Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, R.K.; Petersen, A.M.; Pammolli, F.; Fortunato, S. The Memory of Science: Inflation, Myopia, and the Knowledge Network. J. Informetr. 2018, 12, 656–678. [Google Scholar] [CrossRef]
- Cho, H.-W. Topic Modeling. Osong Public Health Res. Perspect. 2019, 10, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Y.; Hu, R.; Peterson, R.B.; Allen, J.W. Automated Processing of Head CT Perfusion Imaging for Ischemic Stroke Triage: A Practical Guide to Quality Assurance and Interpretation. Am. J. Roentgenol. 2021, 217, 1401–1416. [Google Scholar] [CrossRef]
- Sliwicka, O.; Sechopoulos, I.; Baggiano, A.; Pontone, G.; Nijveldt, R.; Habets, J. Dynamic Myocardial CT Perfusion Imaging—State of the Art. Eur. Radiol. 2023, 33, 5509–5525. [Google Scholar] [CrossRef] [PubMed]
- Garbino, N.; Brancato, V.; Salvatore, M.; Cavaliere, C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose-Response 2021, 19, 155932582110561. [Google Scholar] [CrossRef]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit: Bird, Steven, Klein, Ewan, Loper, Edward: 9780596516499: Amazon.Com: Books. Available online: https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495 (accessed on 17 May 2023).
- Bittermann, A.; Fischer, A. How to Identify Hot Topics in Psychology Using Topic Modeling. Z. Psychol. 2018, 226, 3–13. [Google Scholar] [CrossRef]
- Petralia, G.; Bonello, L.; Viotti, S.; Preda, L.; d’Andrea, G.; Bellomi, M. CT Perfusion in Oncology: How to Do It. Cancer Imaging 2010, 10, 8–19. [Google Scholar] [CrossRef]
- Zegadło, A.; Różyk, A.; Żabicka, M.; Więsik–Szewczyk, E.; Maliborski, A. Dual-Energy Computed Tomography as a Lower Radiation Dose Alternative to Perfusion Computed Tomography in Tumor Viability Assessment. Sci. Rep. 2023, 13, 120. [Google Scholar] [CrossRef]
- Bisdas, S.; Baghi, M.; Smolarz, A.; Pihno, N.C.; Lehnert, T.; Knecht, R.; Mack, M.G.; Vogl, T.J.; Tuerkay, S.; Koh, T.S. Quantitative Measurements of Perfusion and Permeability of Oropharyngeal and Oral Cavity Cancer, Recurrent Disease, and Associated Lymph Nodes Using First-Pass Contrast-Enhanced Computed Tomography Studies. Investig. Radiol. 2007, 42, 172. [Google Scholar] [CrossRef] [PubMed]
- Rumboldt, Z.; Al-Okaili, R.; Deveikis, J.P. Perfusion CT for Head and Neck Tumors: Pilot Study. AJNR Am. J. Neuroradiol. 2005, 26, 1178–1185. [Google Scholar] [PubMed]
- Bisdas, S.; Baghi, M.; Wagenblast, J.; Knecht, R.; Thng, C.H.; Koh, T.S.; Vogl, T.J. Differentiation of Benign and Malignant Parotid Tumors Using Deconvolution-Based Perfusion CT Imaging: Feasibility of the Method and Initial Results. Eur. J. Radiol. 2007, 64, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Goh, V.; Halligan, S.; Wellsted, D.M.; Bartram, C.I. Can Perfusion CT Assessment of Primary Colorectal Adenocarcinoma Blood Flow at Staging Predict for Subsequent Metastatic Disease? A Pilot Study. Eur. Radiol. 2009, 19, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Kyle, S.D.; Law, W.P.; Miles, K.A. Predicting Tumour Response. Cancer Imaging 2013, 13, 381–390. [Google Scholar] [CrossRef]
- Wang, J.; Wu, N.; Cham, M.D.; Song, Y. Tumor Response in Patients with Advanced Non-Small Cell Lung Cancer: Perfusion CT Evaluation of Chemotherapy and Radiation Therapy. Am. J. Roentgenol. 2009, 193, 1090–1096. [Google Scholar] [CrossRef]
- Kaufmann, S.; Horger, T.; Oelker, A.; Beck, S.; Schulze, M.; Nikolaou, K.; Ketelsen, D.; Horger, M. Volume Perfusion Computed Tomography (VPCT)-Based Evaluation of Response to TACE Using Two Different Sized Drug Eluting Beads in Patients with Nonresectable Hepatocellular Carcinoma: Impact on Tumor and Liver Parenchymal Vascularisation. Eur. J. Radiol. 2015, 84, 2548–2554. [Google Scholar] [CrossRef]
- Shen, X.; Wu, D.; Tang, M.; Sun, H.; Ji, Y.; Huang, C.; Zeng, M. Liver Computed Tomographic Perfusion for Monitoring the Early Therapeutic Response to Sorafenib in Advanced Hepatocellular Carcinoma Patients. J. Cancer Res. Ther. 2018, 14, 1556–1562. [Google Scholar] [CrossRef]
- Gandhi, D.; Chepeha, D.B.; Miller, T.; Carlos, R.C.; Bradford, C.R.; Karamchandani, R.; Worden, F.; Eisbruch, A.; Teknos, T.N.; Wolf, G.T.; et al. Correlation between Initial and Early Follow-up CT Perfusion Parameters with Endoscopic Tumor Response in Patients with Advanced Squamous Cell Carcinomas of the Oropharynx Treated with Organ-Preservation Therapy. Am. J. Neuroradiol. 2006, 27, 101–106. [Google Scholar]
- Andersen, I.R.; Olesen, R.; Boysen, A.K.; Jensen, L.H.; Mortensen, F.V.; Nielsen, D.T.; Rasmussen, F. Dynamic Contrast-Enhanced Computed Tomography as a Potential Biomarker in Patients with Metastatic Colorectal Cancer Treated with Regorafenib. Acta Radiol. 2019, 60, 836–845. [Google Scholar] [CrossRef]
- Bisdas, S.; Rumboldt, Z.; Šurlan-Popovič, K.; Baghi, M.; Koh, T.S.; Vogl, T.J.; Mack, M.G. Perfusion CT in Squamous Cell Carcinoma of the Upper Aerodigestive Tract: Long-Term Predictive Value of Baseline Perfusion CT Measurements. Am. J. Neuroradiol. 2010, 31, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, M.V.; Bisdas, S.; Sharma, A.K.; McDonald, D.; Strojan, P.; Rumboldt, Z. Computed Tomography Perfusion Assessment of Radiation Therapy Effects on Spinal Cord Hemodynamics. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; De Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; et al. Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef]
- Heit, J.J.; Wintermark, M. Perfusion Computed Tomography for the Evaluation of Acute Ischemic Stroke. Stroke 2016, 47, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.; Lansberg, M.G. CT Perfusion in Acute Stroke: Practical Guidance for Implementation in Clinical Practice. J. Cereb. Blood Flow Metab. 2019, 39, 1664–1668. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Mayer, T.E.; Hamann, G.F.; Baranczyk, J.; Rosengarten, B.; Klotz, E.; Wiesmann, M.; Missler, U.; Schulte-Altedorneburg, G.; Brueckmann, H.J. Dynamic CT Perfusion Imaging of Acute Stroke. Am. J. Neuroradiol. 2000, 21, 1441–1449. [Google Scholar]
- Zhang, J.; Wang, J.; Geng, D.; Li, Y.; Song, D.; Gu, Y. Whole-Brain CT Perfusion and CT Angiography Assessment of Moyamoya Disease before and after Surgical Revascularization: Preliminary Study with 256-Slice CT. PLoS ONE 2013, 8, e57595. [Google Scholar] [CrossRef]
- Yin, H.; Liu, X.; Zhang, D.; Zhang, Y.; Wang, R.; Zhao, M.; Zhao, J. A Novel Staging System to Evaluate Cerebral Hypoperfusion in Patients with Moyamoya Disease. Stroke 2018, 49, 2837–2843. [Google Scholar] [CrossRef] [PubMed]
- Seitun, S.; De Lorenzi, C.; Cademartiri, F.; Buscaglia, A.; Travaglio, N.; Balbi, M.; Bezante, G.P. CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. BioMed Res. Int. 2018, 2018, e7295460. [Google Scholar] [CrossRef] [PubMed]
- Cademartiri, F.; Seitun, S.; Clemente, A.; La Grutta, L.; Toia, P.; Runza, G.; Midiri, M.; Maffei, E. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Computed Tomography. Cardiovasc. Diagn. Ther. 2017, 7, 129–150. [Google Scholar] [CrossRef]
- Patel, A.R.; Bamberg, F.; Branch, K.; Carrascosa, P.; Chen, M.; Cury, R.C.; Ghoshhajra, B.; Ko, B.; Nieman, K.; Pugliese, F.; et al. Society of Cardiovascular Computed Tomography Expert Consensus Document on Myocardial Computed Tomography Perfusion Imaging. J. Cardiovasc. Comput. Tomogr. 2020, 14, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Wykrzykowska, J.J.; Arbab-Zadeh, A.; Godoy, G.; Miller, J.M.; Lin, S.; Vavere, A.; Paul, N.; Niinuma, H.; Hoe, J.; Brinker, J.; et al. Assessment of In-Stent Restenosis Using 64-MDCT: Analysis of the CORE-64 Multicenter International Trial. Am. J. Roentgenol. 2010, 194, 85–92. [Google Scholar] [CrossRef]
- Arbab-Zadeh, A.; Miller, J.M.; Rochitte, C.E.; Dewey, M.; Niinuma, H.; Gottlieb, I.; Paul, N.; Clouse, M.E.; Shapiro, E.P.; Hoe, J.; et al. Diagnostic Accuracy of Computed Tomography Coronary Angiography According to Pre-Test Probability of Coronary Artery Disease and Severity of Coronary Arterial Calcification. The CORE-64 (Coronary Artery Evaluation Using 64-Row Multidetector Computed Tomography Angiography) International Multicenter Study. J. Am. Coll. Cardiol. 2012, 59, 379–387. [Google Scholar] [CrossRef]
- Bisdas, S.; Foo, C.Z.; Thng, C.H.; Vogl, T.J.; Koh, T.S. Optimization of Perfusion CT Protocol for Imaging of Extracranial Head and Neck Tumors. J. Digit. Imaging 2009, 22, 437–448. [Google Scholar] [CrossRef]
- Vats, N.; Mayer, P.; Kortes, F.; Klauß, M.; Grenacher, L.; Stiller, W.; Kauczor, H.-U.; Skornitzke, S. Evaluation and Timing Optimization of CT Perfusion First Pass Analysis in Comparison to Maximum Slope Model in Pancreatic Adenocarcinoma. Sci. Rep. 2023, 13, 10595. [Google Scholar] [CrossRef]
- Konstas, A.A.; Goldmakher, G.V.; Lee, T.-Y.; Lev, M.H. Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 2: Technical Implementations. Am. J. Neuroradiol. 2009, 30, 885–892. [Google Scholar] [CrossRef]
- Kouchi, T.; Tanabe, Y.; Smit, E.J.; Kido, T.; Kurata, A.; Kouchi, Y.; Nishiyama, H.; Uetani, T.; Ikeda, S.; Yamaguchi, O.; et al. Clinical Application of Four-Dimensional Noise Reduction Filtering with a Similarity Algorithm in Dynamic Myocardial Computed Tomography Perfusion Imaging. Int. J. Cardiovasc. Imaging 2020, 36, 1781–1789. [Google Scholar] [CrossRef]
- Mendrik, A.M.; Vonken, E.; van Ginneken, B.; de Jong, H.W.; Riordan, A.; van Seeters, T.; Smit, E.J.; Viergever, M.A.; Prokop, M. TIPS Bilateral Noise Reduction in 4D CT Perfusion Scans Produces High-Quality Cerebral Blood Flow Maps. Phys. Med. Biol. 2011, 56, 3857. [Google Scholar] [CrossRef] [PubMed]
- Lukas, S.; Feger, S.; Rief, M.; Zimmermann, E.; Dewey, M. Noise Reduction and Motion Elimination in Low-Dose 4D Myocardial Computed Tomography Perfusion (CTP): Preliminary Clinical Evaluation of the ASTRA4D Algorithm. Eur. Radiol. 2019, 29, 4572–4582. [Google Scholar] [CrossRef] [PubMed]
- Rava, R.A.; Snyder, K.V.; Mokin, M.; Waqas, M.; Allman, A.B.; Senko, J.L.; Podgorsak, A.R.; Bhurwani, M.M.S.; Davies, J.M.; Levy, E.I.; et al. Effect of Computed Tomography Perfusion Post-Processing Algorithms on Optimal Threshold Selection for Final Infarct Volume Prediction. Neuroradiol. J. 2020, 33, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Wu, J.; Gu, S.; Yao, Y.; Li, J.; Li, Y.; Ren, H.; Luo, T. Comparison of Two Computed Tomography Perfusion Post-Processing Software to Assess Infarct Volume in Patients with Acute Ischemic Stroke. Front. Neurosci. 2023, 17, 1151823. [Google Scholar] [CrossRef]
- Muehlen, I.; Borutta, M.; Siedler, G.; Engelhorn, T.; Hock, S.; Knott, M.; Hoelter, P.; Volbers, B.; Schwab, S.; Doerfler, A. Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications. Tomography 2022, 8, 1350–1362. [Google Scholar] [CrossRef]
- Austein, F.; Riedel, C.; Kerby, T.; Meyne, J.; Binder, A.; Lindner, T.; Huhndorf, M.; Wodarg, F.; Jansen, O. Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy. Stroke 2016, 47, 2311–2317. [Google Scholar] [CrossRef]
- Most Popular Topics in Radiology 2023. Available online: https://www.rsna.org/news/2023/april/popular-topics-radiology-2023 (accessed on 21 August 2023).
- Zhang, R.; Wang, P.; Bian, Y.; Fan, Y.; Li, J.; Liu, X.; Shen, J.; Hu, Y.; Liao, X.; Wang, H.; et al. Establishment and Validation of an AI-Aid Method in the Diagnosis of Myocardial Perfusion Imaging. BMC Med. Imaging 2023, 23, 84. [Google Scholar] [CrossRef]
- Chen, Y.; Tozer, D.J.; Liu, W.; Peake, E.J.; Markus, H.S. Prediction of Response to Thrombolysis in Acute Stroke Using Neural Network Analysis of CT Perfusion Imaging. Eur. Stroke J. 2023, 8, 23969873231183206. [Google Scholar] [CrossRef]
- Werdiger, F.; Parsons, M.W.; Visser, M.; Levi, C.; Spratt, N.; Kleinig, T.; Lin, L.; Bivard, A. Machine Learning Segmentation of Core and Penumbra from Acute Stroke CT Perfusion Data. Front. Neurol. 2023, 14, 1098562. [Google Scholar] [CrossRef]
- Gava, U.A.; D’Agata, F.; Tartaglione, E.; Renzulli, R.; Grangetto, M.; Bertolino, F.; Santonocito, A.; Bennink, E.; Vaudano, G.; Boghi, A.; et al. Neural Network-Derived Perfusion Maps: A Model-Free Approach to Computed Tomography Perfusion in Patients with Acute Ischemic Stroke. Front. Neuroinform. 2023, 17, 852105. [Google Scholar] [CrossRef]
- Bhurwani, M.M.S.; Boutelier, T.; Davis, A.; Gautier, G.; Swetz, D.; Rava, R.A.; Raguenes, D.; Waqas, M.; Snyder, K.V.; Siddiqui, A.H.; et al. Identification of Infarct Core and Ischemic Penumbra Using Computed Tomography Perfusion and Deep Learning. J. Med. Imaging 2023, 10, 014001. [Google Scholar] [CrossRef] [PubMed]
- Bisdas, S.; Hartel, M.; Cheong, L.H.; Koh, T.S. Detection of Early Vessel Leakiness in Acute Ischemic Stroke Using Computed Tomography Perfusion May Indicate Hemorrhagic Transformation. Acta Radiol. 2007, 48, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Kim, D.S.; Kim, M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 2021, 12, 703258. [Google Scholar] [CrossRef] [PubMed]
- Sussman, E.; Connolly, E., Jr. Hemorrhagic Transformation: A Review of the Rate of Hemorrhage in the Major Clinical Trials of Acute Ischemic Stroke. Front. Neurol. 2013, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, M.; Bastianello, S.; von Kummer, R.; del Zoppo, G.J.; Larrue, V.; Lesaffre, E.; Ringleb, A.P.; Lorenzano, S.; Manelfe, C.; Bozzao, L. Hemorrhagic Transformation within 36 Hours of a Cerebral Infarct: Relationships with Early Clinical Deterioration and 3-Month Outcome in the European Cooperative Acute Stroke Study I (ECASS I) Cohort. Stroke 1999, 30, 2280–2284. [Google Scholar] [CrossRef]
- Suh, C.H.; Jung, S.C.; Cho, S.J.; Kim, D.; Lee, J.B.; Woo, D.-C.; Oh, W.Y.; Lee, J.G.; Kim, K.W. Perfusion CT for Prediction of Hemorrhagic Transformation in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Eur. Radiol. 2019, 29, 4077–4087. [Google Scholar] [CrossRef]
- Yassi, N.; Parsons, M.W.; Christensen, S.; Sharma, G.; Bivard, A.; Donnan, G.A.; Levi, C.R.; Desmond, P.M.; Davis, S.M.; Campbell, B.C.V. Prediction of Poststroke Hemorrhagic Transformation Using Computed Tomography Perfusion. Stroke 2013, 44, 3039–3043. [Google Scholar] [CrossRef]
- Souza, L.C.S.; Payabvash, S.; Wang, Y.; Kamalian, S.; Schaefer, P.; Gonzalez, R.G.; Furie, K.L.; Lev, M.H. Admission CT Perfusion Is an Independent Predictor of Hemorrhagic Transformation in Acute Stroke with Similar Accuracy to DWI. Cerebrovasc. Dis. 2011, 33, 8–15. [Google Scholar] [CrossRef]
- Jain, A.R.; Jain, M.; Kanthala, A.R.; Damania, D.; Stead, L.G.; Wang, H.Z.; Jahromi, B.S. Association of CT Perfusion Parameters with Hemorrhagic Transformation in Acute Ischemic Stroke. Am. J. Neuroradiol. 2013, 34, 1895–1900. [Google Scholar] [CrossRef]
- Shinoyama, M.; Nakagawara, J.; Yoneda, H.; Suzuki, M.; Ono, H.; Kunitsugu, I.; Kamiyama, K.; Osato, T.; Nakamura, H. Initial “TTP Map-Defect” of Computed Tomography Perfusion as a Predictor of Hemorrhagic Transformation of Acute Ischemic Stroke. Cerebrovasc. Dis. Extra 2013, 3, 14–25. [Google Scholar] [CrossRef]
- Valderrama-Zurián, J.-C.; Aguilar-Moya, R.; Melero-Fuentes, D.; Aleixandre-Benavent, R. A Systematic Analysis of Duplicate Records in Scopus. J. Informetr. 2015, 9, 570–576. [Google Scholar] [CrossRef]
Topic Label | Key Words | Number of Articles | Representative Articles |
---|---|---|---|
Tumor Vascularity | tumor, blood, parameters, bf, liver, bv, patients, cancer, volume, flow, values, using, tumors, study, mean, ps, response, significantly, hepatic, significant, correlation, lung, carcinoma, treatment, group, permeability, compared, hcc, analysis, time, arterial, respectively, pancreatic, higher, value, ml100, performed, tissue, pct, lesions, changes, mtt, cell, showed, different, 005, dynamic, used, underwent, groups | 848 | Title: Perfusion computed tomography for monitoring induction chemotherapy in patients with squamous cell carcinoma of the upper aerodigestive tract: Correlation between changes in tumor perfusion and tumor volume |
Stroke Assessment | stroke, patients, ischemic, acute, core, infarct, volume, cerebral, penumbra, aspects, score, outcome, time, collateral, clinical, occlusion, maps, cta, infarction, using, volumes, ml, cbv, blood, analysis, ncct, software, angiography, followup, circulation, tissue, mismatch, thresholds, ais, early, dwi, noncontrast, rapid, 95, onset, used, study, cbf, final, included, treatment, within, vessel, good, correlation | 498 | Title: Quantifying infarct core volume in ischemic stroke: What is the optimal threshold and parameters of computed tomography perfusion? |
Myocardial Perfusion | myocardial, coronary, stress, stenosis, cad, ccta, mbf, diagnostic, artery, angiography, dynamic, cardiac, cta, ischemia, disease, patients, accuracy, using, significant, 95, assessment, spect, invasive, ffr, ci, flow, performance, rest, reserve, value, compared, study, specificity, analysis, adenosine, combined, sensitivity, fractional, respectively, heart, evaluation, detection, segments, myocardium, quantitative, obstructive, hemodynamically, cardiovascular, reference, alone | 210 | Title: Dynamic myocardial CT perfusion imaging-state of the art |
Intracerebral Hemorrhage | cerebral, vasospasm, dci, hemorrhage, patients, sah, subarachnoid, aneurysmal, delayed, cbf, asah, mtt, outcome, blood, hematoma, early, ischemia, mean, time, intracerebral, flow, study, 95, pressure, performed, angiography, cranioplasty, clinical, ich, perihematomal, brain, ci, group, aneurysm, spot, value, infarction, parameters, days, analysis, values, cbv, sensitivity, significantly, volume, within, expansion, dsa, deficits, transit | 170 | Title: Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage |
Imaging Optimization | dose, image, radiation, images, quality, noise, phantom, using, reconstruction, lowdose, data, dynamic, protocol, maps, reduction, cerebral, contrast, scan, algorithm, brain, temporal, tube, values, doses, mgy, study, proposed, compared, time, scans, pct, mas, iterative, effective, cbf, flow, blood, used, standard, sampling, model, purpose, skin, quantitative, injection, mean, acquisition, clinical, stroke, exposure | 161 | Title: Temporal feature prior-aided separated reconstruction method for low-dose dynamic myocardial perfusion computed tomography |
Reperfusion Therapy | patients, stroke, thrombectomy, thrombolysis, outcome, endovascular, onset, ischemic, evt, outcomes, treatment, time, group, score, mrs, scale, clinical, selection, intravenous, hours, window, acute, large, treated, modified, functional, core, rankin, occlusion, nihss, study, mismatch, 90, therapy, baseline, safety, reperfusion, wakeup, mechanical, days, volume, criteria, median, recanalization, selected, mortality, beyond, tissue, groups, vs | 128 | Title: Utilization of CT perfusion patient selection for mechanical thrombectomy irrespective of time: A comparison of functional outcomes and complications |
Postprocessing | cerebral, cbf, blood, cbv, values, using, aif, flow, data, maps, artery, svd, mtt, brain, patients, mean, input, arterial, quantitative, function, obtained, volume, technique, pct, study, analysis, time, compared, different, measurements, variability, used, software, algorithm, postprocessing, algorithms, stenosis, deconvolution, parameters, correlation, differences, transit, stroke, significant, mca, regions, singular, images, mrp, decomposition | 103 | Title: Differences in CT perfusion maps generated by different commercial software: Quantitative analysis by using identical source data of acute stroke patients |
Carotid Artery Disease | cerebral, carotid, stenosis, patients, artery, stenting, cbf, symptomatic, mtt, cvr, blood, side, acetazolamide, ipsilateral, bypass, contralateral, cas, ttp, flow, changes, unilateral, challenge, ica, occlusion, hemodynamic, cerebrovascular, internal, spect, study, hps, parameters, severe, asymptomatic, time, middle, impairment, test, group, disease, mean, surgery, bto, mca, chronic, hyperperfusion, cbv, significant, 0001, brain, ischemic | 68 | Title: Carotid artery stenting and blood–brain barrier permeability in subjects with chronic carotid artery stenosis |
Seizures | seizure, stroke, patients, postictal, acute, eeg, hypoperfusion, focal, hyperperfusion, pct, diagnosis, aphasia, ictal, epileptic, syndrome, cerebral, epilepticus, case, ischemic, symptoms, status, clinical, may, neurological, emergency, cortical, mimics, left, blood, brain, aura, se, patterns, isolated, handl, cases, pres, deficits, pattern, encephalopathy, migraine, code, changes, onset, epilepsy, presented, study, reversible, strokelike | 59 | Title: Acute Ischemic Stroke or Epileptic Seizure? Yield of CT Perfusion in a “Code Stroke” Situation |
Hemorrhagic Transformation | ht, bbbp, transformation, hemorrhagic, permeability, stroke, barrier, bloodbrain, patients, acute, ischemic, patlak, hemorrhage, analysis, ph, regression, model, using, ps, area, prediction, relative, 95, associated, admission, tpa, infarct, bbb, cerebral, multivariate, values, pct, clinical, increased, study, reperfusion, thrombolysis, volume, delayed, risk, ais, parenchymal, higher, nlr, parameters, significantly, therapy, intracerebral, blood, hc | 46 | Title: Hemorrhagic transformation of ischemic stroke: Prediction with CT perfusion |
Artificial Intelligence | learning, deep, segmentation, neural, ischemic, stroke, network, infarct, maps, acute, convolutional, lesion, using, model, ml, core, data, dice, networks, cnn, machine, based, tissue, used, images, proposed, volume, patients, approach, 4d, penumbra, time, spatiotemporal, image, prediction, unet, trained, coefficient, performance, predict, absolute, algorithm, training, mean, software, parameter, segment, achieve, compared, challenge | 34 | Title: Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging |
Moyamoya Disease | moyamoya, disease, bypass, revascularization, surgery, mmd, cerebral, patients, postoperative, stamca, hemodynamic, adult, cbf, values, time, surgical, hemispheres, side, preoperative, dt, rttp, mms, brain, rcbf, collateral, rmtt, formation, changes, temporal, blood, ttp, volume, operation, months, atherosclerotic, seconds, artery, ischemic, mtt, relative, improved, compared, hemodynamics, significant, flow, wbctp, underwent, 005, significantly, combined | 31 | Title: CT perfusion assessment of Moyamoya syndrome before and after direct revascularization (superficial temporal artery to middle cerebral artery bypass) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozkara, B.B.; Karabacak, M.; Margetis, K.; Yedavalli, V.S.; Wintermark, M.; Bisdas, S. Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study. Tomography 2023, 9, 2016-2028. https://doi.org/10.3390/tomography9060158
Ozkara BB, Karabacak M, Margetis K, Yedavalli VS, Wintermark M, Bisdas S. Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study. Tomography. 2023; 9(6):2016-2028. https://doi.org/10.3390/tomography9060158
Chicago/Turabian StyleOzkara, Burak B., Mert Karabacak, Konstantinos Margetis, Vivek S. Yedavalli, Max Wintermark, and Sotirios Bisdas. 2023. "Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study" Tomography 9, no. 6: 2016-2028. https://doi.org/10.3390/tomography9060158
APA StyleOzkara, B. B., Karabacak, M., Margetis, K., Yedavalli, V. S., Wintermark, M., & Bisdas, S. (2023). Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study. Tomography, 9(6), 2016-2028. https://doi.org/10.3390/tomography9060158