Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?—A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Data Acquisition
2.2. Search Strategy
2.3. Review Process
2.4. Quality Assessment
- Type 1: The paper explicitly discusses or uses an established scoring tool to make their diagnosis;
- Type 2: The paper is improving a current scoring tool or diagnostic criteria;
- Type 3: The paper is working towards making an original scoring tool or establishing specific criteria for diagnosis;
- Type 4: These papers show that imaging was used for diagnosis; however, since they do not provide insight into how to identify vasculitis and/or mimics from imaging, it is not relevant to our research question.
3. Results
4. Discussion
4.1. Mallek and Calabrese
4.2. Other Diagnostic Modalities
4.3. Reversible Cerebral Vasoconstriction Syndromes (RCVS)
4.4. An Approach to Diagnosis
4.5. AI/ML
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation: | Definition: |
AI/ML | Artificial intelligence/machine learning |
AIS | Area of increased signal |
AQP4-IgG | Anti-aquaporin-4 immunoglobulin G |
CA | Conventional angiography |
CNS | Central nervous system |
CSF | Cerebrospinal fluid |
cPACNS | Childhood primary angiitis of the central nervous system |
DIS | Dissemination in space |
HRVWI | High-resolution vessel wall imaging |
IgG | Immunoglobulin G |
LETM | Longitudinally extensive transverse myelitis |
MRA | Magnetic resonance angiography |
MRI | Magnetic resonance imaging |
MS | Multiple sclerosis |
NMO | Neuromyelitis optica |
NMOSD | Neuromyelitis optica spectrum disorder |
PACNS | Primary angiitis of the central nervous system |
PCNSV | Primary central nervous system vasculitis |
RCT | Randomized control trial |
RCVS | Reversible cerebral vasoconstriction syndromes |
SVV | Small-vessel vasculitis |
Appendix A
Appendix A.1. Search String
- -
- English language
- -
- Remove duplicates
- -
- Year ≥ 2000
Appendix A.2. Mallek and Calabrese Criteria
- The presence of a newly acquired, unexplained neurologic deficit after thorough clinical and laboratory evaluation;
- Evidence of vasculitis within the central nervous system on cerebral angiography and/or brain biopsy;
- No evidence of systemic vasculitis or any other condition to which the angiographic or pathologic features could be secondary or that could mimic the process.
References
- Handel, A.E.; Giovannoni, G.; Ebers, G.C.; Ramagopalan, S.V. Environmental Factors and Their Timing in Adult-Onset Multiple Sclerosis. Nat. Rev. Neurol. 2010, 6, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of Multiple Sclerosis: Progress and Challenges. Lancet 2017, 389, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Fisniku, L.K.; Brex, P.A.; Altmann, D.R.; Miszkiel, K.A.; Benton, C.E.; Lanyon, R.; Thompson, A.J.; Miller, D.H. Disability and T2 MRI Lesions: A 20-Year Follow-up of Patients with Relapse Onset of Multiple Sclerosis. Brain 2008, 131, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Twilt, M.; Benseler, S.M. The Spectrum of CNS Vasculitis in Children and Adults. Nat. Rev. Rheumatol. 2012, 8, 97–107. [Google Scholar] [CrossRef]
- Hutchinson, C.; Elbers, J.; Halliday, W.; Branson, H.; Laughlin, S.; Armstrong, D.; Hawkins, C.; Westmacott, R.; Benseler, S.M. Treatment of Small Vessel Primary CNS Vasculitis in Children: An Open-Label Cohort Study. Lancet Neurol. 2010, 9, 1078–1084. [Google Scholar] [CrossRef]
- Abdel Razek, A.A.K.; Alvarez, H.; Bagg, S.; Refaat, S.; Castillo, M. Imaging Spectrum of CNS Vasculitis. RadioGraphics 2014, 34, 873–894. [Google Scholar] [CrossRef]
- Benseler, S.M.; deVeber, G.; Hawkins, C.; Schneider, R.; Tyrrell, P.N.; Aviv, R.I.; Armstrong, D.; Laxer, R.M.; Silverman, E.D. Angiography-Negative Primary Central Nervous System Vasculitis in Children: A Newly Recognized Inflammatory Central Nervous System Disease. Arthritis Rheum. 2005, 52, 2159–2167. [Google Scholar] [CrossRef]
- Ömerhoca, S.; Akkaş, S.Y.; İçen, N.K. Multiple Sclerosis: Diagnosis and Differential Diagnosis. Noro Psikiyatr. Ars. 2018, 55, S1–S9. [Google Scholar] [CrossRef]
- Eiden, S.; Beck, C.; Venhoff, N.; Elsheikh, S.; Ihorst, G.; Urbach, H.; Meckel, S. High-Resolution Contrast-Enhanced Vessel Wall Imaging in Patients with Suspected Cerebral Vasculitis: Prospective Comparison of Whole-Brain 3D T1 SPACE versus 2D T1 Black Blood MRI at 3 Tesla. PLoS ONE 2019, 14, e0213514. [Google Scholar] [CrossRef]
- Schuster, S.; Bachmann, H.; Thom, V.; Kaufmann-Buehler, A.-K.; Matschke, J.; Siemonsen, S.; Glatzel, M.; Fiehler, J.; Gerloff, C.; Magnus, T.; et al. Subtypes of Primary Angiitis of the CNS Identified by MRI Patterns Reflect the Size of Affected Vessels. J. Neurol. Neurosurg. Psychiatry 2017, 88, 749–755. [Google Scholar] [CrossRef]
- Alexander, M.D.; Yuan, C.; Rutman, A.; Tirschwell, D.L.; Palagallo, G.; Gandhi, D.; Sekhar, L.N.; Mossa-Basha, M. High-Resolution Intracranial Vessel Wall Imaging: Imaging beyond the Lumen. J. Neurol. Neurosurg. Psychiatry 2016, 87, 589. [Google Scholar] [CrossRef]
- Salvarani, C.; Brown, R.D.J.; Christianson, T.; Miller, D.V.; Giannini, C.; Huston, J.I.; Hunder, G.G. An Update of the Mayo Clinic Cohort of Patients with Adult Primary Central Nervous System Vasculitis: Description of 163 Patients. Medicine 2015, 94, e738. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.V.; de Menezes Jarry, V.; Castro, J.T.S.; Appenzeller, S.; Reis, F. Pediatric Inflammatory Demyelinating Disorders and Mimickers: How to Differentiate with MRI? Autoimmun. Rev. 2021, 20, 102801. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI Criteria for the Diagnosis of Multiple Sclerosis: MAGNIMS Consensus Guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef]
- Krupp, L.B.; Banwell, B.; Tenembaum, S. Consensus Definitions Proposed for Pediatric Multiple Sclerosis and Related Disorders. Neurology 2007, 68, S7. [Google Scholar] [CrossRef] [PubMed]
- Barkhof, F.; Filippi, M.; Miller, D.H.; Scheltens, P.; Campi, A.; Polman, C.H.; Comi, G.; Adèr, H.J.; Losseff, N.; Valk, J. Comparison of MRI Criteria at First Presentation to Predict Conversion to Clinically Definite Multiple Sclerosis. Brain 1997, 120, 2059–2069. [Google Scholar] [CrossRef]
- Paty, D.W.; Oger, J.J.F.; Kastrukoff, L.F.; Hashimoto, S.A.; Hooge, J.P.; Eisen, A.A.; Eisen, K.A.; Purves, S.J.; Low, M.D.; Brandejs, V.; et al. MRI in the Diagnosis of MS. Neurology 1988, 38, 180. [Google Scholar] [CrossRef]
- Calabrese, L.; Mallek, J. Primary Angiitis of the Central Nervous System. Report of 8 New Cases, Review of the Literature, and Proposal for Diagnostic Criteria. Medicine 1988, 67, 20–39. [Google Scholar] [CrossRef]
- Salvarani, C.; Brown, R.D., Jr.; Calamia, K.T.; Christianson, T.J.H.; Weigand, S.D.; Miller, D.V.; Giannini, C.; Meschia, J.F.; Huston III, J.; Hunder, G.G. Primary Central Nervous System Vasculitis: Analysis of 101 Patients. Ann. Neurol. 2007, 62, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.M. Diagnosis and Management of Isolated Angiitis of the Central Nervous System. Neurology 1989, 39, 167. [Google Scholar] [CrossRef] [PubMed]
- Alrawi, A.; Trobe, J.D.; Blaivas, M.; Musch, D.C. Brain Biopsy in Primary Angiitis of the Central Nervous System. Neurology 1999, 53, 858. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, J.; Hellmann, D.B. Primary Angiitis of the Central Nervous System. Arch. Neurol. 2009, 66, 704–709. [Google Scholar] [CrossRef]
- Benseler, S.M.; Silverman, E.; Aviv, R.I.; Schneider, R.; Armstrong, D.; Tyrrell, P.N.; deVeber, G. Primary Central Nervous System Vasculitis in Children. Arthritis Rheum. 2006, 54, 1291–1297. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Lennon, V.A.; Pittock, S.J.; Lucchinetti, C.F.; Weinshenker, B.G. Revised Diagnostic Criteria for Neuromyelitis Optica. Neurology 2006, 66, 1485. [Google Scholar] [CrossRef]
- Wingerchuk, D.; Banwell, B.; Bennett, J.; Cabre, P.; Carroll, W.; Chitnis, T.; De Seze, J.; Fujihara, K.; Greenberg, B.; Jacob, A.; et al. Revised Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders (S63.001). Neurology 2014, 82, S63.001. [Google Scholar]
- Calabrese, L.H.; Dodick, D.W.; Schwedt, T.J.; Singhal, A.B. Narrative Review: Reversible Cerebral Vasoconstriction Syndromes. Ann. Intern. Med. 2007, 146, 34–44. [Google Scholar] [CrossRef]
- Rocha, E.A.; Topcuoglu, M.A.; Silva, G.S.; Singhal, A.B. RCVS2 Score and Diagnostic Approach for Reversible Cerebral Vasoconstriction Syndrome. Neurology 2019, 92, e639. [Google Scholar] [CrossRef]
- Bien, C.G.; Granata, T.; Antozzi, C.; Cross, J.H.; Dulac, O.; Kurthen, M.; Lassmann, H.; Mantegazza, R.; Villemure, J.-G.; Spreafico, R.; et al. Pathogenesis, Diagnosis and Treatment of Rasmussen Encephalitis: A European Consensus Statement. Brain 2005, 128, 454–471. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Bennett, J.L.; Marignier, R.; Kim, H.J.; Brilot, F.; Flanagan, E.P.; Ramanathan, S.; Waters, P.; Tenembaum, S.; Graves, J.S.; et al. Diagnosis of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: International MOGAD Panel Proposed Criteria. Lancet Neurol. 2023, 22, 268–282. [Google Scholar] [CrossRef]
- Jarius, S.; Paul, F.; Aktas, O.; Asgari, N.; Dale, R.C.; de Seze, J.; Franciotta, D.; Fujihara, K.; Jacob, A.; Kim, H.J.; et al. MOG Encephalomyelitis: International Recommendations on Diagnosis and Antibody Testing. J. Neuroinflammation 2018, 15, 134. [Google Scholar] [CrossRef] [PubMed]
- López-Chiriboga, A.S.; Majed, M.; Fryer, J.; Dubey, D.; McKeon, A.; Flanagan, E.P.; Jitprapaikulsan, J.; Kothapalli, N.; Tillema, J.-M.; Chen, J.; et al. Association of MOG-IgG Serostatus With Relapse After Acute Disseminated Encephalomyelitis and Proposed Diagnostic Criteria for MOG-IgG–Associated Disorders. JAMA Neurol. 2018, 75, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.M.; Scolding, N.J. The Diagnosis of Primary Central Nervous System Vasculitis. Pract. Neurol. 2020, 20, 109. [Google Scholar] [CrossRef]
- Calabrese, L.H.; Furlan, A.J.; Gragg, L.A.; Ropos, T.J. Primary Angiitis of the Central Nervous System: Diagnostic Criteria and Clinical Approach. Clevel. Clin. J. Med. 1992, 59, 293. [Google Scholar] [CrossRef]
- Beuker, C.; Strunk, D.; Rawal, R.; Schmidt-Pogoda, A.; Werring, N.; Milles, L.; Ruck, T.; Wiendl, H.; Meuth, S.; Minnerup, H.; et al. Primary Angiitis of the CNS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1093. [Google Scholar] [CrossRef]
- Hajj-Ali, R.A.; Singhal, A.B.; Benseler, S.; Molloy, E.; Calabrese, L.H. Primary Angiitis of the CNS. Lancet Neurol. 2011, 10, 561–572. [Google Scholar] [CrossRef]
- Hajj-Ali, R.A. Primary Angiitis of the Central Nervous System: Differential Diagnosis and Treatment. Best Pract. Res. Clin. Rheumatol. 2010, 24, 413–426. [Google Scholar] [CrossRef]
- Stone, J.; Pomper, M.; Roubenoff, R.; Miller, T.; Hellmann, D. Sensitivities of Noninvasive Tests for Central Nervous System Vasculitis: A Comparison of Lumbar Puncture, Computed Tomography, and Magnetic Resonance Imaging. J. Rheumatol. 1994, 21, 1277–1282. [Google Scholar]
- Cappelen-Smith, C.; Calic, Z.; Cordato, D. Reversible Cerebral Vasoconstriction Syndrome: Recognition and Treatment. Curr. Treat. Options Neurol. 2017, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Deb-Chatterji, M.; Schuster, S.; Haeussler, V.; Gerloff, C.; Thomalla, G.; Magnus, T. Primary Angiitis of the Central Nervous System: New Potential Imaging Techniques and Biomarkers in Blood and Cerebrospinal Fluid. Front. Neurol. 2019, 10, 568. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Kumar, P.N.; Sharma, D.P.; Kesavadas, C.; Sreedharan, S.E.; Prasad, B.A.; Sylaja, P. High-Resolution Vessel Wall Imaging in Primary Angiitis of Central Nervous System. Ann. Indian Acad. Neurol. 2021, 24, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Ducros, A.; Boukobza, M.; Porcher, R.; Sarov, M.; Valade, D.; Bousser, M.-G. The Clinical and Radiological Spectrum of Reversible Cerebral Vasoconstriction Syndrome. A Prospective Series of 67 Patients. Brain 2007, 130, 3091–3101. [Google Scholar] [CrossRef] [PubMed]
- Beuker, C.; Schmidt, A.; Strunk, D.; Sporns, P.B.; Wiendl, H.; Meuth, S.G.; Minnerup, J. Primary Angiitis of the Central Nervous System: Diagnosis and Treatment. Ther. Adv. Neurol. Disord. 2018, 11, 1756286418785071. [Google Scholar] [CrossRef]
- Kyono, T.; Gilbert, F.J.; van der Schaar, M. Improving Workflow Efficiency for Mammography Using Machine Learning. J. Am. Coll. Radiol. 2020, 17, 56–63. [Google Scholar] [CrossRef]
- Wang, S.; Summers, R.M. Machine Learning and Radiology. Med. Image Anal. 2012, 16, 933–951. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Cannistraro, R.J.; Badi, M.; Eidelman, B.H.; Dickson, D.W.; Middlebrooks, E.H.; Meschia, J.F. Meschia CNS Small Vessel Disease. Neurology 2019, 92, 1146. [Google Scholar] [CrossRef]
- Jeong, A.; Oleske, D.M.; Holman, J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature. J. Child Neurol. 2019, 34, 705–712. [Google Scholar] [CrossRef]
- Sattar, A.; Manousakis, G.; Jensen, M.B. Systematic Review of Reversible Cerebral Vasoconstriction Syndrome. Expert Rev. Cardiovasc. Ther. 2010, 8, 1417–1421. [Google Scholar] [CrossRef]
- Krawczyk, M.; Barra, L.J.; Sposato, L.A.; Mandzia, J.L. Primary CNS Vasculitis: A Systematic Review on Clinical Characteristics Associated with Abnormal Biopsy and Angiography. Autoimmun. Rev. 2021, 20, 102714. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Sharma, D.; Gotlieb, N.; Xu, W.; Bhat, M. Application of Machine Learning in Liver Transplantation: A Review. Hepatol. Int. 2022, 16, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Anzalone, N.; Storelli, L.; Del Poggio, A.; Cacciaguerra, L.; Manfredi, A.A.; Meani, A.; Filippi, M. Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investig. Radiol. 2021, 56, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the Accuracy of Medical Diagnosis with Causal Machine Learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef]
- Semigran, H.L.; Levine, D.M.; Nundy, S.; Mehrotra, A. Comparison of Physician and Computer Diagnostic Accuracy. JAMA Intern. Med. 2016, 176, 1860–1861. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef]
Disease | Criteria Name | Year Published | Population | Criteria Variable | Assessment |
---|---|---|---|---|---|
Multiple Sclerosis | McDonald [15] | 2010, revised in 2017 | Adults | Imaging, clinical | The McDonald criteria considers dissemination in time and dissemination in space (DIS). Dissemination in space can be demonstrated by one or more T2-hyperintense lesions present in two out of four following areas:
|
MAGNIMS Criteria [17] | 2016 | Adults | Imaging | DIS can be demonstrated by the involvement of at least two out of five areas of the CNS as follows:
| |
IPMS Criteria [18] | 2007 | Pediatric and Adult | Imaging, clinical |
| |
Barkhof Criteria [19] | 1997 | Adults | Imaging |
| |
Paty’s Criteria [20] | 1988 | Pediatric and Adults | Imaging |
| |
PACNS | Calabrese and Mallek Criteria [21] | 1988 | Adults | Imaging, clinical |
|
Salvarani et al., [22] | 2007 | Adults | Imaging, clinical |
| |
Moore et al. [23] | 1989 | Adults | Imaging, clinical |
| |
Alrawi et al. [24] | 1999 | Adults | Tissue |
| |
Birnbaum et al. [25] | 2009 | Adults | Imaging, clinical |
| |
cPACNS | Besneler et al. [26] | 2006 | Pediatric | Imaging, clinical |
|
Neuromyelitis Optica (NMO) | Wingerchuk’s Criteria (AQP4 Ab-negative NMO) [27] | 2006 | Adults | Imaging |
|
Wingerchuk et al. Revised Criteria [28] | 2014 | Adults | Imaging, clinical | NMOSD with AQP4-IgG
| |
Reversible Cerebral Vasoconstriction Syndromes (RCVS) | Calabrese et al. Criteria [29] | 2007 | Adults | Imaging, clinical |
|
Rocha et al. RCVS2 criteria [30] | 2019 | Adults | Imaging, clinical | Criteria (points)
Score ≤ 2 high sensitivity and specificity for excluding RCVS | |
Rasmussen Encephalitis | Bien et al. [31] | 2005 | Adults | Imaging, clinical |
|
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) | 2023 | Banwell et al. [32] | Adults | Imaging, clinical |
|
2018 | Jarius et al. [33] | Adults | Imaging, clinical | MOGAD should be diagnosed in all patients who meet all of the following criteria:
| |
2018 | López-Chiriboga et al. [34] | Adults | Imaging, clinical |
| |
Primary CNS Vasculitis | 2019 | Rice and Scolding [35] | Adults | Imaging, clinical | Proposed criteria for the diagnosis of central nervous system (CNS) vasculitis:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damer, A.; Chaudry, E.; Eftekhari, D.; Benseler, S.M.; Safi, F.; Aviv, R.I.; Tyrrell, P.N. Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?—A Scoping Review. Tomography 2023, 9, 1811-1828. https://doi.org/10.3390/tomography9050144
Damer A, Chaudry E, Eftekhari D, Benseler SM, Safi F, Aviv RI, Tyrrell PN. Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?—A Scoping Review. Tomography. 2023; 9(5):1811-1828. https://doi.org/10.3390/tomography9050144
Chicago/Turabian StyleDamer, Alameen, Emaan Chaudry, Daniel Eftekhari, Susanne M. Benseler, Frozan Safi, Richard I. Aviv, and Pascal N. Tyrrell. 2023. "Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?—A Scoping Review" Tomography 9, no. 5: 1811-1828. https://doi.org/10.3390/tomography9050144
APA StyleDamer, A., Chaudry, E., Eftekhari, D., Benseler, S. M., Safi, F., Aviv, R. I., & Tyrrell, P. N. (2023). Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?—A Scoping Review. Tomography, 9(5), 1811-1828. https://doi.org/10.3390/tomography9050144