Diabetes Mellitus: Interdisciplinary Medical, Surgical and Psychological Therapeutic Approach
Abstract
:Introduction
Discussions
Epidemiology
Pathophysiology
Treatment
Medical treatment Insulins
New formulas of insulin preparations - smart insulins
Insulin therapy devices
Other hypoglycemic treatments
Immunomodulatory treatment in type I DM
Surgical treatment
Psychological treatment
Cognitive behavioral therapy
Motivational interviewing
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- Harreiter, J.; Roden, M. Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019). Wien Klin Wochenschr. 2019, 131, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M. Long-term complications of diabetes mellitus. N Engl J Med. 1993, 328, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Deckert, T.; Poulsen, J.E.; Larsen, M. Prognosis of diabetics with diabetes onset before the age of thirty-one. I. Survival, causes of death, and complications. Diabetologia. 1978, 14, 363–370. [Google Scholar] [CrossRef]
- Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic Diabetes Complications: The Need to Move beyond Classical Concepts. Trends Endocrinol Metab. 2020, 31, 287–295. [Google Scholar] [CrossRef]
- Goldney, R.D.; Phillips, P.J.; Fisher, L.J.; Wilson, D.H. Diabetes, depression, and quality of life: a population study. Diabetes Care. 2004, 27, 1066–1070. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Golden, S.H.; Cefalu, W.T. Diabetes and Aging: Unique Considerations and Goals of Care. Diabetes Care. 2017, 40, 440–443. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2019, 47, 22–27. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Rubin, R.J.; Altman, W.M.; Mendelson, D.N. Health care expenditures for people with diabetes mellitus, 1992. J Clin Endocrinol Metab. 1994, 78, 809A–809F. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Mekala, K.C.; Bertoni, A.G. Epidemiology of diabetes mellitus. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020, 1, 49–58. [Google Scholar] [CrossRef]
- DIAMOND Project Group. Incidence and trends of childhood Type 1 diabetes worldwide 1990-1999. Diabet Med. 2006, 23, 857–866. [Google Scholar] [CrossRef]
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract. 2014, 103, 341–363. [CrossRef]
- O'Dea, A.; Tierney, M.; McGuire, B.E.; et al. Can the Onset of Type 2 Diabetes Be Delayed by a Group-Based Lifestyle Intervention in Women with Prediabetes following Gestational Diabetes Mellitus (GDM)? Findings from a Randomized Control Mixed Methods Trial. J Diabetes Res. 2015, 2015, 798460. [Google Scholar] [CrossRef]
- Jelsma, J.G.; van Poppel, M.N.; Galjaard, S.; et al. DALI: Vitamin D and lifestyle intervention for gestational diabetes mellitus (GDM) prevention: an European multicentre, randomised trial - study protocol. BMC Pregnancy Childbirth. 2013, 13, 142, Published 2013 Jul 5. [Google Scholar] [CrossRef]
- Buckley, B.S.; Harreiter, J.; Damm, P.; et al. Gestational diabetes mellitus in Europe: prevalence, current screening practice and barriers to screening. A review. Diabet Med. 2012, 29, 844–854. [Google Scholar] [CrossRef]
- Egan, A.M.; Vellinga, A.; Harreiter, J.; et al. Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017, 60, 1913–1921. [Google Scholar] [CrossRef]
- Warshauer, J.T.; Bluestone, J.A.; Anderson, M.S. New Frontiers in the Treatment of Type 1 Diabetes. Cell Metab. 2020, 31, 46–61. [Google Scholar] [CrossRef]
- Barrett, J.C.; Clayton, D.G.; Concannon, P.; et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009, 41, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Concannon, P.; Rich, S.S.; Nepom, G.T. Genetics of type 1A diabetes. N Engl J Med. 2009, 360, 1646–1654. [Google Scholar] [CrossRef]
- Hansen, M.P.; Matheis, N.; Kahaly, G.J. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J Diabetes. 2015, 6, 67–79. [Google Scholar] [CrossRef]
- Bloem, S.J.; Roep, B.O. The elusive role of B lymphocytes and islet autoantibodies in (human) type 1 diabetes. Diabetologia. 2017, 60, 1185–1189. [Google Scholar] [CrossRef]
- Velthuis, J.H.; Unger, W.W.; van der Slik, A.R.; et al. Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia. 2009, 52, 494–503. [Google Scholar] [CrossRef]
- Michels, A.W.; Landry, L.G.; McDaniel, K.A.; et al. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes. 2017, 66, 722–734. [Google Scholar] [CrossRef]
- Kuric, E.; Seiron, P.; Krogvold, L.; et al. Demonstration of Tissue Resident Memory CD8 T Cells in Insulitic Lesions in Adult Patients with Recent-Onset Type 1 Diabetes. Am J Pathol. 2017, 187, 581–588. [Google Scholar] [CrossRef]
- Abreu, J.R.; Martina, S.; Verrijn Stuart, A.A.; et al. CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin Exp Immunol. 2012, 170, 57–65. [Google Scholar] [CrossRef]
- Unger, W.W.; Velthuis, J.; Abreu, J.R.; et al. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun. 2011, 37, 151–159. [Google Scholar] [CrossRef]
- Beringer, D.X.; Kleijwegt, F.S.; Wiede, F.; et al. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nat Immunol. 2015, 16, 1153–1161. [Google Scholar] [CrossRef]
- Krogvold, L.; Edwin, B.; Buanes, T.; et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. 2015, 64, 1682–1687. [Google Scholar] [CrossRef] [PubMed]
- Roep, B.O. A viral link for type 1 diabetes. Nat Med. 2019, 25, 1816–1818. [Google Scholar] [CrossRef] [PubMed]
- Perrett, K.P.; Jachno, K.; Nolan, T.M.; Harrison, L.C. Association of Rotavirus Vaccination With the Incidence of Type 1 Diabetes in Children. JAMA Pediatr. 2019, 173, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, H.S.; Schloot, N.C.; van Veelen, P.A.; et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc Natl Acad Sci U S A. 2001, 98, 3988–3991. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Miani, M.; Le Naour, J.; Waeckel-Enée, E.; et al. Gut Microbiota-Stimulated Innate Lymphoid Cells Support β-Defensin 14 Expression in Pancreatic Endocrine Cells, Preventing Autoimmune Diabetes. Cell Metab. 2018, 28, 557–572.e6. [Google Scholar] [CrossRef]
- Pingitore, A.; Gonzalez-Abuin, N.; Ruz-Maldonado, I.; Huang, G.C.; Frost, G.; Persaud, S.J. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes Obes Metab. 2019, 21, 330–339. [Google Scholar] [CrossRef]
- Antvorskov, J.C.; Halldorsson, T.I.; Josefsen, K.; et al. Association between maternal gluten intake and type 1 diabetes in offspring: national prospective cohort study in Denmark. BMJ. 2018, 362, k3547, Published 2018 Sep 19. [Google Scholar] [CrossRef]
- TRIGR Study Group; Akerblom, H.K.; Krischer, J.; et al. The Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study: recruitment, intervention and follow-up. Diabetologia. 2011, 54, 627–633. [Google Scholar] [CrossRef]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013, 4, 37, Published 2013 Mar 27. [Google Scholar] [CrossRef] [PubMed]
- Rorsman, P.; Ashcroft, F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef] [PubMed]
- Boland, B.B.; Rhodes, C.J.; Grimsby, J.S. The dynamic plasticity of insulin production in β-cells. Mol Metab. 2017, 6, 958–973. [Google Scholar] [CrossRef]
- Cuíñas, A.; García-Morales, V.; Viña, D.; Gil-Longo, J.; Campos-Toimil, M. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci. 2016, 155, 102–109. [Google Scholar] [CrossRef]
- Motofei, I.G.; Rowland, D.L.; Tampa, M.; et al. Finasteride and androgenic alopecia; from therapeutic options to medical implications. J Dermatolog Treat. 2020, 31, 415–421. [Google Scholar] [CrossRef]
- Christensen, A.A.; Gannon, M. The Beta Cell in Type 2 Diabetes. Curr Diab Rep. 2019, 19, 81, Published 2019 Aug 9. [Google Scholar] [CrossRef]
- Yamamoto, W.R.; Bone, R.N.; Sohn, P.; et al. Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cell. J Biol Chem. 2019, 294, 168–181. [Google Scholar] [CrossRef]
- Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. 2014, 37, 1751–1758. [Google Scholar] [CrossRef]
- Dali-Youcef, N.; Mecili, M.; Ricci, R.; Andrès, E. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med. 2013, 45, 242–253. [Google Scholar] [CrossRef]
- Roca-Rivada, A.; Castelao, C.; Senin, L.L.; et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013, 8, e60563, Published 2013 Apr 11. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Bunney, P.E.; Zink, A.N.; Holm, A.A.; Billington, C.J.; Kotz, C.M. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- American Diabetes Association. 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019, 42, S29–S33. [Google Scholar] [CrossRef]
- Shamsuzzaman, A.S.; Winnicki, M.; Wolk, R.; et al. Independent association between plasma leptin and C-reactive protein in healthy humans. Circulation. 2004, 109, 2181–2185. [Google Scholar] [CrossRef]
- Leeuwenburgh, C.; Fiebig, R.; Chandwaney, R.; Ji, L.L. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994, 267, R439–R445. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef]
- Li, X.; Watanabe, K.; Kimura, I. Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Front Immunol. 2017, 8, 1882. [Google Scholar] [CrossRef]
- Shan, Z.; Sun, T.; Huang, H.; et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017, 106, 888–894. [Google Scholar] [CrossRef]
- Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015, 7, 2930–2946, Published 2015 Apr 16. [Google Scholar] [CrossRef]
- Di Cianni, G.; Miccoli, R.; Volpe, L.; Lencioni, C.; Del Prato, S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev. 2003, 19, 259–270. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Roman, N.M.; Amini, S.B.; Sims, E.A. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991, 165, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.A.; Brelje, T.C.; Sorenson, R.L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992, 130, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Prentki, M.; Nolan, C.J. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006, 116, 1802–1812. [Google Scholar] [CrossRef]
- Loghin, M.G.; Gorescki, P.G.; Sima, R.M.; Pleș, L.; Balan, D.G.; et al. The obstetrical management of HIV-positive pregnancy. J Mind Med Sci. 2022, 9, 111–117. [Google Scholar] [CrossRef]
- Radaelli, T.; Lepercq, J.; Varastehpour, A.; Basu, S.; Catalano, P.M.; Hauguel-De Mouzon, S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol. 2009, 201, 209.e1–209.e10. [Google Scholar] [CrossRef]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; et al. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care. 2012, 35, 780–786. [Google Scholar] [CrossRef]
- Dolinoy, D.C. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008, 66, S7–S11. [Google Scholar] [CrossRef]
- Park, S.; Kang, H.J.; Jeon, J.H.; Kim, M.J.; Lee, I.K. Recent advances in the pathogenesis of microvascular complications in diabetes. Arch Pharm Res. 2019, 42, 252–262. [Google Scholar] [CrossRef]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef]
- Pathak, D.; Gupta, A.; Kamble, B.; Kuppusamy, G.; Suresh, B. Oral targeting of protein kinase C receptor: promising route for diabetic retinopathy? Curr Drug Deliv. 2012, 9, 405–413. [Google Scholar] [CrossRef]
- Shi, G.J.; Shi, G.R.; Zhou, J.Y.; et al. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed Pharmacother. 2018, 101, 510–527. [Google Scholar] [CrossRef] [PubMed]
- Soltesova Prnova, M.; Ballekova, J.; Gajdosikova, A.; Gajdosik, A.; Stefek, M. A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats. Physiol Res. 2015, 64, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr. 2017, 8, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414, 813–820. [Google Scholar] [CrossRef]
- Spector, A. Some aspects of Dr Kinoshita's contributions to lens protein chemistry. Exp Eye Res. 1990, 50, 689–694. [Google Scholar] [CrossRef]
- Srikanth, K.K.; Orrick, J.A. Biochemistry, Polyol Or Sorbitol Pathways; StatPearls Publishing: Treasure Island, FL, USA, 14 November 2022. [Google Scholar]
- Brahma, M.K.; Pepin, M.E.; Wende, A.R. My Sweetheart Is Broken: Role of Glucose in Diabetic Cardiomyopathy. Diabetes Metab J. 2017, 41, 1–9. [Google Scholar] [CrossRef]
- Ulrich, P.; Cerami, A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001, 56, 1–21. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Kim, Y.S. The Role of Advanced Glycation End Products in Diabetic Vascular Complications. Diabetes Metab J. 2018, 42, 188–195. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999, 344, 109–116. [Google Scholar] [CrossRef]
- Chetyrkin, S.; Mathis, M.; Pedchenko, V.; et al. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry. 2011, 50, 6102–6112. [Google Scholar] [CrossRef]
- Dahlén, A.D.; Dashi, G.; Maslov, I.; et al. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol. 2022, 12, 807548, Published 2022 Jan 19. [Google Scholar] [CrossRef] [PubMed]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel). 2021, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Lazzaroni, E.; Ben Nasr, M.; Loretelli, C.; et al. Anti-diabetic drugs and weight loss in patients with type 2 diabetes. Pharmacol Res. 2021, 171, 105782. [Google Scholar] [CrossRef]
- Janež, A.; Guja, C.; Mitrakou, A.; et al. Insulin Therapy in Adults with Type 1 Diabetes Mellitus: a Narrative Review. Diabetes Ther. 2020, 11, 387–409. [Google Scholar] [CrossRef]
- Heise, T.; Mathieu, C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab. 2017, 19, 3–12. [Google Scholar] [CrossRef]
- Lepore, M.; Pampanelli, S.; Fanelli, C.; et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes. 2000, 49, 2142–2148. [Google Scholar] [CrossRef]
- Fulcher, G.R.; Gilbert, R.E.; Yue, D.K. Glargine is superior to neutral protamine Hagedorn for improving glycated haemoglobin and fasting blood glucose levels during intensive insulin therapy. Intern Med J. 2005, 35, 536–542. [Google Scholar] [CrossRef]
- Hopkinson, H.E.; Jacques, R.M.; Gardner, K.J.; Amiel, S.A.; Mansell, P. Twice-rather than once-daily basal insulin is associated with better glycaemic control in Type 1 diabetes mellitus 12 months after skills-based structured education in insulin self-management. Diabet Med. 2015, 32, 1071–1076. [Google Scholar] [CrossRef]
- Renard, E.; Dubois-Laforgue, D.; Guerci, B.; Variability Study Group. Non-inferiority of insulin glargine versus insulin detemir on blood glucose variability in type 1 diabetes patients: a multicenter, randomized, crossover study. Diabetes Technol Ther. 2011, 13, 1213–1218. [Google Scholar] [CrossRef]
- Laranjeira, F.O.; de Andrade, K.R.C.; Figueiredo, A.C.M.G.; Silva, E.N.; Pereira, M.G. Long-acting insulin analogues for type 1 diabetes: An overview of systematic reviews and meta-analysis of randomized controlled trials. PLoS One. 2018, 13, e0194801, Published 2018 Apr 12. [Google Scholar] [CrossRef] [PubMed]
- Heller, S.; Buse, J.; Fisher, M.; et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet. 2012, 379, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- International Hypoglycaemia Study Group. Minimizing Hypoglycemia in Diabetes. Diabetes Care. 2015, 38, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- EQuality1 Study Group--Evaluation of QUALITY of Life and Costs in Diabetes Type 1; Nicolucci, A.; Maione, A.; et al. Quality of life and treatment satisfaction in adults with Type 1 diabetes: a comparison between continuous subcutaneous insulin infusion and multiple daily injections. Diabet Med. 2008, 25, 213–220. [Google Scholar] [CrossRef]
- Singh, S.R.; Ahmad, F.; Lal, A.; Yu, C.; Bai, Z.; Bennett, H. Efficacy and safety of insulin analogues for the management of diabetes mellitus: a meta-analysis. CMAJ. 2009, 180, 385–397. [Google Scholar] [CrossRef]
- Renner, R.; Pfützner, A.; Trautmann, M.; Harzer, O.; Sauter, K.; Landgraf, R. Use of insulin lispro in continuous subcutaneous insulin infusion treatment. Results of a multicenter trial. German Humalog-CSII Study Group. Diabetes Care. 1999, 22, 784–788. [Google Scholar] [CrossRef]
- Gao, L.; Wang, T.; Jia, K.; et al. Glucose-responsive supramolecular vesicles based on water-soluble pillar[5]arene and pyridylboronic acid derivatives for controlled insulin delivery. Chemistry. 2017, 23, 6605–6614. [Google Scholar] [CrossRef]
- Kalra, S.; Joshi, A.; Parmar, G. Insulin therapy: going the "smarter" way. Recent Pat Endocr Metab Immune Drug Discov. 2014, 8, 79–84. [Google Scholar] [CrossRef]
- Rege, N.K.; Phillips, N.F.B.; Weiss, M.A. Development of glucose-responsive 'smart' insulin systems. Curr Opin Endocrinol Diabetes Obes. 2017, 24, 267–278. [Google Scholar] [CrossRef]
- Yu, J.; Qian, C.; Zhang, Y.; et al. Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Lett. 2017, 17, 733–739. [Google Scholar] [CrossRef]
- Cernea, S.; Raz, I. Insulin Therapy: Future Perspectives. Am J Ther. 2020, 27, e121–e132. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.S.; Stone, J.Y. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice. Expert Opin Drug Deliv. 2017, 14, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xiao, X.; Sun, X.; Qi, C. Comparison of jet injector and insulin pen in controlling plasma glucose and insulin concentrations in type 2 diabetic patients. Medicine (Baltimore). 2017, 96, e5482. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.; Cook, C.B. Insulin Pumping Patches: Emerging Insulin Delivery Systems. J Diabetes Sci Technol. 2019, 13, 8–10. [Google Scholar] [CrossRef]
- Giménez, M.; Purkayajtha, S.; Moscardó, V.; Conget, I.; Oliver, N. Intraperitoneal insulin therapy in patients with type 1 diabetes. Does it fit into the current therapeutic arsenal? Endocrinol Diabetes Nutr (Engl Ed). 2018, 65, 182–184. [Google Scholar] [CrossRef]
- Heinemann, L.; Krinelke, L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012, 6, 954–964. [Google Scholar] [CrossRef]
- Gómez, A.M.; Henao, D.C.; Taboada, L.B.; et al. Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes Metab Syndr. 2019, 13, 2625–2631. [Google Scholar] [CrossRef]
- Bux Rodeman, K.; Hatipoglu, B. Beta-cell therapies for type 1 diabetes: Transplants and bionics. Cleve Clin J Med. 2018, 85, 931–937. [Google Scholar] [CrossRef]
- Rendell, M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs. 2004, 64, 1339–1358. [Google Scholar] [CrossRef]
- van Baar, M.J.B.; van Ruiten, C.C.; Muskiet, M.H.A.; van Bloemendaal, L.; IJzerman, R.G.; van Raalte, D.H. SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management. Diabetes Care. 2018, 41, 1543–1556. [Google Scholar] [CrossRef]
- Zangeneh, F.; Kudva, Y.C.; Basu, A. Insulin sensitizers. Mayo Clin Proc. 2003, 78, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia. 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.M.; Calori, G.M.; Giannoudis, P.V. Diabetes and fracture healing: the skeletal effects of diabetic drugs. Expert Opin Drug Saf. 2012, 11, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Lang, C.C. Repurposing Metformin for Cardiovascular Disease. Circulation. 2018, 137, 422–424. [Google Scholar] [CrossRef]
- Bailey, T. Options for combination therapy in type 2 diabetes: comparison of the ADA/EASD position statement and AACE/ACE algorithm. Am J Med. 2013, 126, S10–S20. [Google Scholar] [CrossRef]
- Fuhlendorff, J.; Rorsman, P.; Kofod, H.; et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes. 1998, 47, 345–351. [Google Scholar] [CrossRef]
- Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci. 2013, 9, 936–943. [Google Scholar] [CrossRef]
- Simone, M.I.; Wood, A.; Campkin, D.; Kiefel, M.J.; Houston, T.A. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem. 2022, 235, 114282. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium, Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse Model. Int J Mol Sci. 2017, 18, 700, Published 2017 Mar 25. [Google Scholar] [CrossRef]
- Tan, Q.; Akindehin, S.E.; Orsso, C.E.; et al. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne). 2022, 13, 838410, Published 2022 Mar 1. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. MANAGEMENT OF ENDOCRINE DISEASE: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019, 181, R211–R234. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Dual GIP/GLP-1 receptor agonists: New advances for treating type-2 diabetes. Ann Endocrinol (Paris). 2023, 84, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Berra, C.C.; Resi, V.; Mirani, M.; et al. Clinical efficacy and predictors of response to dulaglutide in type-2 diabetes. Pharmacol Res. 2020, 159, 104996. [Google Scholar] [CrossRef] [PubMed]
- Kendall, D.M.; Cuddihy, R.M.; Bergenstal, R.M. Clinical application of incretin-based therapy: therapeutic potential, patient selection and clinical use. Am J Med. 2009, 122, S37–S50. [Google Scholar] [CrossRef]
- Kazafeos, K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract. 2011, 93, S32–S36. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, J.; Zhou, Z. Emerging roles of dipeptidyl peptidase 4 inhibitors: anti-inflammatory and immunomodulatory effect and its application in diabetes mellitus. Can J Diabetes. 2014, 38, 473–479. [Google Scholar] [CrossRef]
- Packer, M. Is the Popularity of Dipeptidyl-Peptidase-4 Inhibitors Justified? Insights From Mechanistic Studies and Clinical Trials. Am J Med. 2018, 131, e287–e289. [Google Scholar] [CrossRef]
- Moradi-Marjaneh, R.; Paseban, M.; Sahebkar, A. Natural products with SGLT2 inhibitory activity: Possibilities of application for the treatment of diabetes. Phytother Res. 2019, 33, 2518–2530. [Google Scholar] [CrossRef]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int J Environ Res Public Health. 2019, 16, 2965. [Google Scholar] [CrossRef]
- Feutren, G.; Papoz, L.; Assan, R.; et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet. 1986, 2, 119–124. [Google Scholar] [CrossRef]
- Rigby, M.R.; Harris, K.M.; Pinckney, A.; et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015, 125, 3285–3296. [Google Scholar] [CrossRef] [PubMed]
- Orban, T.; Bundy, B.; Becker, D.J.; et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011, 378, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Pescovitz, M.D.; Greenbaum, C.J.; Bundy, B.; et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results. Diabetes Care. 2014, 37, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; van der Meer, J.W. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013, 25, 469–484. [Google Scholar] [CrossRef]
- Hägerkvist, R.; Sandler, S.; Mokhtari, D.; Welsh, N. Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 2007, 21, 618–628. [Google Scholar] [CrossRef]
- Pareek, M.; Schauer, P.R.; Kaplan, L.M.; Leiter, L.A.; Rubino, F.; Bhatt, D.L. Metabolic Surgery: Weight Loss, Diabetes, and Beyond. J Am Coll Cardiol. 2018, 71, 670–687. [Google Scholar] [CrossRef]
- Buchwald, H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014, 24, 1126–1135. [Google Scholar] [CrossRef]
- Angrisani, L.; Santonicola, A.; Iovino, P.; et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obes Surg. 2017, 27, 2279–2289. [Google Scholar] [CrossRef]
- Salminen, P.; Helmiö, M.; Ovaska, J.; et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years Among Patients With Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. JAMA. 2018, 319, 241–254. [Google Scholar] [CrossRef]
- Brethauer, S.A.; Hammel, J.P.; Schauer, P.R. Systematic review of sleeve gastrectomy as staging and primary bariatric procedure. Surg Obes Relat Dis. 2009, 5, 469–475. [Google Scholar] [CrossRef]
- Juodeikis, Ž.; Brimas, G. Long-term results after sleeve gastrectomy: A systematic review. Surg Obes Relat Dis. 2017, 13, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Switzer, N.J.; Prasad, S.; Debru, E.; Church, N.; Mitchell, P.; Gill, R.S. Sleeve Gastrectomy and Type 2 Diabetes Mellitus: a Systematic Review of Long-Term Outcomes. Obes Surg. 2016, 26, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, N.J.; Dimick, J.B.; Share, D.; et al. Hospital complication rates with bariatric surgery in Michigan. JAMA. 2010, 304, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, E.S.; Lo Menzo, E.; Szomstein, S.; Rosenthal, R.J. Safety and efficacy of 1020 consecutive laparoscopic sleeve gastrectomies performed as a primary treatment modality for morbid obesity. A single-center experience from the metabolic and bariatric surgical accreditation quality and improvement program. Surg Endosc. 2016, 30, 2673–2678. [Google Scholar] [CrossRef]
- Wittgrove, A.C.; Clark, G.W.; Tremblay, L.J. Laparoscopic Gastric Bypass, Roux-en-Y: Preliminary Report of Five Cases. Obes Surg. 1994, 4, 353–357. [Google Scholar] [CrossRef]
- Rubino, F.; Nathan, D.M.; Eckel, R.H.; et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: a Joint Statement by International Diabetes Organizations. Obes Surg. 2017, 27, 2–21. [Google Scholar] [CrossRef]
- Bhandari, M.; Fobi, M.A.L.; Buchwald, J.N.; Bariatric Metabolic Surgery Standardization (BMSS) Working Group:. Standardization of Bariatric Metabolic Procedures: World Consensus Meeting Statement. Obes Surg. 2019, 29, 309–345. [Google Scholar] [CrossRef]
- Silaghi, A.; Gaspar, B.S.; Epistatu, D.; et al. Upper gastrointestinal bleeding in the COVID-19 pandemic; particularities of diagnosis and therapy. J Mind Med Sci. 2022, 9, 276–284. [Google Scholar] [CrossRef]
- Brown, W.A.; O'Brien, P.E. The Band Must Not Be Abandoned. Obes Surg. 2017, 27, 1911–1913. [Google Scholar] [CrossRef]
- Giet, L.; Baker, J.; Favretti, F.; et al. Medium and long-term results of gastric banding: outcomes from a large private clinic in UK. BMC Obes. 2018, 5, 12, Published 2018 Apr 12. [Google Scholar] [CrossRef]
- Ooi, G.J.; Doyle, L.; Tie, T.; et al. Weight loss after laparoscopic adjustable gastric band and resolution of the metabolic syndrome and its components. Int J Obes (Lond). 2017, 41, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Currie, V.; Super, P.; le Roux, C.W.; Tahrani, A.A.; Singhal, R. Changes in glycaemic control, blood pressure and lipids 5 years following laparoscopic adjustable gastric banding combined with medical care in patients with type 2 diabetes: a longitudinal analysis. Clin Obes. 2018, 8, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Vinzens, F.; Kilchenmann, A.; Zumstein, V.; Slawik, M.; Gebhart, M.; Peterli, R. Long-term outcome of laparoscopic adjustable gastric banding (LAGB): results of a Swiss single-center study of 405 patients with up to 18 years' follow-up. Surg Obes Relat Dis. 2017, 13, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.J.; Patterson, E.; Gagner, M. Early results of laparoscopic biliopancreatic diversion with duodenal switch: a case series of 40 consecutive patients. Obes Surg. 2000, 10, 514–524. [Google Scholar] [CrossRef]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004, 292, 1724–1737. [Google Scholar] [CrossRef]
- Buchwald, H.; Estok, R.; Fahrbach, K.; et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009, 122, 248–256.e5. [Google Scholar] [CrossRef]
- Ballesteros-Pomar, M.D.; González de Francisco, T.; Urioste-Fondo, A.; et al. Biliopancreatic Diversion for Severe Obesity: Long-Term Effectiveness and Nutritional Complications. Obes Surg. 2016, 26, 38–44. [Google Scholar] [CrossRef]
- Biertho, L.; Lebel, S.; Marceau, S.; et al. Perioperative complications in a consecutive series of 1000 duodenal switches. Surg Obes Relat Dis. 2013, 9, 63–68. [Google Scholar] [CrossRef]
- Samoylova, M.L.; Borle, D.; Ravindra, K.V. Pancreas Transplantation: Indications, Techniques, and Outcomes. Surg Clin North Am. 2019, 99, 87–101. [Google Scholar] [CrossRef]
- Sutherland, D.E.; Gruessner, R.; Dunn, D.; Moudry-Munns, K.; Gruessner, A.; Najarian, J.S. Pancreas transplants from living-related donors. Transplant Proc. 1994, 26, 443–445. [Google Scholar]
- Shapiro, A.M.; Ricordi, C.; Hering, B.J.; et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006, 355, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Kleinclauss, F.; Fauda, M.; Sutherland, D.E.; et al. Pancreas after living donor kidney transplants in diabetic patients: impact on long-term kidney graft function. Clin Transplant. 2009, 23, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Gruessner, AC. 2011 update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud. 2011, 8, 6–16. [Google Scholar] [CrossRef]
- Constantin, V.D.; Socea, B.; Gaspar, B.S.; Epistatu, D.; Paunica, I.; Dumitriu, A.S.; Paunica, S.; Silaghi, A. Limb amputations; etiopathogenesis, diagnosis and the multidisciplinary therapeutic approach. J Mind Med Sci. 2022, 9, 209–223. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes--2013. Diabetes Care. 2013, 36, S11–S66. [Google Scholar] [CrossRef]
- Chapman, A.; Liu, S.; Merkouris, S.; et al. Psychological Interventions for the Management of Glycemic and Psychological Outcomes of Type 2 Diabetes Mellitus in China: A Systematic Review and Meta-Analyses of Randomized Controlled Trials. Front Public Health. 2015, 3, 252. [Google Scholar] [CrossRef]
- Motofei, I.G. A dual physiological character for cerebral mechanisms of sexuality and cognition: common somatic peripheral afferents. BJU Int. 2011, 108, 1634–1639. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Hamiel, D. Cognitive Behavioral Therapy and Mindfulness-Based Cognitive Therapy in Children and Adolescents with Type 2 Diabetes. Curr Diab Rep. 2020, 20, 55, Published 2020 Sep 22. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Sun, J. Effects of Cognitive Behavioral Therapy-Based Intervention on Improving Glycaemic, Psychological, and Physiological Outcomes in Adult Patients With Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Front Psychiatry. 2020, 11, 711. [Google Scholar] [CrossRef]
- Kumar, V.; Sattar, Y.; Bseiso, A.; Khan, S.; Rutkofsky, I.H. The Effectiveness of Internet-Based Cognitive Behavioral Therapy in Treatment of Psychiatric Disorders. Cureus. 2017, 9, e1626, Published 2017 Aug 29. [Google Scholar] [CrossRef]
- Wang, S.B.; Wang, Y.Y.; Zhang, Q.E.; et al. Cognitive behavioral therapy for post-stroke depression: A meta-analysis. J Affect Disord. 2018, 235, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Uchendu, C.; Blake, H. Effectiveness of cognitive-behavioural therapy on glycaemic control and psychological outcomes in adults with diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabet Med. 2017, 34, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Serlachius, A.S.; Scratch, S.E.; Northam, E.A.; Frydenberg, E.; Lee, K.J.; Cameron, F.J. A randomized controlled trial of cognitive behaviour therapy to improve glycaemic control and psychosocial wellbeing in adolescents with type 1 diabetes. J Health Psychol. 2016, 21, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Martel, D.; Boronat, M.; Alberiche-Ruano, M.D.P.; Algara-González, M.A.; Ramallo-Fariña, Y.; Wägner, A.M. Motivational Interviewing and Self-Care in Type 1 Diabetes: A Randomized Controlled Clinical Trial Study Protocol. Front Endocrinol (Lausanne). 2020, 11, 574312, Published 2020 Dec 10. [Google Scholar] [CrossRef]
- Soderlund, P.D. Effectiveness of motivational interviewing for improving physical activity self-management for adults with type 2 diabetes: A review. Chronic Illn. 2018, 14, 54–68. [Google Scholar] [CrossRef]
- Ekong, G.; Kavookjian, J. Motivational interviewing and outcomes in adults with type 2 diabetes: A systematic review. Patient Educ Couns. 2016, 99, 944–952. [Google Scholar] [CrossRef]
- Powell, P.W.; Hilliard, M.E.; Anderson, B.J. Motivational interviewing to promote adherence behaviors in pediatric type 1 diabetes. Curr Diab Rep. 2014, 14, 531. [Google Scholar] [CrossRef]
- Swoboda, C.M.; Miller, C.K.; Wills, C.E. Setting Single or Multiple Goals for Diet and Physical Activity Behaviors Improves Cardiovascular Disease Risk Factors in Adults With Type 2 Diabetes: A Pragmatic Pilot Randomized Trial. Diabetes Educ. 2016, 42, 429–443. [Google Scholar] [CrossRef]
- Young, H.M.; Miyamoto, S.; Dharmar, M.; Tang-Feldman, Y. Nurse Coaching and Mobile Health Compared With Usual Care to Improve Diabetes Self-Efficacy for Persons With Type 2 Diabetes: Randomized Controlled Trial. JMIR Mhealth Uhealth. 2020, 8, e16665. [Google Scholar] [CrossRef]
- Bilgin, A.; Muz, G.; Yuce, G.E. The effect of motivational interviewing on metabolic control and psychosocial variables in individuals diagnosed with diabetes: Systematic review and meta-analysis. Patient Educ Couns. 2022, 105, 2806–2823. [Google Scholar] [CrossRef]
© 2023 by the author. 2023 Bogdan Socea, Adrian Silaghi, Laura Florentina Rebegea, Daniela Gabriela Balan, Cristian Balalau, Tiberiu Ștefăniță Tenea-Cojan, Doina Andrada Mihai, Ioana Paunica
Share and Cite
Socea, B.; Silaghi, A.; Rebegea, L.F.; Balan, D.G.; Balalau, C.; Tenea-Cojan, T.Ș.; Mihai, D.A.; Paunica, I. Diabetes Mellitus: Interdisciplinary Medical, Surgical and Psychological Therapeutic Approach. J. Mind Med. Sci. 2023, 10, 217-236. https://doi.org/10.22543/2392-7674.1445
Socea B, Silaghi A, Rebegea LF, Balan DG, Balalau C, Tenea-Cojan TȘ, Mihai DA, Paunica I. Diabetes Mellitus: Interdisciplinary Medical, Surgical and Psychological Therapeutic Approach. Journal of Mind and Medical Sciences. 2023; 10(2):217-236. https://doi.org/10.22543/2392-7674.1445
Chicago/Turabian StyleSocea, Bogdan, Adrian Silaghi, Laura Florentina Rebegea, Daniela Gabriela Balan, Cristian Balalau, Tiberiu Ștefăniță Tenea-Cojan, Doina Andrada Mihai, and Ioana Paunica. 2023. "Diabetes Mellitus: Interdisciplinary Medical, Surgical and Psychological Therapeutic Approach" Journal of Mind and Medical Sciences 10, no. 2: 217-236. https://doi.org/10.22543/2392-7674.1445
APA StyleSocea, B., Silaghi, A., Rebegea, L. F., Balan, D. G., Balalau, C., Tenea-Cojan, T. Ș., Mihai, D. A., & Paunica, I. (2023). Diabetes Mellitus: Interdisciplinary Medical, Surgical and Psychological Therapeutic Approach. Journal of Mind and Medical Sciences, 10(2), 217-236. https://doi.org/10.22543/2392-7674.1445