Y.; He, X.; Li, G.; Pang, P.; Li, X.; Yu, S.; Du, W.; Yuan, Y. Melatonin triggers autophagic cell death by regulating RORC in Hodgkin lymphoma. Biomed Pharmacother. 2020, 123, 109811. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017, 8, 39896–39921. [Google Scholar] [CrossRef]
- Mehrzadi, M.H.; Hosseinzadeh, A.; Juybari, K.B.; Mehrzadi, S. Melatonin and urological cancers: a new therapeutic approach. Cancer Cell Int. 2020, 20, 444. [Google Scholar] [CrossRef]
- Gaman, A.M.; Buga, A.M.; Gaman, M.A.; Popa-Wagner, A. The role of oxidative stress and the effects of antioxidants on the incidence of infectious complications of chronic lymphocytic leukemia. Oxid Med Cell Longev. 2014, 2014, 158135. [Google Scholar] [CrossRef]
- Gaman, A.M.; Moisa, C.; Diaconu, C.C.; Gaman, M.A. Crosstalk between Oxidative Stress, Chronic Inflammation and Disease Progression in Essential Thrombocythemia. Rev. Chim. 2019, 70, 3486–3489. [Google Scholar] [CrossRef]
- Moisa, C.; Gaman, M.A.; Diaconu, C.C.; Gaman, A.M. Oxidative Stress Levels, JAK2V617F Mutational Status and Thrombotic Complications in Patients with Essential Thrombocythemia. Rev. Chim. 2019, 70, 2822–2825. [Google Scholar] [CrossRef]
- Găman, M.A.; Cozma, M.A.; Dobrică, E.C.; Crețoiu, S.M.; Găman, A.M.; Diaconu, C.C. Liquid Biopsy and Potential Liquid Biopsy-Based Biomarkers in Philadelphia- Negative Classical Myeloproliferative Neoplasms: A Systematic Review. Life (Basel) 2021, 11, 677. [Google Scholar] [CrossRef]
|
|
|
|
|
|
|
Share and Cite
Corbeanu, R.I.; Găman, A.M. The Involvement of Oxidative Stress in Non-Hodgkin’s Lymphomas; A Review of the Literature. J. Mind Med. Sci. 2022, 9, 1-15. https://doi.org/10.22543/7674.91.P115
Corbeanu RI, Găman AM. The Involvement of Oxidative Stress in Non-Hodgkin’s Lymphomas; A Review of the Literature. Journal of Mind and Medical Sciences. 2022; 9(1):1-15. https://doi.org/10.22543/7674.91.P115
Chicago/Turabian StyleCorbeanu, Ramona Ingrid, and Amelia Maria Găman. 2022. "The Involvement of Oxidative Stress in Non-Hodgkin’s Lymphomas; A Review of the Literature" Journal of Mind and Medical Sciences 9, no. 1: 1-15. https://doi.org/10.22543/7674.91.P115
APA StyleCorbeanu, R. I., & Găman, A. M. (2022). The Involvement of Oxidative Stress in Non-Hodgkin’s Lymphomas; A Review of the Literature. Journal of Mind and Medical Sciences, 9(1), 1-15. https://doi.org/10.22543/7674.91.P115