Impact of Tracer Dose Reduction in [18 F]-Labelled Fluorodeoxyglucose-Positron Emission Tomography ([18 F]-FDG)-PET) on Texture Features and Histogram Indices: A Study in Homogeneous Tissues of Phantom and Patient
Abstract
:1. Background
2. Material and Methods
2.1. PET Acquisition
2.2. Phantom Study
2.3. Patient Study
2.4. Statistical Analysis
2.4.1. Phantom Study
2.4.2. Patient Study
3. Results
3.1. Phantom Study
3.2. Patient Study
4. Discussion
- GLZSM LGZE (p-value-Δ = 0.21);
- GLZSM ZSV (p-value-Δ = 0.117).
- Homogeneity 2 (GLCM);
- Entropy (GLCM);
- Zone size non-uniformity (GLZSM).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[18 F] | Fluorine 18 |
BW | body weight |
COV | coefficient of variation |
CT | computer tomography |
FDG | fluorodeoxyglucose |
HI | histogram indices |
MR(I) | magnetic resonance (imaging) |
NEMA | National Electrical Manufacturers Association |
OS | overall survival |
OSEM | ordered subset expectation maximization |
PET | positron emission tomography |
PFS | progression free survival |
TF | texture feature |
VOI | volume of interest |
References
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.-N.; Lambin, P.; Bottari, F.; Tsoutzidis, N.; Miraglio, B.; et al. A review in radiomics: Making personalized medicine a reality via routine imaging. Med. Res. Rev. 2022, 42, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-C.; Chan, S.-C.; Cheng, N.-M.; Liao, C.-T.; Hsu, C.-L.; Wang, H.-M.; Lin, C.-Y.; Chang, J.T.-C.; Ng, S.-H.; Yang, L.-Y.; et al. Pretreatment (18)F-FDG PET/CT texture parameters provide complementary information to Epstein-Barr virus DNA titers in patients with metastatic nasopharyngeal carcinoma. Oral Oncol. 2020, 104, 104628. [Google Scholar] [CrossRef]
- Gao, J.; Huang, X.; Meng, H.; Zhang, M.; Zhang, X.; Lin, X.; Li, B. Performance of Multiparametric Functional Imaging and Texture Analysis in Predicting Synchronous Metastatic Disease in Pancreatic Ductal Adenocarcinoma Patients by Hybrid PET/MR: Initial Experience. Front. Oncol. 2020, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.-P.; Corcos, L.; Visvikis, D. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef]
- Ou, X.; Wang, J.; Zhou, R.; Zhu, S.; Pang, F.; Zhou, Y.; Tian, R.; Ma, X. Ability of (18)F-FDG PET/CT Radiomic Features to Distinguish Breast Carcinoma from Breast Lymphoma. Contrast Media Mol. Imaging 2019, 2019, 4507694. [Google Scholar] [CrossRef]
- Yan, J.; Chu-Shern, J.L.; Loi, H.Y.; Khor, L.K.; Sinha, A.K.; Quek, S.T.; Tham, I.W.K.; Townsend, D. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J. Nucl. Med. 2015, 56, 1667–1673. [Google Scholar] [CrossRef]
- Orlhac, F.; Soussan, M.; Maisonobe, J.A.; Garcia, C.A.; Vanderlinden, B.; Buvat, I. Tumor texture analysis in 18F-FDG PET: Relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 2014, 55, 414–422. [Google Scholar] [CrossRef]
- van Velden, F.H.; Kramer, G.M.; Frings, V.; Nissen, I.A.; Mulder, E.R.; de Langen, A.J.; Hoekstra, O.S.; Smit, E.F. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol. Imaging Biol. 2016, 18, 788–795. [Google Scholar] [CrossRef]
- Seith, F.; Schmidt, H.; Kunz, J.; Kustner, T.; Gatidis, S.; Nikolaou, K.; la Fougère, C.; Schwenzer, N. Simulation of Tracer Dose Reduction in (18)F-FDG PET/MRI: Effects on Oncologic Reading, Image Quality, and Artifacts. J. Nucl. Med. 2017, 58, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. ACR–SPR Practice Parameter for Performing FDG-PET/CT in Oncology: American College of Radiology. Available online: https://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/FDG_PET_CT.pdf (accessed on 12 October 2021).
- Gatidis, S.; Wurslin, C.; Seith, F.; Schafer, J.F.; la Fougere, C.; Nikolaou, K.; Schwenzer, N.F. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data. Hell. J. Nucl. Med. 2016, 19, 15–18. [Google Scholar] [PubMed]
- Yan, J.; Schaefferkoette, J.; Conti, M.; Townsend, D. A method to assess image quality for Low-dose PET: Analysis of SNR, CNR, bias and image noise. Cancer Imaging 2016, 16, 26. [Google Scholar] [CrossRef]
- Schaefferkoetter, J.D.; Yan, J.; Soderlund, T.A.; Townsend, D.W.; Conti, M.; Tam, J.K.; Soo, R.A.; Tham, I. Quantitative Accuracy and Lesion Detectability of Low-Dose FDG-PET for Lung Cancer Screening. J. Nucl. Med. 2017, 58, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Tibdewal, A.; Patil, M.; Misra, S.; Purandare, N.; Rangarajan, V.; Mummudi, N.; Karimundackal, G.; Jiwnani, S.; Agarwal, J. Optimal Standardized Uptake Value Threshold for Auto contouring of Gross Tumor Volume using Positron Emission Tomography/Computed Tomography in Patients with Operable Nonsmall-Cell Lung Cancer: Comparison with Pathological Tumor Size. Indian J. Nucl. Med. 2021, 36, 7–13. [Google Scholar]
- Liebgott, A.; Kustner, T.; Strohmeier, H.; Hepp, T.; Mangold, P.; Martirosian, P.; Bamberg, F.; Nikolaou, K.; Yang, B. ImFEATbox: A toolbox for extraction and analysis of medical image features. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1881–1893. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Shiri, I.; Rahmim, A.; Ghaffarian, P.; Geramifar, P.; Abdollahi, H.; Bitarafan-Rajabi, A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: Multi-scanner phantom and patient studies. Eur. Radiol. 2017, 27, 4498–4509. [Google Scholar] [CrossRef]
- Martinez-Moller, A.; Souvatzoglou, M.; Delso, G.; Bundschuh, R.A.; Chefd’hotel, C.; Ziegler, S.I.; Navab, N.; Schwaiger, M.; Nekolla, S.G. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data. J. Nucl. Med. 2009, 50, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Bundesamt für Strahlenschutz. Bekanntmachung der Aktualisierten Diagnostischen Referenzwerte für Nuklearmedizinische Untersuchungen; Vom 15. Juni 2021; Bundesamt für Strahlenschutz: Salzgitter, Germany, 2021.
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Hilsdale, MI, USA, 1988. [Google Scholar]
- Gao, X.; Tham, I.W.K.; Yan, J. Quantitative accuracy of radiomic features of low-dose (18)F-FDG PET imaging. Transl. Cancer Res. 2020, 9, 4646–4655. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; Hatt, M.; Le Rest, C.C.; Le Pogam, A.; Corcos, L.; Visvikis, D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J. Nucl. Med. 2012, 53, 693–700. [Google Scholar] [CrossRef]
- Blanc-Durand, P.; Van Der Gucht, A.; Jreige, M.; Nicod-Lalonde, M.; Silva-Monteiro, M.; Prior, J.O.; Denys, A.; Depeursinge, A.; Schaefer, N. Signature of survival: A (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget 2018, 9, 4549–4558. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.E.; Le Rest, C.C.; Visvikis, D. Characterization of PET/CT images using texture analysis: The past, the present… any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Deleu, A.L.; Sathekge, M.J.; Maes, A.; De Spiegeleer, B.; Sathekge, M.; Van de Wiele, C. Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review. Biomedicines 2020, 8, 304. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.; Rausch, I.; Grahovac, M.; Hacker, M.; Beyer, T. Optimized Feature Extraction for Radiomics Analysis of (18)F-FDG PET Imaging. J. Nucl. Med. 2019, 60, 864–872. [Google Scholar] [CrossRef]
Order | Scale | Metric | No. | Texture Feature |
---|---|---|---|---|
First | Global | Histogram Indices | 1 | Variance |
2 | Skewness | |||
3 | Kurtosis | |||
Second | Local | Grey-level co-occurrence matrix (GLCM)/Grey-tone spatial dependency matrix (GTSDM) | 4 | Angular Second Moment/Energy |
5 | Contrast | |||
6 | Correlation | |||
7 | Inverse difference moment/homogeneity 2 | |||
8 | Sum average | |||
9 | Entropy | |||
10 | Difference variance | |||
11 | Dissimilarity | |||
Higher | Regional | Grey-level run-length matrix (GLRLM) | 12 | Short run emphasis |
13 | Long run emphasis | |||
14 | Grey-level non-uniformity | |||
15 | Run-length non-uniformity | |||
16 | Run percentage | |||
17 | Low grey-level run emphasis | |||
18 | High grey-level run emphasis | |||
25 | Short run low grey-level emphasis | |||
26 | Short run high grey-level emphasis | |||
27 | Long run low grey-level emphasis | |||
19 | Long run high grey-level emphasis | |||
20 | Grey-level variance | |||
21 | Run-length variance | |||
Neighbourhood Grey-tone difference matrix (NGTDM) | 38 | Coarseness | ||
39 | Contrast | |||
40 | Busyness | |||
41 | Complexity | |||
42 | Texture Strength | |||
Grey-level Size Zone Matrix (GLZSM) | 22 | Small zone size emphasis | ||
23 | Large zone size emphasis | |||
30 | Low grey-level zone size emphasis | |||
31 | High grey-level zone size emphasis | |||
32 | Small zone/Low grey-level emphasis | |||
33 | Small zone/High grey-level emphasis | |||
34 | Large zone/Low grey-level emphasis | |||
35 | Large zone/High grey-level emphasis | |||
24 | Grey-level non-uniformity | |||
28 | Zone size non-uniformity | |||
29 | Zone size percentage | |||
36 | Grey-level variance | |||
37 | Zone-size variance |
NEMA Phantom | Patient Study | |
---|---|---|
Matrix size | 344 × 344 × 128 | 256 × 256 × (418–709) |
Pixel size [mm2] | 2.8063 × 2.8063 | 2.8034 × 2.8034 |
Slice thickness [mm] | 2.03125 | 2.0313 |
Quantification level | 16 bit (65,536 grey levels) | |
Mask size [voxel] | 394 | VOI 1 (right liver lobe): 5866 ± 1676 VOI 2 (left liver lobe): 223 ± 57 |
NEMA Phantom | Right Liver Lobe | Left Liver Lobe | |||
---|---|---|---|---|---|
No. | Feature | Measured | Simulated | (VOI 1) | (VOI 2) |
First Order (histogram indices) | |||||
1 | Variance | - | - | - | - |
2 | Skewness | - | - | ✔ | ✔ |
3 | Kurtosis | - | - | - | - |
Second Order (GLCM) | |||||
4 | GLCM Energy | ✔ | ✔ | - | -/✔ * |
5 | GLCM Contrast | ✔ | ✔ | - | -/✔ * |
6 | GLCM Correlation | - | - | - | - |
7 | GLCM Homogeneity 2 | ✔ | ✔ | ✔ | ✔ |
8 | GLCM SumAverage | ✔ | ✔ | - | ✔ |
9 | GLCM Entropy | ✔ | ✔ | ✔ | ✔ |
10 | GLCM Variance | ✔ | ✔ | - | - |
11 | GLCM Dissimilarity | ✔ | ✔ | - | -/✔ * |
Higher order | |||||
12 | GLRLM SRE | ✔ | ✔ | ✔ | ✔ |
13 | GLRLM LRE | ✔ | ✔ | ✔ | ✔ |
14 | GLRLM GLN | ✔ | ✔ | - | -/✔ * |
15 | GLRLM RLN | ✔ | ✔ | ✔ | ✔ |
16 | GLRLM RP | ✔ | ✔ | ✔ | ✔ |
17 | GLRLM LGRE | - | - | - | - |
18 | GLRLM HGRE | ✔ | ✔ | - | - |
19 | GLRLM LRHGE | ✔ (p = 0.02) | - (p = 0.08) | ✔ | - |
20 | GLRLM GLV | ✔ | ✔ | -/✔ * | - |
21 | GLRLM RLV | ✔ (p = 0.01)/✔ | - (p = 0.06)/- | -/✔ * | -/✔ * |
22 | GLZSM SZE | ✔ | ✔ | ✔ | ✔ |
23 | GLZSM LZE | ✔/✔ | ✔/✔ | -/✔ * | ✔/✔ |
24 | GLZSM GLN | ✔ | ✔ | ✔ | ✔ |
25 | GLRLM SRLGE | - | - | ✔ | - |
26 | GLRLM SRHGE | ✔ | ✔ | - | ✔ |
27 | GLRLM LRLGE | - | - | -/✔ * | - |
28 | GLZSM ZSN | ✔ | ✔ | ✔ | ✔ |
29 | GLZSM ZP | ✔ | ✔ | ✔ | ✔ |
30 | GLZSM LGZE | - (p = 0.24) | ✔ (p = 0.03) | -/✔ * | - |
31 | GLZSM HGZE | ✔ | ✔ | - | ✔ |
32 | GLZSM SZLGE | - | - | -/✔ * | - |
33 | GLZSM SZHGE | ✔ | ✔ | ✔ | ✔ |
34 | GLZSM LZLGE | - | - | - | - |
35 | GLZSM LZHGE | - | - | -/✔ * | - |
36 | GLZSM GLV | - (p = 0.05)/✔ * | ✔ (p = 0.01)/✔ | ✔/✔ | ✔/✔ |
37 | GLZSM ZSV | - (p = 0.12) | ✔ (p < 0.01) | ✔ | ✔ |
38 | NGTDM Coarseness | ✔/✔(p = 0.01) * | ✔/- (p = 0.06) * | ✔/✔ | -/✔ * |
39 | NGTDM Contrast | ✔ | ✔ | - | - |
40 41 | NGTDM Busyness | ✔ | ✔ | - | - |
41 | NGTDM Complexity | ✔ | ✔ | - | -/✔ * |
42 | NGTDM Strength | ✔ (p = 0.03)/✔ | - (p = 0.09)/✔ * | ✔/✔ | ✔/✔ |
No. | Texture Feature | Sum COV (VOI 1 + VOI 2) |
---|---|---|
7 | Inverse difference moment/Homogeneity 2 | 44 |
28 | Zone size non-uniformity | 61 |
22 | Small zone size emphasis | 62 |
42 | Texture Strength | 73 |
15 | Run-length non-uniformity | 93 |
12 | Short run emphasis | 94 |
16 | Run percentage | 107 |
23 | Large zone size emphasis | 113 |
13 | Long run emphasis | 134 |
24 | Grey-level non-uniformity | 166 |
9 | Entropy | 173 |
36 | Grey-level variance | 238 |
29 | Zone size percentage | 820 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, J.; Seith, F.; Estler, A.; Nikolaou, K.; Schmidt, H.; la Fougère, C.; Küstner, T. Impact of Tracer Dose Reduction in [18 F]-Labelled Fluorodeoxyglucose-Positron Emission Tomography ([18 F]-FDG)-PET) on Texture Features and Histogram Indices: A Study in Homogeneous Tissues of Phantom and Patient. Tomography 2023, 9, 1799-1810. https://doi.org/10.3390/tomography9050143
Vogel J, Seith F, Estler A, Nikolaou K, Schmidt H, la Fougère C, Küstner T. Impact of Tracer Dose Reduction in [18 F]-Labelled Fluorodeoxyglucose-Positron Emission Tomography ([18 F]-FDG)-PET) on Texture Features and Histogram Indices: A Study in Homogeneous Tissues of Phantom and Patient. Tomography. 2023; 9(5):1799-1810. https://doi.org/10.3390/tomography9050143
Chicago/Turabian StyleVogel, Jonas, Ferdinand Seith, Arne Estler, Konstantin Nikolaou, Holger Schmidt, Christian la Fougère, and Thomas Küstner. 2023. "Impact of Tracer Dose Reduction in [18 F]-Labelled Fluorodeoxyglucose-Positron Emission Tomography ([18 F]-FDG)-PET) on Texture Features and Histogram Indices: A Study in Homogeneous Tissues of Phantom and Patient" Tomography 9, no. 5: 1799-1810. https://doi.org/10.3390/tomography9050143
APA StyleVogel, J., Seith, F., Estler, A., Nikolaou, K., Schmidt, H., la Fougère, C., & Küstner, T. (2023). Impact of Tracer Dose Reduction in [18 F]-Labelled Fluorodeoxyglucose-Positron Emission Tomography ([18 F]-FDG)-PET) on Texture Features and Histogram Indices: A Study in Homogeneous Tissues of Phantom and Patient. Tomography, 9(5), 1799-1810. https://doi.org/10.3390/tomography9050143