New Frontiers in Oncological Imaging
Author Contributions
Conflicts of Interest
References
- Ho, D.; Quake, S.R.; McCabe, E.R.B.; Chng, W.J.; Chow, E.K.; Ding, X.; Gelb, B.D.; Ginsburg, G.S.; Hassenstab, J.; Ho, C.-M.; et al. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020, 38, 497–518. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, R.; Shah, A.D.; Akin, O.; Do, R.K.G.; Konar, A.S.; Hatzoglou, V.; Mahmood, U.; Lee, N.; Wong, R.J.; Banerjee, S.; et al. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers 2023, 15, 2573. [Google Scholar] [CrossRef] [PubMed]
- Crimì, F.; Vernuccio, F.; Cabrelle, G.; Zanon, C.; Pepe, A.; Quaia, E. Tumor Diagnosis and Treatment: Imaging Assessment. Tomography 2022, 8, 1463–1465. [Google Scholar] [CrossRef] [PubMed]
- Sauck, A.; Keller, I.; Hainc, N.; Pfofe, D.; Najafi, A.; John, H.; Hohmann, J. Prostate Cancer Detection with MpMRI According to PI-RADS v2 Compared with Systematic MRI/TRUS-Fusion Biopsy: A Prospective Study. Tomography 2022, 8, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Ladbury, C.; Amini, A.; Govindarajan, A.; Mambetsariev, I.; Raz, D.J.; Massarelli, E.; Williams, T.; Rodin, A.; Salgia, R. Integration of Artificial Intelligence in Lung Cancer: Rise of the Machine. Cell Rep. Med. 2023, 4, 100933. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, J.; Tan, G.X.V.; Fernandes, M.C.; Yildirim, O.; Sims, J.A.; de Arimateia Batista Araujo-Filho, J.; de M. Machado, F.A.; Assuncao-Jr, A.N.; Nomura, C.H.; Horvat, N. Rectal MRI Radiomics for Predicting Pathological Complete Response: Where We Are. Clin. Imag. 2022, 82, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Crimì, F.; Zanon, C.; Cabrelle, G.; Luong, K.D.; Albertoni, L.; Bao, Q.R.; Borsetto, M.; Baratella, E.; Capelli, G.; Spolverato, G.; et al. Contrast-Enhanced CT Texture Analysis in Colon Cancer: Correlation with Genetic Markers. Tomography 2022, 8, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Ince, S.; Itani, M.; Henke, L.E.; Smith, R.K.; Wise, P.E.; Mutch, M.G.; Glasgow, S.C.; Silviera, M.L.; Pedersen, K.S.; Hunt, S.R.; et al. FDG-PET/MRI for Nonoperative Management of Rectal Cancer: A Prospective Pilot Study. Tomography 2022, 8, 2723–2734. [Google Scholar] [CrossRef] [PubMed]
- Bodapati, S.; Abraham, P.; Chen, A.; Guilbault, D.; McDonald, M.; Matro, J.; Shatsky, R.; Obrzut, S. 18F-FES PET/CT Improves the Detection of Intraorbital Metastases in Estrogen-Receptor-Positive Breast Cancer: Two Representative Cases and Review of the Literature. Tomography 2022, 8, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Tizianel, I.; Sabbadin, C.; Mian, C.; Scaroni, C.; Ceccato, F. Imaging or Adrenal Vein Sampling Approach in Primary Aldosteronism? A Patient-Based Approach. Tomography 2022, 8, 2735–2748. [Google Scholar] [CrossRef] [PubMed]
- Baratella, E.; Cernic, S.; Minelli, P.; Furlan, G.; Crimì, F.; Rocco, S.; Ruaro, B.; Cova, M.A. Accuracy of CT-Guided Core-Needle Biopsy in Diagnosis of Thoracic Lesions Suspicious for Primitive Malignancy of the Lung: A Five-Year Retrospective Analysis. Tomography 2022, 8, 2828–2838. [Google Scholar] [CrossRef] [PubMed]
- Crimì, F.; Bao, Q.R.; Mari, V.; Zanon, C.; Cabrelle, G.; Spolverato, G.; Pucciarelli, S.; Quaia, E. Predictors of Metastatic Lymph Nodes at Preoperative Staging CT in Gastric Adenocarcinoma. Tomography 2022, 8, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanon, C.; Crimì, A.; Quaia, E.; Crimì, F. New Frontiers in Oncological Imaging. Tomography 2023, 9, 1329-1331. https://doi.org/10.3390/tomography9040105
Zanon C, Crimì A, Quaia E, Crimì F. New Frontiers in Oncological Imaging. Tomography. 2023; 9(4):1329-1331. https://doi.org/10.3390/tomography9040105
Chicago/Turabian StyleZanon, Chiara, Alberto Crimì, Emilio Quaia, and Filippo Crimì. 2023. "New Frontiers in Oncological Imaging" Tomography 9, no. 4: 1329-1331. https://doi.org/10.3390/tomography9040105
APA StyleZanon, C., Crimì, A., Quaia, E., & Crimì, F. (2023). New Frontiers in Oncological Imaging. Tomography, 9(4), 1329-1331. https://doi.org/10.3390/tomography9040105