How Does Diagnostic Accuracy Evolve with Increased Breast MRI Experience?
Abstract
:- MRI experience in years correlated significantly with diagnostic accuracy for both malignant and high-risk pathologies value in high-risk screening settings.
- Significant correlation of MRI experience with diagnostic accuracy is independent of background parenchymal enhancement and fibroglandular tissue.
- Lower levels of background parenchymal enhancement significantly correlated with increased odds of findings being malignant.
1. Introduction
2. Methods
2.1. Imaging Technique
2.2. Chart Review
2.3. Data Analysis
3. Results
3.1. PPV3
3.2. Pathology Summary
3.3. Individual Radiologist Observations
3.4. Radiologist MRI Experience and Performance
3.5. Levels of BPE and Amount of FGT and Diagnostic Accuracy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Canadian Cancer Statistics. A 2022 Special Report on Cancer Prevalence. Canadian Cancer Society. 2022. Available online: http://cancer.ca/Canadian-Cancer-Statistics-2022-EN (accessed on 14 May 2023).
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Facts & Figure 2022, Figure 2023 and Figure 2024. American Cancer Society. 2022. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/2022-2024-breast-cancer-fact-figures-acs.pdf (accessed on 14 May 2023).
- Breast Cancer Screening for Women at High Risk–Cancer Care Ontario. Cancer Care Ontario n.d. Available online: https://www.cancercareontario.ca/en/guidelines-advice/cancer-continuum/screening/breast-cancer-high-risk-women (accessed on 14 May 2023).
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Chiarelli, A.M.; Prummel, M.V.; Muradali, D.; Majpruz, V.; Horgan, M.; Carroll, J.C.; Eisen, A.; Meschino, W.S.; Shumak, R.S.; Warner, E.; et al. Effectiveness of screening with annual magnetic resonance imaging and mammography: Results of the initial screen from the ontario high risk breast screening program. J. Clin. Oncol. 2014, 32, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.A.; Clauser, P.; Woitek, R.; Wengert, G.J.; Kapetas, P.; Bernathova, M.; Pinker-Domenig, K.; Helbich, T.H.; Preidler, K.; Baltzer, P.A.T. A simple scoring system for breast MRI interpretation: Does it compensate for reader experience? Eur. Radiol. 2016, 26, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, P.A.T.; Kaiser, W.A.; Dietzel, M. Lesion type and reader experience affect the diagnostic accuracy of breast MRI: A multiple reader ROC study. Eur. J. Radiol. 2015, 84, 86–91. [Google Scholar] [CrossRef]
- Ray, K.M.; Kerlikowske, K.; Lobach, I.V.; Hofmann, M.B.; Greenwood, H.I.; Arasu, V.A.; Hylton, N.M.; Joe, B.N. Effect of Background Parenchymal Enhancement on Breast MR Imaging Interpretive Performance in Community-based Practices. Radiology 2018, 286, 822–829. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, L.; You, C.; Gu, Y. Fibroglandular Tissue and Background Parenchymal Enhancement on Breast MR Imaging Correlates with Breast Cancer. Front. Oncol. 2021, 11, 616716. [Google Scholar] [CrossRef]
- Vreemann, S.; Dalmis, M.U.; Bult, P.; Karssemeijer, N.; Broeders, M.J.M.; Gubern-Mérida, A.; Mann, R.M. Amount of fibroglandular tissue FGT and background parenchymal enhancement BPE in relation to breast cancer risk and false positives in a breast MRI screening program. Eur. Radiol. 2019, 29, 4678–4690. [Google Scholar] [CrossRef]
- Kuhl, C. The current status of breast MR imaging Part I. choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 2007, 244, 356–378. [Google Scholar] [CrossRef]
- Goto, M.; Ito, H.; Akazawa, K.; Kubota, T.; Kizu, O.; Yamada, K.; Nishimura, T. Diagnosis of breast tumors by contrast-enhanced MR imaging: Comparison between the diagnostic performance of dynamic enhancement patterns and morphologic features. J. Magn. Reson. Imaging 2007, 25, 104–112. [Google Scholar] [CrossRef]
- Gutierrez, R.L.; DeMartini, W.B.; Eby, P.R.; Kurland, B.F.; Peacock, S.; Lehman, C.D. BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement. Am. J. Roentgenol. 2009, 193, 994–1000. [Google Scholar] [CrossRef]
- Hu, N.; Zhao, J.; Li, Y.; Fu, Q.; Zhao, L.; Chen, H.; Qin, W.; Yang, G. Breast cancer and background parenchymal enhancement at breast magnetic resonance imaging: A meta-analysis. BMC Med. Imaging 2021, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.J.; Bancroft, L.C.H.; Strigel, R.M.; Chitalia, R.D.; Kontos, D.; Moy, L.; Partridge, S.C.; Rahbar, H. Background parenchymal enhancement on breast MRI: A comprehensive review. J. Magn. Reson. Imaging 2019, 51, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Alikhassi, A.; Yazdi, S.N.M.; Akbari, H.; Kia, S.A.; Baikpour, M. Correlation Between Mammographic Breast Density, Breast Tissue Type in Ultrasonography, Fibroglandular Tissue, and Background Parenchymal Enhancement in Magnetic Resonance Imaging. Breast Cancer 2018, 12, 1178223418771971. [Google Scholar] [CrossRef] [PubMed]
- Hambly, N.M.; Liberman, L.; Dershaw, D.D.; Brennan, S.; Morris, E.A. Background Parenchymal Enhancement on Baseline Screening Breast MRI: Impact on Biopsy Rate and Short-Interval Follow-Up. Am. J. Roentgenol. 2012, 196, 218–224. [Google Scholar] [CrossRef]
- Bahl, M. Management of High-Risk Breast Lesions. Radiol. Clin. N. Am. 2021, 59, 29–40. [Google Scholar] [CrossRef]
- Catanzariti, F.; Avendano, D.; Cicero, G.; Garza-Montemayor, M.; Sofia, C.; Rullo, E.V.; Ascenti, G.; Pinker-Domenig, K.; Marino, M.A. High-risk lesions of the breast: Concurrent diagnostic tools and management recommendations. Insights Imaging 2021, 12, 63. [Google Scholar] [CrossRef]
- Alikhassi, A.; Li, X.; Au, F.; Kulkarni, S.; Ghai, S.; Allison, G.; Freitas, V. False-positive incidental lesions detected on contrast-enhanced breast MRI: Clinical and imaging features. Breast Cancer Res. Treat. 2023, 198, 321–334. [Google Scholar] [CrossRef]
- Nayak, A.; Carkaci, S.; Gilcrease, M.Z.; Liu, P.; Middleton, L.P.; Bassett, R.L.; Zhang, J.; Zhang, H.; Coyne, R.L.; Bevers, T.B.; et al. Benign papillomas without atypia diagnosed on core needle biopsy: Experience from a single institution and proposed criteria for excision. Clin. Breast Cancer 2013, 13, 439–449. [Google Scholar] [CrossRef]
- Wright, F.; Escallon, J.; Cukier, M.; Tsang, M.; Hameed, U. Surgical Oncology Manual, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Keulers, A.; Strobel, K.; Schneider, H.; Gaisa, N.; Schrading, S. Not all false positive diagnoses are equal: On the prognostic implications of false-positive diagnoses made in breast MRI versus in mammography/digital tomosynthesis screening. Breast Cancer Res. 2018, 20, 13. [Google Scholar] [CrossRef]
- Ranganathan, P.; Pramesh, C.S.; Aggarwal, R. Common pitfalls in statistical analysis: Logistic regression. Perspect. Clin. Res. 2017, 8, 148. [Google Scholar]
- Grimm, L.J.; Anderson, A.L.; Baker, J.A.; Johnson, K.S.; Walsh, R.; Yoon, S.C.; Ghate, S.V. Interobserver Variability Between Breast Imagers Using the Fifth Edition of the BI-RADS MRI Lexicon. Am. J. Roentgenol. 2015, 204, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Law, W.; Islam, N.; Yong-Hing, C.J.; Kulkarni, S.; Seely, J. Factors Influencing Trainees’ Interest in Breast Imaging. Can. Assoc. Radiol. J. 2022, 73, 462–472. [Google Scholar] [CrossRef] [PubMed]
Key messages: |
Exam Year | Total High-Risk Screening MRI Performed | Total BI-RADS 4/5 Observations Biopsied | Malignant | Non-Malignant | PPV3 |
---|---|---|---|---|---|
2011 (1 July to 31 December) | 134 | 8 | 1 | 7 | 0.13 |
2012 | 311 | 31 | 5 | 26 | 0.16 |
2013 | 676 | 51 | 8 | 43 | 0.16 |
2014 | 804 | 71 | 11 | 60 | 0.15 |
2015 | 823 | 73 | 12 | 61 | 0.16 |
2016 | 768 | 70 | 14 | 56 | 0.20 |
2017 | 886 | 71 | 7 | 64 | 0.10 |
2018 | 913 | 57 | 5 | 52 | 0.08 |
2019 | 1007 | 90 | 8 | 82 | 0.09 |
2020 (1 January– 30 June) | 499 | 14 | 6 | 8 | 0.43 |
Total | 6821 | 536 | 77 | 459 | 0.14 |
Radiologist | Observations | Percent of Total Observations |
---|---|---|
1 | 58 | 10.8% |
2 * | 6 | 1.1% |
3 | 106 | 19.8% |
4 * | 3 | 0.6% |
5 | 41 | 7.6% |
6 | 90 | 16.8% |
7 | 133 | 24.8% |
8 | 88 | 16.4% |
9 * | 1 | 0.2% |
10 * | 5 | 0.9% |
11 * | 5 | 0.9% |
Total | 536 |
Radiologist | Non-Malignant | Malignant | Total | PPV3 |
---|---|---|---|---|
1 | 47 | 11 | 58 | 0.19 |
3 | 87 | 19 | 106 | 0.18 |
5 | 32 | 9 | 41 | 0.22 |
6 | 76 | 14 | 90 | 0.16 |
7 | 125 | 8 | 133 | 0.06 |
8 | 76 | 12 | 88 | 0.14 |
Total | 443 | 73 | 516 | 0.17 |
Malignant | Malignant or High-Risk Lesions | |||
---|---|---|---|---|
OR | p | OR | p | |
MRI Experience Increase By Different Time Ranges | ||||
1 year | 1.03 | 0.24 | 1.05 | 0.03 * |
5 year | 1.17 | 0.24 | 1.27 | 0.03 * |
10 year | 1.31 | 0.24 | 1.61 | 0.03 * |
BPE Levels (Compared to Marked BPE) | ||||
Minimal BPE | 5.6 | 0.004 * | 2.4 | 0.049 * |
Mild BPE | 4.2 | 0.01 * | 2.2 | 0.03 * |
Moderate BPE | 1.8 | 0.30 | 1.3 | 0.48 |
Amount of FGT (Compared to D—Extremely Dense FGT) | ||||
A—Almost Entirely Fat | 4.2 | 0.008 * | 2.8 | 0.02 * |
B—Scattered FGT | 3.4 | 0.004 * | 1.9 | 0.07 |
C—Heterogeneously Dense FGT | 2.1 | 0.06 | 2.0 | 0.02 * |
Malignant | Malignant or High-Risk Lesions | |||
---|---|---|---|---|
MODEL 1 | OR | p | OR | p |
MRI Experience (years) | 1.03 | 0.27 | 1.05 | 0.03 * |
BPE Levels (Compared to Marked BPE) | ||||
Minimal BPE | 4.3 | 0.02 * | 2.4 | 0.08 |
Mild BPE | 3.2 | 0.04 * | 2.2 | 0.08 |
Moderate BPE | 1.5 | 0.47 | 1.3 | 0.67 |
Amount of FGT (Compared to D—Extremely Dense FGT) | ||||
A—Almost Entirely Fat | 2.4 | 0.11 | 2.8 | 0.15 |
B—Scattered FGT | 2.2 | 0.07 | 1.9 | 0.37 |
C—Heterogeneously Dense FGT | 2.0 | 0.09 | 2.0 | 0.03 * |
MODEL 2 | ||||
BPE Levels (Compared to Marked BPE) | ||||
Minimal BPE | 4.2 | 0.02 * | 2.2 | 0.10 |
Mild BPE | 3.2 | 0.04 * | 1.9 | 0.09 |
Moderate BPE | 1.5 | 0.49 | 1.1 | 0.73 |
Amount of FGT (Compared to D—Extremely Dense FGT) | ||||
A—Almost Entirely Fat | 2.5 | 0.10 | 2.0 | 0.14 |
B—Scattered FGT | 2.3 | 0.07 | 1.4 | 0.32 |
C—Heterogeneously Dense FGT | 2.0 | 0.08 | 1.9 | 0.03 * |
MODEL 3 | ||||
MRI Experience (1 year) | 1.03 | 0.31 | 1.1 | 0.04 * |
Amount of FGT (Compared to D—Extremely Dense FGT) | ||||
A—Almost Entirely Fat | 4.1 | 0.008 * | 2.8 | 0.02 * |
B—Scattered FGT | 3.3 | 0.005 * | 1.8 | 0.09 |
C—Heterogeneously Dense FGT | 2.1 | 0.06 | 1.9 | 0.02 * |
BPE | Frequency | Percent |
---|---|---|
Minimal | 51 | 9.9 |
Mild | 162 | 31.5 |
Moderate | 233 | 45.2 |
Marked | 69 | 13.4 |
Amount of FGT | ||
A—Almost Entirely Fat | 33 | 6.4 |
B—Scattered FGT | 97 | 18.8 |
C—Heterogeneously Dense FGT | 259 | 50.3 |
D—Extremely Dense FGT | 126 | 24.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Alikhassi, A.; Curpen, B. How Does Diagnostic Accuracy Evolve with Increased Breast MRI Experience? Tomography 2023, 9, 2067-2078. https://doi.org/10.3390/tomography9060162
Wu T, Alikhassi A, Curpen B. How Does Diagnostic Accuracy Evolve with Increased Breast MRI Experience? Tomography. 2023; 9(6):2067-2078. https://doi.org/10.3390/tomography9060162
Chicago/Turabian StyleWu, Tong, Afsaneh Alikhassi, and Belinda Curpen. 2023. "How Does Diagnostic Accuracy Evolve with Increased Breast MRI Experience?" Tomography 9, no. 6: 2067-2078. https://doi.org/10.3390/tomography9060162
APA StyleWu, T., Alikhassi, A., & Curpen, B. (2023). How Does Diagnostic Accuracy Evolve with Increased Breast MRI Experience? Tomography, 9(6), 2067-2078. https://doi.org/10.3390/tomography9060162