Linking the Brain and Bone Through Fat
Abstract
:Introduction
Discussions
Mesenchymal Stem Cell—The Same Origin for Adipocytes and Osteoblasts
The Brain’s Effects on the Bone
Adipose Tissue as An Endocrine Organ
- a.
- Leptin
- b.
- Adiponectin
- c.
- Lipocalin 2
- d.
- Inflammatory Cytokines
Interleukin 1 (IL-1)
Interleukin 6 (IL-6)
Tumor Necrosis Factor Alpha (TNF-α)
Other Interleukins
Bone as An Endocrine Organ
- a.
- Osteocalcin
- b.
- Fibroblast growth factor-23 (FGF23)
Highlights
- ✓ Adipose tissue plays an important role in the crosstalk between organs and tissues.
- ✓ Leptin impacts bone metabolism through direct and indirect mechanisms, via peripheral and central pathways.
Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Oldknow, K.J.; MacRae, V.E.; Farquharson, C. Endocrine role of bone: Recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015, 225, R1–R19. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Liu, Y.; Song, C.Y.; Wu, S.S.; Liang, Q.H.; Yuan, L.Q.; Liao, E.Y. Novel adipokines and bone metabolism. Int J Endocrinol. 2013, 2013, 895045. [Google Scholar] [CrossRef]
- Rosen, C.J.; Klibanski, A. Bone, fat, and body composition: Evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009, 122, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Joseph, F. Adipose tissue and adipokines: The association with and application of adipokines in obesity. Scientifica (Cairo). 2014, 2014, 328592. [Google Scholar] [CrossRef]
- Kawai, M.; Devlin, M.J.; Rosen, C.J. Fat targets for skeletal health. Nat Rev Rheumatol. 2009, 5, 365–372. [Google Scholar] [CrossRef]
- da Silva Meirelles, L.; Chagastelles, P.C.; Nardi, N.B. Mesenchymal stem cells reside in virtually all post- natal organs and tissues. J Cell Sci. 2006, 119 Pt 11, 2204–2213. [Google Scholar] [CrossRef]
- Stryiński, R.; Mateos, J.; Łopieńska-Biernat, E.; Carrera, M. Shotgun Proteomics for L3 and L4 Anisakis simplex Development Stages. Methods Mol Biol. 2021, 2259, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Li, C.; Lu, Y.; Geng, R.; Wei, J.N.; Hu, J.Z. Adipose-derived mesenchymal stromal cells suppress osteoclastogenesis and bone erosion in collagen- induced arthritis. Scand J Immunol. 2020, 92, e12877. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Chailakhyan, R.K.; Gerasimov, U.V. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987, 20, 263–272. [Google Scholar] [CrossRef]
- Ravikumar, M.; Smith, R.A.A.; Nurcombe, V.; Cool, S.M. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol. 2020, 8, 581213. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper- Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.J.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef] [PubMed]
- Muruganandan, S.; Roman, A.A.; Sinal, C.J. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program. Cell Mol Life Sci. 2009, 66, 236–253. [Google Scholar] [CrossRef]
- Kim, J.G.; Sun, B.H.; Dietrich, M.O.; Koch, M.; Yao, G.Q.; Diano, S.; Insogna, K.; Horvath, T.L. AgRP Neurons Regulate Bone Mass. Cell Rep. 2015, 13, 8–14. [Google Scholar] [CrossRef]
- Wee, N.K.; Kulkarni, R.N.; Horsnell, H.; Baldock, P.A. The brain in bone and fuel metabolism. Bone. 2016, 82, 56–63. [Google Scholar] [CrossRef]
- Kristensen, P.; Judge, M.E.; Thim, L.; Ribel, U.; Christjansen, K.N.; Wulff, B.S.; Clausen, J.T.; Jensen, P.B.; Madsen, O.D.; Vrang, N.; et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998, 393, 72–76. [Google Scholar] [CrossRef]
- Ducy, P.; Amling, M.; Takeda, S.; Priemel, M.; Schilling, A.F.; Beil, F.T.; Shen, J.; Vinson, C.; Rueger, J.M.; Karsenty, G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell. 2000, 100, 197–207. [Google Scholar] [CrossRef]
- Yadav, V.K.; Oury, F.; Suda, N.; Liu, Z.W.; Gao, X.B.; Confavreux, C.; Klemenhagen, K.C.; Tanaka, K.F.; Gingrich, J.A.; Guo, X.E.; et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009, 138, 976–989. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef]
- Grace, C.; Vincent, R.; Aylwin, S.J. High prevalence of vitamin D insufficiency in a United Kingdom urban morbidly obese population: Implications for testing and treatment. Surg Obes Relat Dis. 2014, 10, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; et al. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef]
- Liu, K.; Liu, P.; Liu, R.; Wu, X.; Cai, M. Relationship between serum leptin levels and bone mineral density: A systematic review and meta-analysis. Clin Chim Acta. 2015, 444, 260–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Kamezaki, Y.; Katsuura, S.; Kuwano, Y.; Tanahashi, T.; Rokutan, K. Circulating cytokine signatures in healthy medical students exposed to academic examination stress. Psychophysiology 2012, 49, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Ahima, R.S.; Flier, J.S. Leptin. Annu Rev Physiol. 2000, 62, 413–437. [Google Scholar] [CrossRef] [PubMed]
- Lanfray, D.; Richard, D. Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7. Front Neurosci. 2017, 11, 328. [Google Scholar] [CrossRef]
- Cone, R.D. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005, 8, 571–578. [Google Scholar] [CrossRef]
- Upadhyay, J.; Farr, O.M.; Mantzoros, C.S. The role of leptin in regulating bone metabolism. Metabolism 2015, 64, 105–113. [Google Scholar] [CrossRef]
- Cornish, J.; Callon, K.E.; Bava, U.; Lin, C.; Naot, D.; Hill, B.L.; Grey, A.B.; Broom, N.; Myers, D.E.; Nicholson, G.C.; et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002, 175, 405–415. [Google Scholar] [CrossRef]
- Steppan, C.M.; Crawford, D.T.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Comish, J. Direct actions of leptin on bone remodeling. Calcif Tissue Int. 2004, 74, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Maeda, T.; Kawane, T.; Matsunuma, A.; Horiuchi, N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin- deficient mice. J Bone Miner Res. 2010, 25, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.H.; Stathopoulos, V.M.; Rappaport, M.S. Hormonal effects on phosphoinositide metabolism in bone and bone cells. Prog Clin Biol Res. 1988, 252, 197–202. [Google Scholar]
- Weiss, L.A.; Barrett-Connor, E.; von Mühlen, D.; Clark, P. Leptin predicts BMD and bone resorption in older women but not older men: The Rancho Bernardo study. J Bone Miner Res. 2006, 21, 758–764. [Google Scholar] [CrossRef]
- Pasco, J.A.; Henry, M.J.; Kotowicz, M.A.; Collier, G.R.; Ball, M.J.; Ugoni, A.M.; Nicholson, G.C. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001, 86, 1884–1887. [Google Scholar] [CrossRef]
- Zoico, E.; Zamboni, M.; Adami, S.; Vettor, R.; Mazzali, G.; Tosoni, P.; Bissoli, L.; Bosello, O. Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol. 2003, 59, 97–103. [Google Scholar] [CrossRef]
- Martini, G.; Valenti, R.; Giovani, S.; Franci, B.; Campagna, S.; Nuti, R. Influence of insulin-like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone. 2001, 28, 113–117. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef]
- Denzel, M.S.; Scimia, M.C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest. 2010, 120, 4342–4352. [Google Scholar] [CrossRef]
- Hug, C.; Wang, J.; Ahmad, N.S.; Bogan, J.S.; Tsao, T.S.; Lodish, H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 2004, 101, 10308–10313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J Mol Cell Biol. 2016, 8, 93–100. [Google Scholar] [CrossRef]
- Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. Adiponectin receptors: A review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab. 2014, 28, 15–23. [Google Scholar] [CrossRef]
- Forny-Germano, L.; De Felice, F.G.; Vieira, M.N.D.N. The Role of Leptin and Adiponectin in Obesity- Associated Cognitive Decline and Alzheimer’s Disease. Front Neurosci. 2019, 12, 1027. [Google Scholar] [CrossRef]
- Villarreal-Molina, M.T.; Antuna-Puente, B. Adiponectin: Anti-inflammatory and cardioprotective effects. Biochimie 2012, 94, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Chandran, M.; Phillips, S.A.; Ciaraldi, T.; Henry, R.R. Adiponectin: More than just another fat cell hormone? Diabetes Care 2003, 26, 2442–2450. [Google Scholar] [CrossRef] [PubMed]
- Pyrzak, B.; Ruminska, M.; Popko, K.; Demkow, U. Adiponectin as a biomarker of the metabolic syndrome in children and adolescents. Eur J Med Res. 2010, 15 (Suppl. 2), 147–151. [Google Scholar] [CrossRef]
- Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004, 10, 524–529. [Google Scholar] [CrossRef]
- Cisternas, P.; Martinez, M.; Ahima, R.S.; William Wong, G.; Inestrosa, N.C. Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Mol Neurobiol. 2019, 56, 3024–3037. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP- dependent pathway. Circulation 2000, 102, 1296–1301. [Google Scholar] [CrossRef]
- Luo, X.H.; Guo, L.J.; Xie, H.; Yuan, L.Q.; Wu, X.P.; Zhou, H.D.; Liao, E.Y. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006, 21, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Popescu, B.; Oașă, I.D.; Bertesteanu, S.V.G.; Balalau, C.; Manole, F.; Domuta, M.; Oancea, A.L.A. Strategies to improve activity and results of the head and neck tumor board. J Clin Invest Surg. 2020, 5, 9–12. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007, 5, 98–104. [Google Scholar] [CrossRef]
- Shinoda, Y.; Yamaguchi, M.; Ogata, N.; Akune, T.; Kubota, N.; Yamauchi, T.; Terauchi, Y.; Kadowaki, T.; Takeuchi, Y.; Fukumoto, S.; et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006, 99, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Naot, D.; Musson, D.S.; Cornish, J. The Activity of Adiponectin in Bone. Calcif Tissue Int. 2017, 100, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Motofei, I.G.; Rowland, D.L.; Georgescu, S.R.; Tampa, M.; Paunica, S.; Constantin, V.D.; Balalau, C.; Manea, M.; Baleanu, B.C.; Sinescu, I. Post-Finasteride Adverse Effects in Male Androgenic Alopecia: A Case Report of Vitiligo. Skin Pharmacol Physiol. 2017, 30, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Fat and bone. Arch Biochem Biophys. 2010, 503, 20–27. [Google Scholar] [CrossRef]
- Barbour, K.E.; Zmuda, J.M.; Boudreau, R.; Strotmeyer, E.S.; Horwitz, M.J.; Evans, R.W.; Kanaya, A.M.; Harris, T.B.; Bauer, D.C.; Cauley, J.A. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011, 26, 1568–1576. [Google Scholar] [CrossRef]
- Michaëlsson, K.; Lind, L.; Frystyk, J.; Flyvbjerg, A.; Gedeborg, R.; Berne, C.; Zethelius, B.; Mallmin, H.; Söderberg, S.; Melhus, H. Serum adiponectin in elderly men does not correlate with fracture risk. J Clin Endocrinol Metab. 2008, 93, 4041–4047. [Google Scholar] [CrossRef]
- Kjeldsen, L.; Cowland, J.B.; Borregaard, N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 2000, 1482, 272–283. [Google Scholar] [CrossRef]
- Yan, Q.W.; Yang, Q.; Mody, N.; Graham, T.E.; Hsu, C.H.; Xu, Z.; Houstis, N.E.; Kahn, B.B.; Rosen, E.D. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007, 56, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- Abella, V.; Scotece, M.; Conde, J.; Gómez, R.; Lois, A.; Pino, J.; Gómez-Reino, J.J.; Lago, F.; Mobasheri, A.; Gualillo, O. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers. 2015, 20, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lam, K.S.; Kraegen, E.W.; Sweeney, G.; Zhang, J.; Tso, A.W.; Chow, W.S.; Wat, N.M.; Xu, J.Y.; Hoo, R.L.; et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem. 2007, 53, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Mosialou, I.; Shikhel, S.; Liu, J.M.; Maurizi, A.; Luo, N.; He, Z.; et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017, 543, 385–390. [Google Scholar] [CrossRef]
- Febbraio, M.A. Role of interleukins in obesity: Implications for metabolic disease. Trends Endocrinol Metab. 2014, 25, 312–319. [Google Scholar] [CrossRef]
- Maryanovich, M.; Takeishi, S.; Frenette, P.S. Neural Regulation of Bone and Bone Marrow. Cold Spring Harb Perspect Med. 2018, 8, a031344. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Lacey, D.L.; Dunstan, C.R.; Spelsberg, T.C.; Riggs, B.L.; Khosla, S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999, 25, 255–259. [Google Scholar] [CrossRef]
- Lazar, A.L.; Orășean, O.H.; Baican, C.; Rednic, N.V.; Sitar-Tăut, A.; Man, B.; Negrean, V.; Rednic, N.; Cozma, A. Carbamazepine-induced DRESS syndrome: A case report. J Mind Med Sci. 2020, 7, 239–244. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.Z. Association of IL-6 174G/C (rs1800795) and 572C/G (rs1800796) polymorphisms with risk of osteoporosis: A meta- analysis. BMC Musculoskelet Disord. 2020, 21, 330. [Google Scholar] [CrossRef]
- Lorenzo, J.A.; Sousa, S.L.; Alander, C.; Raisz, L.G.; Dinarello, C.A. Comparison of the bone-resorbing activity in the supernatants from phytohemagglutinin-stimulated human peripheral blood mononuclear cells with that of cytokines through the use of an antiserum to interleukin 1. Endocrinology 1987, 121, 1164–1170. [Google Scholar] [CrossRef]
- Sabatini, M.; Boyce, B.; Aufdemorte, T.; Bonewald, L.; Mundy, G.R. Infusions of recombinant human interleukins 1 alpha and 1 beta cause hypercalcemia in normal mice. Proc Natl Acad Sci USA. 1988, 85, 5235–5239. [Google Scholar] [CrossRef]
- Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38–50. [Google Scholar] [CrossRef]
- Wueest, S.; Konrad, D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte 2018, 7, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, F.; Duplomb, L.; Baud’huin, M.; Brounais, B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009, 20, 19–28. [Google Scholar] [CrossRef]
- Yoshitake, F.; Itoh, S.; Narita, H.; Ishihara, K.; Ebisu, S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008, 283, 11535–11540. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ricciardi, B.F.; Hernandez-Soria, A.; Shi, Y.; Pleshko Camacho, N.; Bostrom, M.P. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 2007, 41, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Azuma, Y.; Kaji, K.; Katogi, R.; Takeshita, S.; Kudo, A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000, 275, 4858–4864. [Google Scholar] [CrossRef]
- Pan, W.; Zadina, J.E.; Harlan, R.E.; Weber, J.T.; Banks, W.A.; Kastin, A.J. Tumor necrosis factor-alpha: A neuromodulator in the CNS. Neurosci Biobehav Rev. 1997, 21, 603–613. [Google Scholar] [CrossRef]
- Cooper, M.S.; Bujalska, I.; Rabbitt, E.; Walker, E.A.; Bland, R.; Sheppard, M.C.; Hewison, M.; Stewart, P.M. Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: An autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res. 2001, 16, 1037–1044. [Google Scholar] [CrossRef]
- Balalau, C.; Voiculescu, S.; Motofei, I.; Scaunasu, R.V.; Negrei, C. Low dose tamoxifen as treatment of benign breast proliferative lesions. Farmacia 2015, 63, 371–375. [Google Scholar]
- Fulzele, K.; Riddle, R.C.; DiGirolamo, D.J.; Cao, X.; Wan, C.; Chen, D.; Faugere, M.C.; Aja, S.; Hussain, M.A.; Brüning, J.C.; et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010, 142, 309–319. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Zoch, M.L.; Clemens, T.L.; Riddle, R.C. New insights into the biology of osteocalcin. Bone 2016, 82, 42–49. [Google Scholar] [CrossRef]
- Ferron, M.; McKee, M.D.; Levine, R.L.; Ducy, P.; Karsenty, G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 2012, 50, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; Yamauchi, M.; Yano, S.; Sugimoto, T. Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus. Eur J Endocrinol. 2009, 160, 265–273. [Google Scholar] [CrossRef]
- Shan, C.; Ghosh, A.; Guo, X.Z.; Wang, S.M.; Hou, Y.F.; Li, S.T.; Liu, J.M. Roles for osteocalcin in brain signalling: Implications in cognition- and motor-related disorders. Mol Brain 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Patterson-Buckendahl, P.; Sowinska, A.; Yee, S.; Patel, D.; Pagkalinawan, S.; Shahid, M.; Shah, A.; Franz, C.; Benjamin, D.E.; Pohorecky, L.A. Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol. 2012, 32, 879–889. [Google Scholar] [CrossRef]
- Berger, J.M.; Singh, P.; Khrimian, L.; Morgan, D.A.; Chowdhury, S.; Arteaga-Solis, E.; Horvath, T.L.; Domingos, A.I.; Marsland, A.L.; Yadav, V.K.; et al. Mediation of the Acute Stress Response by the Skeleton. Cell Metab. 2019, 30, 890–902.e8. [Google Scholar] [CrossRef]
- Yamashita, T.; Yoshioka, M.; Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000, 277, 494–498. [Google Scholar] [CrossRef]
- Yang, Z.Z.; He, L.N.; Zhao, Y.N.; Yu, B. Highly efficient SO2 absorption and its subsequent utilization by weak base/polyethylene glycol binary system. Environ Sci Technol. 2013, 47, 1598–1605. [Google Scholar] [CrossRef]
- Yuan, Q.; Jiang, Y.; Zhao, X.; Sato, T.; Densmore, M.; Schüler, C.; Erben, R.G.; McKee, M.D.; Lanske, B. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res. 2014, 29, 693–704. [Google Scholar] [CrossRef]
- Murali, S.K.; Roschger, P.; Zeitz, U.; Klaushofer, K.; Andrukhova, O.; Erben, R.G. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho- Independent Manner. J Bone Miner Res. 2016, 31, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Sato, T.; Densmore, M.; Saito, H.; Schüler, C.; Erben, R.G.; Lanske, B. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice. PLoS Genet. 2012, 8, e1002726. [Google Scholar] [CrossRef]
- Jordan, W.J. Mental Health & Drugs; A Map the Mind. J Mind Med Sci. 2020, 7, 133–140. [Google Scholar] [CrossRef]
- Francis, C.; David, V. Inflammation regulates fibroblast growth factor 23 production. Curr Opin Nephrol Hypertens. 2016, 25, 325–332. [Google Scholar] [CrossRef]
- Ito, N.; Wijenayaka, A.R.; Prideaux, M.; Kogawa, M.; Ormsby, R.T.; Evdokiou, A.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro- inflammatory stimuli. Mol Cell Endocrinol. 2015, 399, 208–218. [Google Scholar] [CrossRef]
- Glosse, P.; Fajol, A.; Hirche, F.; Feger, M.; Voelkl, J.; Lang, F.; Stangl, G.I.; Föller, M. A high-fat diet stimulates fibroblast growth factor 23 formation in mice through TNFα upregulation. Nutr Diabetes. 2018, 8, 36. [Google Scholar] [CrossRef]
- Woo, Y.C.; Xu, A.; Wang, Y.; Lam, K.S. Fibroblast growth factor 21 as an emerging metabolic regulator: Clinical perspectives. Clin Endocrinol 2013, 78, 489–496. [Google Scholar] [CrossRef]
- Owen, B.M.; Mangelsdorf, D.J.; Kliewer, S.A. Tissue- specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015, 26, 22–29. [Google Scholar] [CrossRef]
- Zaheer, S.; de Boer, I.H.; Allison, M.; Brown, J.M.; Psaty, B.M.; Robinson-Cohen, C.; Michos, E.D.; Ix, J.H.; Kestenbaum, B.; Siscovick, D.; et al. Fibroblast Growth Factor 23, Mineral Metabolism, and Adiposity in Normal Kidney Function. J Clin Endocrinol Metab. 2017, 102, 1387–1395. [Google Scholar] [CrossRef]
- Holecki, M.; Chudek, J.; Więcek, A.; Titz-Bober, M.; Duława, J. The serum level of fibroblast growth factor-23 and calcium-phosphate homeostasis in obese perimenopausal women. Int J Endocrinol. 2011, 2011, 707126. [Google Scholar] [CrossRef] [PubMed]
© 2021 by the author. 2021 Elisabeta Malinici, Anca Sirbu1, Miruna Popa1, Simona Fica1
Share and Cite
Malinici, E.; Sirbu, A.; Popa, M.; Fica, S. Linking the Brain and Bone Through Fat. J. Mind Med. Sci. 2021, 8, 17-26. https://doi.org/10.22543/7674.81.P1726
Malinici E, Sirbu A, Popa M, Fica S. Linking the Brain and Bone Through Fat. Journal of Mind and Medical Sciences. 2021; 8(1):17-26. https://doi.org/10.22543/7674.81.P1726
Chicago/Turabian StyleMalinici, Elisabeta, Anca Sirbu, Miruna Popa, and Simona Fica. 2021. "Linking the Brain and Bone Through Fat" Journal of Mind and Medical Sciences 8, no. 1: 17-26. https://doi.org/10.22543/7674.81.P1726
APA StyleMalinici, E., Sirbu, A., Popa, M., & Fica, S. (2021). Linking the Brain and Bone Through Fat. Journal of Mind and Medical Sciences, 8(1), 17-26. https://doi.org/10.22543/7674.81.P1726