The Importance of Prenatal Whole-Exome Sequencing Testing in the Romanian Population
Abstract
:1. Introduction
- (1)
- Sifting through a giant amount of data in a short timespan;
- (2)
- Finding pathogenic variants in genetic syndromes or singular genetic pathologies with a reduced disease penetrance and variable expression;
- (3)
- Providing pre-test and post-test proper counseling, particularly in regard to the stress associated with discovering variants of unknown significance (VUS).
The Aim of the Study
2. Materials and Methods
Bioinformatic Workflow Regarding Raw Data Analysis (Pipeline 1)
- Alignment: BWA-MEM;
- Mark duplicates: Picard;
- Variant calling: GATK (VCF1), DeepV (VCF2);
- Merge VCF1;
- VCF2 VCF annotations.
- Complete list of variants of the patient tested (in comparison to the reference sequence).
- List of variants after the 1st filtering process (MAF > 1%, common variants in dbSNP database, benign/likely benign variants based on ClinVar annotations).
- The 3rd step is the list of variants resulting after the 2nd filtering process based on the annotation of variants as pathogenic/likely pathogenic and VUS—variant of unknown significance.
- Variants classified as pathogenic and likely pathogenic with documented association with the clinical phenotype of the proband.
- Variants of uncertain significance (VUS) with indications to be associated with the clinical phenotype of the proband and they are predicted as pathogenic by the majority of the in silico tools applied.
- Variants classified as benign and likely benign based on the literature search and in silico analysis.
- The process of the variants classification follows the American College of Medical Genetics and Genomics (ACMG) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology [13].
3. Results
4. Discussion
4.1. Scope of Analysis
4.2. Mutation Type
4.3. Resolution
4.4. Limitations of Array Design
4.5. Data Analysis
4.5.1. Limitations of Prenatal WES
4.5.2. Genetic Counseling in Prenatal WES
4.5.3. Ethical Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syngelaki, A.; Hammami, A.; Bower, S.; Zidere, V.; Akolekar, R.; Nicolaides, K.H. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2019, 54, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.L.A.; Shaffer, L.G.; Chitty, L.S.; Rosenfeld, J.A.; Crolla, J.A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: A review of the literature. Prenat. Diagn. 2013, 33, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Best, S.; Wou, K.; Vora, N.; Van der Veyver, I.B.; Wapner, R.; Chitty, L.S. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat. Diagn. 2017, 38, 10–19. [Google Scholar] [CrossRef]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L. Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first- tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef]
- Clark, M.M.; Stark, Z.; Farnaes, L.; Tan, T.Y.; White, S.M.; Dimmock, D.; Kingsmore, S.F. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom. Med. 2018, 3, 16. [Google Scholar] [CrossRef]
- Chandler, N.; Best, S.; Hayward, J.; Faravelli, F.; Mansour, S.; Kivuva, E.; Tapon, D.; Male, A.; DeVile, C.; Chitty, L.S. Rapid prenatal diagnosis using targeted exome sequencing: A cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet. Med. 2018, 20, 1430–1437. [Google Scholar] [CrossRef]
- Normand, E.A.; Braxton, A.; Nassef, S.; Ward, P.A.; Vetrini, F.; He, W.; Patel, V.; Qu, C.; Westerfield, L.E.; Stover, S.; et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018, 10, 74. [Google Scholar] [CrossRef]
- Mone, F.; McMullan, D.J.; Williams, D.; Chitty, L.S.; Maher, E.R.; Kilby, M.D. Fetal Genomics Steering Group of the British Society for Genetic Medicine and Royal College of Obstetricians and Gynaecologists. Evidence to support the clinical utility of prenatal exome sequencing in evaluation of the fetus with congenital anomalies. BJOG Int. J. Obstet. Gynaecol. 2021, 128, e39–e50. [Google Scholar]
- ISPD; SMFM; PQF. Joint Position Statement from the International Society of Prenatal Diagnosis (ISPD), the Society of Maternal Fetal Medicine (SMFM) and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat. Diagn. 2018, 38, 6–9. [Google Scholar] [CrossRef]
- Monaghan, K.G.; Leach, N.T.; Pekarek, D.; Prasad, P.; Rose, N.C. ACMG Professional Practice and Guidelines Committee The use of fetal exome sequencing in prenatal diagnosis: A points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 675–680. [Google Scholar] [CrossRef] [PubMed]
- AlDubayan, S.H.; Conway, J.R.; Camp, S.Y.; Witkowski, L.; Kofman, E.; Reardon, B.; Han, S.; Moore, N.; Elmarakeby, H.; Salari, K.; et al. Detection of Pathogenic Variants With Germline Genetic Testing Using Deep Learning vs Standard Methods in Patients With Prostate Cancer and Melanoma. JAMA 2020, 324, 1957–1969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mellis, R.; Oprych, K.; Scotchman, E.; Hill, M.; Chitty, L.S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat. Diagn. 2022, 42, 662–685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goh, G.; Choi, M. Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genom. Inform. 2012, 10, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Miceikaite, I.; Fagerberg, C.; Brasch-Andersen, C.; Torring, P.M.; Kristiansen, B.S.; Hao, Q.; Sperling, L.; Ibsen, M.H.; Löser, K.; Bendsen, E.A.; et al. Comprehensive prenatal diagnostics: Exome versus genome sequencing. Prenat. Diagn. 2023, 43, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, L.; Pode-Shakked, B.; Eisenberg-Barzilai, S.; Dicastro-Keidar, M.; Bar-Ziv, A.; Goldstein, N.; Reznik-Wolf, H.; Poran, H.; Rigbi, A.; Barel, O.; et al. Evaluation of Diagnostic Yield in Fetal Whole-Exome Sequencing: A Report on 45 Consecutive Families. Front. Genet. 2019, 10, 425. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023, 25, 100866. [Google Scholar] [CrossRef]
- Meier, N.; Bruder, E.; Lapaire, O.; Hoesli, I.; Kang, A.; Hench, J.; Hoeller, S.; De Geyter, J.; Miny, P.; Heinimann, K.; et al. Exome sequencing of fetal anomaly syndromes: Novel phenotype-genotype discoveries. Eur. J. Hum. Genet. 2019, 27, 730–737. [Google Scholar] [CrossRef]
- Daum, H.; Meiner, V.; Elpeleg, O.; Harel, T. Collaborating Authors Fetal exome sequencing: Yield and limitations in a tertiary referral center. Ultrasound Obs. Gynecol. 2019, 53, 80–86. [Google Scholar] [CrossRef]
- Quinlan-Jones, E.; Lord, J.; Williams, D.; Hamilton, S.; Marton, T.; Eberhardt, R.Y.; Rinck, G.; Prigmore, E.; Keelagher, R.; McMullan, D.J.; et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet. Med. 2019, 21, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- De Koning, M.A.; Haak, M.C.; Adama van Scheltema, P.N.; Peeters-Scholte, C.M.P.C.D.; Koopmann, T.T.; Nibbeling, E.A.R.; Aten, E.; den Hollander, N.S.; Ruivenkamp, C.A.L.; Hoffer, M.J.V.; et al. From diagnostic yield to clinical impact: A pilot study on the implementation of prenatal exome sequencing in routine care. Genet. Med. 2019, 21, 2303–2310. [Google Scholar] [CrossRef]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K.; et al. Prenatal Assessment of Genomes and Exomes Consortium. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef]
- Becher, N.; Andreasen, L.; Sandager, P.; Lou, S.; Petersen, O.B.; Christensen, R.; Vogel, I. Implementation of exome sequencing in fetal diagnostics-Data and experiences from a tertiary center in Denmark. Acta Obs. Gynecol. Scand. 2020, 99, 783–790. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Wang, C.; Chen, F.; Xie, Y.; Li, Y.; Li, N.; Wang, J.; Zhang, V.W.; Chen, D. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 251, 119–124. [Google Scholar] [CrossRef]
- Dempsey, E.; Haworth, A.; Ive, L.; Dubis, R.; Savage, H.; Serra, E.; Kenny, J.; Elmslie, F.; Greco, E.; Thilaganathan, B.; et al. A report on the impact of rapid prenatal exome sequencing on the clinical management of 52 ongoing pregnancies; a retrospective review. BJOG 2021, 128, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Jiang, Y.; Zhou, X.; Meng, H.; Hao, N.; Chang, J.; Bai, J.; Wang, C.; Wang, M.; Guo, J. Simultaneous Detection of CNVs and SNVs Improves the Diagnostic Yield of Fetuses with Ultrasound Anomalies and Normal Karyotypes. Genes 2020, 11, 1397. [Google Scholar] [CrossRef]
- Weitensteiner, V.; Zhang, R.; Bungenberg, J.; Marks, M.; Gehlen, J.; Ralser, D.J.; Hilger, A.C.; Sharma, A.; Schumacher, J.; Gembruch, U.; et al. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC9A6, and suggests BAZ1A as a new candidate gene. Birth. Defects Res. 2018, 110, 587–597. [Google Scholar] [CrossRef]
- Westphal, D.S.; Leszinski, G.S.; Rieger-Fackeldey, E.; Graf, E.; Weirich, G.; Meitinger, T.; Ostermayer, E.; Oberhoffer, R.; Wagner, M. Lessons from exome sequencing in prenatally diagnosed heart defects: A basis for prenatal testing. Clin. Genet. 2019, 95, 582–589. [Google Scholar] [CrossRef]
- de Jong, A.; de Wert, G.M. Prenatal screening: An ethical agenda for the near future. Bioethics 2015, 29, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Bestwick, J.P.; Wald, N.J. Sequential integrated antenatal screening for Down’s syndrome, trisomy 18 and trisomy 13. J. Med. Screen. 2016, 23, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef]
- Lei, L.; Zhou, L.; Xiong, J.J. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. Eur. J. Med. Genet. 2021, 64, 104288. [Google Scholar] [CrossRef] [PubMed]
- Janicki, E.; De Rademaeker, M.; Meunier, C.; Boeckx, N.; Blaumeiser, B.; Janssens, K. Implementation of Exome Sequencing in Prenatal Diagnostics: Chances and Challenges. Diagnostics 2023, 13, 860. [Google Scholar] [CrossRef]
- de Koning, M.A.; Hoffer, M.J.V.; Nibbeling, E.A.R.; Bijlsma, E.K.; Toirkens, M.J.P.; Adama-Scheltema, P.N.; Verweij, E.J.; Veenhof, M.B.; Santen, G.W.E.; Peeters-Scholte, C.M.P.C.D. Prenatal exome sequencing: A useful tool for the fetal neurologist. Clin. Genet. 2022, 101, 65–77. [Google Scholar] [CrossRef]
- Jelin, A.C.; Vora, N. Whole Exome Sequencing: Applications in Prenatal Genetics. Obstet. Gynecol. Clin. 2018, 45, 69–81. [Google Scholar] [CrossRef]
Case No. | Phenotype | Gestational Age | Reason for WES Testing Referral | Fetal WES | Pregnancy Outcome | Incidental/Secondary Findings |
---|---|---|---|---|---|---|
1 | Fetal sinus bradycardia, supraventricular extrasystoles | 22 weeks | Negative SNP array Known genes linked to fetal phenotype | Negative | Stillbirth | PALB2:c.93dupA(p.Leu32thrfsTer11)—inherited from the mother |
2 | Aberrant right subclavicular artery, rocker bottom feet, fetal hydrops, fetal ascites | 20 weeks | Negative SNP array | LMX1B:c.718G > A (p.Val240Ile) Focal segmental glomerulosclerosis 10 Nail–patella syndrome | Born, affirmatively without symptoms at the age of 1 y.o. | - |
3 | Right aortic arch, severe hydronephrosis, caudal regression syndrome, mesoaxial hand polydactyly | 18 weeks | Negative SNP array Clinical suspicion of VACTERL syndrome | HOXD13:c.820C > T (p.Arg274Ter) Brachydactyly-syndactyly syndrome Brachydactyly, type D Brachydactyly, type E Syndactyly, type V Synpolydactyly 1 | Couple decided on termination of pregnancy | - |
4 | Mega Cisterna Magna, ventriculomegaly | 22 weeks | Negative SNP array | ADNP:c.1612G > A (p.Glu538Lys) Helsmoortel–Van der Aa syndrome De novo | Ongoing pregnancy | - |
5 | Clubfeet, microretrognathia, arachnodactyly, agenesis of the corpus callosum, intrauterine growth restriction | 24 weeks | Negative SNP array | TGFBR1:c.734A > C (p.Glu245Ala) Loeys Dietz syndrome | Born, affirmatively without symptoms at the age of 1 y.o. | HBB: c.-151C > T Beta-thalassemia— inherited from the mother |
6 | Corpus callosum agenesis Oligohydramnios | 23 weeks | Consanguinity Negative SNP array | Negative | Born, affirmatively without symptoms at the age of 2 y.o. | BRCA2: c.793 + 1G > A Susceptibility to breast–ovarian cancer, pancreatic cancer, prostate cancer—inherited from mother |
7 | Intracardiac echogenic focus, pyelectasis. Long QT syndrome of the father, family history of sudden cardiac death, arrhythmias due to affected father (without genetic diagnosis) | 19 weeks | Negative SNP array | KCNQ1:c.605-28A > G Long QT syndrome 1 Susceptibility to Short QT syndrome 2 Atrial fibrillation, familial, 3 Inherited from the father | Born, affirmatively without symptoms at the age of 1 y.o. | - |
8 | Right aortic arch | 17 weeks | Negative SNP array | Negative | Born, affirmatively without symptoms at the age of 1 y.o. | - |
9 | Sexual ambiguity on ultrasound morphology. Intrauterine growth restriction, hypospadias, polyhydramnios. | 20 weeks | SNP array: arr [GRCh38]12p13.33p11.22(148769_30138756)x2 hmz, 12q21.31q24.22(84757938_117685540)x2 hmz | Negative | Couple decided on termination of pregnancy | - |
10 | Borderline bilateral ventriculomegaly, suspicion of hydrocephaly with Sylvian stenosis | 19 weeks | Negative SNP array | Negative LAMB1:c.3499C > T (p.Arg1167Ter) Lissencephaly 5 (AR) PTPN23:c.2248C > A (p.Pro750Thr) Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity (AR) | Ongoing pregnancy | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Săbău, I.-D.; Bohîltea, L.-C.; Rădoi, V.E.; Bardan, A.M.; Maioru, O.V.; Țurcan, M.; Suciu-Lazar, V.A.; Ceausu, I. The Importance of Prenatal Whole-Exome Sequencing Testing in the Romanian Population. J. Mind Med. Sci. 2025, 12, 7. https://doi.org/10.3390/jmms12010007
Săbău I-D, Bohîltea L-C, Rădoi VE, Bardan AM, Maioru OV, Țurcan M, Suciu-Lazar VA, Ceausu I. The Importance of Prenatal Whole-Exome Sequencing Testing in the Romanian Population. Journal of Mind and Medical Sciences. 2025; 12(1):7. https://doi.org/10.3390/jmms12010007
Chicago/Turabian StyleSăbău, Ileana-Delia, Laurentiu-Camil Bohîltea, Viorica Elena Rădoi, Anca Mirela Bardan, Ovidiu Virgil Maioru, Mihaela Țurcan, Viorel Aurel Suciu-Lazar, and Iuliana Ceausu. 2025. "The Importance of Prenatal Whole-Exome Sequencing Testing in the Romanian Population" Journal of Mind and Medical Sciences 12, no. 1: 7. https://doi.org/10.3390/jmms12010007
APA StyleSăbău, I.-D., Bohîltea, L.-C., Rădoi, V. E., Bardan, A. M., Maioru, O. V., Țurcan, M., Suciu-Lazar, V. A., & Ceausu, I. (2025). The Importance of Prenatal Whole-Exome Sequencing Testing in the Romanian Population. Journal of Mind and Medical Sciences, 12(1), 7. https://doi.org/10.3390/jmms12010007