Diuretic Therapy: Mechanisms, Clinical Applications, and Management
Abstract
:1. Introduction
2. Classification of Diuretics
- Carbonic anhydrase inhibitors (acetazolamide, metazolamide): these diuretics act on the proximal convoluted tubule, inhibiting the enzyme carbonic anhydrase, which decreases the formation of hydrogen ions (H+). This results in reduced H+ secretion and the decreased reabsorption of sodium (Na+) and bicarbonate (HCO3−), leading to mild diuresis.
- Loop diuretics (furosemide, bumetanide, piretanide, ethacrynic acid, indacrinone): these potent diuretics act on the ascending limb of the Henle loop, where they inhibit sodium (Na+) reabsorption. Due to their high efficacy, they remain effective even in cases of low glomerular filtration rates (GFRs) and are often used in conditions requiring aggressive diuresis [7,8,9].
- Thiazide and thiazide-like diuretics (hydrochlorothiazide, butizide, cyclopenthiazide, methiclothiazide, cyclothiazide, polythiazide, clopamide, chlorthalidone, xipamide, indapamide): these diuretics act on the distal convoluted tubule by inhibiting sodium (Na+) reabsorption, primarily at the cortical segment of the Henle loop. They are widely used for the long-term management of hypertension and edema [10].
- Potassium-sparing diuretics: these drugs inhibit sodium (Na+) reabsorption in the distal convoluted tubule while preventing potassium (K+) loss. They work through two mechanisms:
- (a)
- Competitive aldosterone antagonists (spironolactone, canrenone);
- (b)
- Effect antagonists of aldosterone (triamteren, amiloride).
- Osmotic Diuretics (mannitol, sorbitol): these act on the proximal tubule by inhibiting water reabsorption. Unlike other diuretics, they do not interfere with electrolyte reabsorption. Because human cells lack transport mechanisms for these substances, they are not absorbed via the gastrointestinal tract and must be administered intravenously (i.v.). Their primary mechanism involves creating an osmotic gradient, drawing water into the urine, and promoting diuresis [2,3,4].
- Classification of diuretic drugs by their main mechanism of action:
- (a)
- Diuretics with an extrarenal mechanism—substances with an osmotic mechanism or that modify glomerular filtration pressure: drugs that increase the colloid osmotic pressure of the blood when it is reduced: dextrins, gelatin, albumin; drugs that cause the vasodilation of renal arterioles and increase renal blood flow: theophylline, theobromine, caffeine; and positive inotropic drugs (increase renal blood flow in heart failure): digoxin.
- (b)
- Diuretics with a renal mechanism, also called saluretic diuretics—act on the tubes and inhibit the reabsorption of Na+ and H2O.
- Classification of saluretic diuretics by the duration and intensity of their diuretic effect:
- (a)
- Diuretics with a long duration (12–24 h) and a moderate diuretic effect: spironolactone, eplerenone, clopamide, chlorthalidone, indapamide, xipamide;
- (b)
- Diuretics with a medium duration (6–12 h): hydrochlorothiazide (moderate diuretic effect), triamteren, amiloride (weak diuretic effect);
- (c)
- Short-term diuretics (4–6 h): furosemide, bumetanide, ethacrinic acid, torasemide (intense-effect diuretic).
- Classification of saluretic diuretics by their effect on the K+ ion:
- (a)
- Diuretics that remove the K+ ion:
- Those with an intense effect: thiazide diuretics and loop diuretics (hydrochlorothiazide, furosemide, bumetanide, ethacrinic acid, torasemide);
- Those with little effect: thiazide-related substances and carbonic anhydrase inhibitors (clopamide, chlorthalidone, indapamide, xipamide, acetazolamide) [11];
- (b)
- Diuretics that retain the K+ ion: algosterone antagonists (spironolactone, eplerenone, triamterene, amiloride).
3. Mechanisms of Action of Diuretics
3.1. Carbonic Anhydrase Inhibitors
3.2. Loop Diuretics
3.3. Thiazide and Thiazide-like Diuretics
3.4. Potassium-Sparing Diuretics
- Aldosterone antagonists (spironolactone, canrenone, canrenoic acid, eplerenone) block aldosterone receptors, reducing sodium retention and potassium loss.
- Sodium channel blockers (triamterene, amiloride) directly inhibit sodium channels in the distal tubule, reducing sodium reabsorption and preserving potassium.
3.5. Osmotic Diuretics
3.6. Vasopressin Receptor Antagonists
3.7. Sodium–Glucose Cotransporter 2 (SGLT2) Inhibitors
3.8. Angiotensin-Converting Enzyme (ACE) Inhibitors
3.9. Alcohol as a Diuretic
4. Indications for Diuretics
5. How to Administer Diuretics
5.1. Loop Diuretics
5.2. Thiazide Diuretics
5.3. Potassium-Sparing Diuretics
5.4. Carbonic Anhydrase Inhibitors and Osmotic Diuretics
5.5. Drugs Used in Hyponatremia
- Natural substances and synthetic analogues: vasopressin, desmopressin, lypressin;
- Synthetic substances: thiazide diuretics and substances structurally related to thiazides (hydrochlorothiazide; oral antidiabetics (chlorpropramide); antiepileptics (carbamazepine)).
6. Side Effects of Diuretics
- (a)
- Useful interactions in therapy: an association between diuretics that eliminate the K+ ion and diuretics that retain K+ (furosemide + spironolactone; hydrochlorothiazide + amiloride/triamterene) or the combination of diuretics and other classes of antihypertensive drugs (ACE, BRA, BCC).
- (b)
- Unwanted interactions: non-steroidal anti-inflammatory drugs (NSAIDs) and steroidal anti-inflammatory drugs (AIS), which antagonize the effect of diuretics, as they cause hydrosaline retention. NSAIDs inhibit cyclooxygenase (COX) and decrease the synthesis of renal vasodilator prostaglandins, and AIS inhibits phospholipase A2 and decreases the release of arachidonic acid from membrane phospholipids (thereby reducing the synthesis of vasodilator renal prostaglandins). Thiazide diuretics antagonize the effect of hypoglycemic medicinal products and uricosuric drugs; they can cause thiazidic diabetes or severe hyperuricemia. Diuretics that eliminate potassium ions potentiate the toxicity of cardiotonic glycosides and lithium [41].
7. Management of Diuretic Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arumugham, V.B.; Shahin, M.H. Therapeutic Uses Of Diuretic Agents. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Cristea, A. General Pharmacology, 2nd ed.; Didactic and Pedagogical Publishing House: Bucharest, Romania, 2018. [Google Scholar]
- Kehrenberg, M.C.A.; Bachmann, H.S. Diuretics: A Contemporary Pharmacological Classification? Naunyn. Schmiedebergs. Arch. Pharmacol. 2022, 395, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Lüllmann, H.; Mohr, K.; Hein, L.; Bieger, D. Color Atlas of Pharmacology; FarmaMedia: Targu Mures, Romania, 2011. [Google Scholar]
- Wells, B.G.; DiPiro, J.T.; Schwingammer, T.L.; DiPiro, C.V. Pharmacotherapy Manual, 10th ed.; Prior MediaGroup: Bucharest, Romania, 2019. [Google Scholar]
- Types of Diuretics Medications: Uses, Side Effects, Interactions, List of Drugs. Available online: https://www.rxlist.com/diuretics/drugs-condition.htm (accessed on 4 March 2025).
- Oh, S.W.; Han, S.Y. Loop Diuretics in Clinical Practice. Electrolytes Blood Press. 2015, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.H. Clinical Pharmacology in Diuretic Use. Clin. J. Am. Soc. Nephrol. 2019, 14, 1248–1257, Erratum in Clin. J. Am. Soc. Nephrol. 2019, 14, 1653–1654. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.D.; Cooper-DeHoff, R.M. Mechanisms for Blood Pressure Lowering and Metabolic Effects of Thiazide and Thiazide-like Diuretics. Expert Rev. Cardiovasc. Ther. 2010, 8, 793–802. [Google Scholar] [CrossRef]
- Carta, F.; Supuran, C.T. Diuretics with Carbonic Anhydrase Inhibitory Action: A Patent and Literature Review (2005–2013). Expert Opin. Ther. Pat. 2013, 23, 681–691. [Google Scholar] [CrossRef]
- Shanmuganathan, P.; Kumarappan, M. Evaluation of Diuretic, Saluretic and Natriuretic Activity of Hydrochlorothiazide in Combination with Misoprostol in Wistar Rats. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8, 1226. [Google Scholar] [CrossRef]
- Diuretics—Classification | Pharmacological Actions, Pharmacokinetics, Uses, Adverse Effects, Interactions | Pharmacology. Available online: https://www.pharmacy180.com/article/diuretics-1197/ (accessed on 17 March 2025).
- Wile, D. Diuretics: A Review. Ann. Clin. Biochem. Int. J. Lab. Med. 2012, 49, 419–431. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Tang, S.-C.; Tsai, L.-K.; Yeh, S.-J.; Shen, L.-J.; Wu, F.-L.L.; Jeng, J.-S. Incidence and Risk Factors for Acute Kidney Injury Following Mannitol Infusion in Patients With Acute Stroke. Medicine 2015, 94, e2032. [Google Scholar] [CrossRef]
- Armstrong, C.; Joint National Committee. JNC8 Guidelines for the Management of Hypertension in Adults. Am. Fam. Physician 2014, 90, 503–504. [Google Scholar]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef]
- Polhuis, K.C.M.M.; Wijnen, A.H.C.; Sierksma, A.; Calame, W.; Tieland, M. The Diuretic Action of Weak and Strong Alcoholic Beverages in Elderly Men: A Randomized Diet-Controlled Crossover Trial. Nutrients 2017, 9, 660. [Google Scholar] [CrossRef]
- Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; de Pinho, R.M.; Albini, F.L.; Boivin, J.-M.; et al. 2024 European Society of Hypertension Clinical Practice Guidelines for the Management of Arterial Hypertension. Eur. J. Intern. Med. 2024, 126, 1–15. [Google Scholar] [CrossRef]
- Testani, J.M.; Brisco, M.A.; Turner, J.M.; Spatz, E.S.; Bellumkonda, L.; Parikh, C.R.; Tang, W.H.W. Loop Diuretic Efficiency. Circ. Hear. Fail. 2014, 7, 261–270. [Google Scholar] [CrossRef]
- Tromp, J.; Ouwerkerk, W.; van Veldhuisen, D.J.; Hillege, H.L.; Richards, A.M.; van der Meer, P.; Anand, I.S.; Lam, C.S.P.; Voors, A.A. A Systematic Review and Network Meta-Analysis of Pharmacological Treatment of Heart Failure With Reduced Ejection Fraction. JACC Hear. Fail. 2022, 10, 73–84. [Google Scholar] [CrossRef]
- Parker, R.B.; Nappi, J.M.; Cavallari, L.H. Chronic Heart Failure. In Pharmacotherapy: A Pathophysiologic Approach; DiPiro, J.T., Yee, G.C.P.L., Eds.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Neuen, B.L.; Oshima, M.; Agarwal, R.; Arnott, C.; Cherney, D.Z.; Edwards, R.; Langkilde, A.M.; Mahaffey, K.W.; McGuire, D.K.; Neal, B.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People With Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation 2022, 145, 1460–1470. [Google Scholar] [CrossRef]
- Hui, C.; Khan, M.; Suheb, M.Z.K.; Radbel, J.M. Arginine Vasopressin Disorder (Diabetes Insipidus). Pract. Clin. Endocrinol. 2024, 89–98. [Google Scholar] [CrossRef]
- Boone, M.; Deen, P.M.T. Physiology and Pathophysiology of the Vasopressin-Regulated Renal Water Reabsorption. Pflügers Arch. Eur. J. Physiol. 2008, 456, 1005–1024. [Google Scholar] [CrossRef]
- Brunton LL, K.B. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 14th ed; McGraw-Hill Education: New York, NY, USA, 2023. [Google Scholar]
- Blebea, N.M.; Stăniguţ, A.M. Therapeutic Use of Diuretics—An Overview. Farmacist.ro 2022, 3, 27. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Zietse, R. Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J. Am. Soc. Nephrol. 2017, 28, 1340–1349. [Google Scholar] [CrossRef]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical Practice Guideline on Diagnosis and Treatment of Hyponatraemia. Nephrol. Dial. Transplant. 2014, 29, i1–i39. [Google Scholar] [CrossRef]
- Weinberger, M.H.; Roniker, B.; Krause, S.L.; Weiss, R.J. Eplerenone, a Selective Aldosterone Blocker, in Mild-to-Moderate Hypertension. Am. J. Hypertens. 2002, 15, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Itoh, H.; Rakugi, H.; Okuda, Y.; Iijima, S. Antihypertensive Effects and Safety of Esaxerenone in Patients with Moderate Kidney Dysfunction. Hypertens. Res. 2021, 44, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Gittus, M.; Haley, H.; Harris, T.; Borrows, S.; Padmanabhan, N.; Gale, D.; Simms, R.; Williams, T.; Acquaye, A.; Wong, A.; et al. Commentary: Tolvaptan for Autosomal Dominant Polycystic Kidney Disease (ADPKD)—An Update. BMC Nephrol. 2025, 26, 79. [Google Scholar] [CrossRef] [PubMed]
- Andersson, N.W.; Wohlfahrt, J.; Feenstra, B.; Hviid, A.; Melbye, M.; Lund, M. Cumulative Incidence of Thiazide-Induced Hyponatremia. Ann. Intern. Med. 2024, 177, 1–11. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, H.; Lee, J.; Shin, J.; Kim, S.H.; Hwang, J.H. Thiazide-associated Hyponatremia in Arterial Hypertension Patients: A Nationwide Population-based Cohort Study. J. Evid. Based. Med. 2024, 17, 296–306. [Google Scholar] [CrossRef]
- Martin, K.J.; González, E.A.; Slatopolsky, E. Clinical Consequences and Management of Hypomagnesemia. J. Am. Soc. Nephrol. 2009, 20, 2291–2295. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Fuleihan, E.-H.G. Treatment of Hypercalcemia of Malignancy. Endocrinol. Metab. Clin. N. Am. 2021, 50, 781–792. [Google Scholar] [CrossRef]
- LeGrand, S.B.; Leskuski, D.; Zama, I. Narrative Review: Furosemide for Hypercalcemia: An Unproven yet Common Practice. Ann. Intern. Med. 2008, 149, 259–263. [Google Scholar] [CrossRef]
- Robey, R.B.; Lash, J.P.; Arruda, J.A.L. Does Furosemide Have a Role in the Management of Hypercalcemia? Ann. Intern. Med. 2009, 150, 146–147. [Google Scholar] [CrossRef]
- Agarwal, R.; Verma, A.; Georgianos, P.I. Diuretics in Patients with Chronic Kidney Disease. Nat. Rev. Nephrol. 2025, 21, 264–278. [Google Scholar] [CrossRef]
- Ganesan, P.; Schmiedge, J.; Manchaiah, V.; Swapna, S.; Dhandayutham, S.; Kothandaraman, P.P. Ototoxicity: A Challenge in Diagnosis and Treatment. J. Audiol. Otol. 2018, 22, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Chisholm-Burns, M.A.; Schwinghammer, T.L.; Malone, P.M.; Kolesar, J.M.; Bookstaver, P.B.; Lee, K.C. Pharmacotherapy: Principles & Practice, 6th ed.; McGraw Hill: New York, NY, USA, 2023. [Google Scholar]
- Kapil, V. Hypertension. In Kumar & Clark Clinical Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1140–1143. [Google Scholar]
- Reddy, P.; Mooradian, A.D. Diuretics: An Update on the Pharmacology and Clinical Uses. Am. J. Ther. 2009, 16, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure With Reduced Ejection Fraction. JAMA 2020, 324, 488. [Google Scholar] [CrossRef] [PubMed]
Class | Greater Fluid–Electrolyte Changes | Common or Major Non-Fluid–Electrolyte Adverse Effects | Mechanism of Action | Interactions |
---|---|---|---|---|
Thiazide and thiazide-like diuretics | Hyponatremia, hypokalemia, hypomagnesemia, hypercalcemia, hyperuricemia, taste, metabolic alkalosis | Glucose intolerance, hypercholesterolemia, hypertriglyceridemia, impotence, photosensitivity, thrombocytopenia, pancreatitis | Weak diuretics; excellent choice for the treatment of hypertension | Hypokalemia potentiates digitalis toxicity. Non-steroidal anti-inflammatory drugs reduce the diuretic efficacy. Beta-blockers potentiate hyperglycemia and hyperlipidemia. Corticosteroids intensify hypokalemia. |
Loop diuretics | Volume depletion, hyponatremia, hypokalemia, hypomagnesemia, hypercalciuria, hyperuricemia, metabolic alkalosis | Impotence, ototoxicity (especially when used in high doses and in combination with aminoglycosides) | Most potent ‘high-ceiling’ diuretics. Effective even for advanced CKD, and therefore effective for treating acute volume overload | Hypokalemia potentiates digitalis toxicity. Non-steroidal anti-inflammatory drugs reduce the diuretic efficacy. Corticosteroids intensify hypokalemia. Aminoglycosides increase ototoxicity and nephrotoxicity. |
Carbonic anhydrase inhibitors | Metabolic acidosis, hypokalemia | Malaise, fatigue, anorexia, impotence | - | - |
Osmotic diuretics | Hyponatremia, pulmonary oedema, increased osmolal gap in those with impaired kidney function | AKI (mannitol concentration can be estimated by plasma osmolal gap, which should be kept) | - | - |
Potassium-sparing diuretics 1 | Hyperkalemia, hypermagnesemia, metabolic acidosis | Anti-androgenic side effects common with spironolactone triamterene can cause kidney stones | - | ACE inhibitors potentiate hyperkalemia. Nonsteroidal anti-inflammatory drugs reduce the diuretic efficacy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blebea, N.-M.; Pușcașu, C.; Ștefănescu, E.; Stăniguț, A.M. Diuretic Therapy: Mechanisms, Clinical Applications, and Management. J. Mind Med. Sci. 2025, 12, 26. https://doi.org/10.3390/jmms12010026
Blebea N-M, Pușcașu C, Ștefănescu E, Stăniguț AM. Diuretic Therapy: Mechanisms, Clinical Applications, and Management. Journal of Mind and Medical Sciences. 2025; 12(1):26. https://doi.org/10.3390/jmms12010026
Chicago/Turabian StyleBlebea, Nicoleta-Mirela, Ciprian Pușcașu, Emil Ștefănescu, and Alina Mihaela Stăniguț. 2025. "Diuretic Therapy: Mechanisms, Clinical Applications, and Management" Journal of Mind and Medical Sciences 12, no. 1: 26. https://doi.org/10.3390/jmms12010026
APA StyleBlebea, N.-M., Pușcașu, C., Ștefănescu, E., & Stăniguț, A. M. (2025). Diuretic Therapy: Mechanisms, Clinical Applications, and Management. Journal of Mind and Medical Sciences, 12(1), 26. https://doi.org/10.3390/jmms12010026