Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI
2.3. Image Reconstruction
2.4. Visual Assessment
2.5. Region-of-Interest Setup and Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humzah, M.D.; Soames, R.W. Human intervertebral disc: Structure and function. Anat. Rec. 1988, 220, 337–356. [Google Scholar] [CrossRef]
- Lundun, K.; Bolton, K. Structure and Function of the Lumbar Intervertebral Disk in Health, Aging, and Pathologic Conditions. J. Orthop. Sports Phys. Ther. 2001, 31, 291–303. [Google Scholar] [CrossRef]
- Scott, J.E.; Bosworth, T.R.; Cribb, A.M.; Taylor, J.R. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J. Anat. 1994, 184, 73–82. [Google Scholar]
- Pfirrmann, C.W.A.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Jensen, M.C.; Brant-Zawadzki, M.N.; Obuchowski, N.; Modic, M.T.; Malkasian, D.; Ross, J. Magnetic Resonance Imaging of the Lumbar Spine in People without Back Pain. N. Engl. J. Med. 1994, 331, 69–73. [Google Scholar] [CrossRef]
- Boden, S.D.; Davis, D.O.; Dina, T.S.; Patronas, N.J.; Wiesel, S.W. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J. Bone Jt. Surg. Am. 1990, 72, 403–408. [Google Scholar] [CrossRef]
- Wáng, Y.-X.J.; Zhang, Q.; Li, X.; Chen, W.; Ahuja, A.; Yuan, J. T1ρ magnetic resonance: Basic physics principles and applications in knee and intervertebral disc imaging. Quant. Imaging Med. Surg. 2015, 5, 858–885. [Google Scholar] [CrossRef]
- Antoniou, J.; Demers, C.N.; Beaudoin, G.; Goswami, T.; Mwale, F.; Aebi, M.; Alini, M. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn. Reson. Imaging 2004, 22, 963–972. [Google Scholar] [CrossRef]
- Noebauer-Huhmann, I.-M.; Juras, V.; Pfirrmann, C.W.A.; Szomolanyi, P.; Zbyn, S.; Messner, A.; Wimmer, J.; Weber, M.; Friedrich, K.M.; Stelzeneder, D.; et al. Sodium MR Imaging of the Lumbar Intervertebral Disk at 7 T: Correlation with T2 Mapping and Modified Pfirrmann Score at 3 T—Preliminary Results. Radiology 2012, 265, 555–564. [Google Scholar] [CrossRef]
- Li, X.; Abiko, K.; Sheriff, S.; Maudsley, A.A.; Urushibata, Y.; Ahn, S.; Tha, K.K. The distribution of major brain me-tabolites in normal adults: Short echo time whole-brain MR spectroscopic imaging findings. Metabolites 2022, 12, 543. [Google Scholar] [CrossRef]
- Filippi, C.G.; Duncan, C.T.; Watts, R.; Nickerson, J.P.; Gonyea, J.V.; Hipko, S.G.; Andrews, T. In Vivo Quantification of T1ρ in Lumbar Spine Disk Spaces at 3 T Using Parallel Transmission MRI. Am. J. Roentgenol. 2013, 201, W110–W116. [Google Scholar] [CrossRef]
- Chan, S.C.W.; Ferguson, S.J.; Gantenbein-Ritter, B. The effects of dynamic loading on the intervertebral disc. Eur. Spine J. 2011, 20, 1796–1812. [Google Scholar] [CrossRef]
- Martin, J.T.; Oldweiler, A.B.; Kosinski, A.S.; Spritzer, C.E.; Soher, B.J.; Erickson, M.M.; Goode, A.P.; DeFrate, L.E. Lumbar intervertebral disc diurnal deformations and T2 and T1rho relaxation times vary by spinal level and disc region. Eur. Spine J. 2022, 31, 746–754. [Google Scholar] [CrossRef]
- Ludescher, B.; Effelsberg, J.; Martirosian, P.; Steidle, G.; Markert, B.; Claussen, C.; Schick, F. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: An in vivo MRI study at 1.5 Tesla. J. Magn. Reson. Imaging 2008, 28, 252–257. [Google Scholar] [CrossRef]
- Liu, C.; Ran, J.; Morelli, J.N.; Hou, B.; Li, Y.; Li, X. Determinants of diurnal variation in lumbar intervertebral discs and paraspinal muscles: A prospective quantitative magnetic resonance imaging study. Eur. J. Radiol. 2023, 160, 110712. [Google Scholar] [CrossRef]
- Katsura, M.; Suzuki, Y.; Hata, J.; Hori, M.; Sasaki, H.; Akai, H.; Mori, H.; Kunimatsu, A.; Masutani, Y.; Aoki, S.; et al. Non-gaussian diffusion-weighted imaging for assessing diurnal changes in intervertebral disc microstructure. J. Magn. Reson. Imaging 2013, 40, 1208–1214. [Google Scholar] [CrossRef]
- Katscher, U.; van den Berg, C. Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications. NMR Biomed. 2017, 30, e3729. [Google Scholar] [CrossRef]
- Nugent, S.M.; Lovejoy, T.; Shull, S.; Dobscha, S.K.; Morasco, B.J. Associations of Pain Numeric Rating Scale Scores Collected during Usual Care with Research Administered Patient Reported Pain Outcomes. Pain Med. 2021, 22, 2235–2241. [Google Scholar] [CrossRef]
- Tha, K.K.; Kikuchi, Y.; Ishizaka, K.; Kamiyama, T.; Yoneyama, M.; Katscher, U. Higher electrical conductivity of liver parenchyma in fibrotic patients: Noninvasive assessment by electric properties tomography. J. Magn. Reson. Imaging 2021, 54, 1689–1691. [Google Scholar] [CrossRef]
- Shi, H.; Zhu, L.; Jiang, Z.-L.; Wu, X.-T. Radiological risk factors for recurrent lumbar disc herniation after percutaneous transforaminal endoscopic discectomy: A retrospective matched case-control study. Eur. Spine J. 2011, 30, 886–892. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Sawamura, D.; Narita, H.; Hashimoto, N.; Nakagawa, S.; Hamaguchi, H.; Fujima, N.; Kudo, K.; Shirato, H.; Tha, K.K. Microstructural Alterations in Bipolar and Major Depressive Disorders: A Diffusion Kurtosis Imaging Study. J. Magn. Reson. Imaging 2020, 52, 1187–1196. [Google Scholar] [CrossRef]
- Tha, K.K.; Katscher, U.; Yamaguchi, S.; Stehning, C.; Terasaka, S.; Fujima, N.; Kudo, K.; Kazumata, K.; Yamamoto, T.; Van Cauteren, M.; et al. Noninvasive electrical conductivity measurement by MRI: A test of its validity and the electrical conductivity characteristics of glioma. Eur. Radiol. 2018, 28, 348–355. [Google Scholar] [CrossRef]
- Tha, K.K.; Terae, S.; Yabe, I.; Miyamoto, T.; Soma, H.; Zaitsu, Y.; Fujima, N.; Kudo, K.; Sasaki, H.; Shirato, H. Microstructural White Matter Abnormalities of Multiple System Atrophy: In Vivo Topographic Illustration by Using Diffusion-Tensor MR Imaging. Radiology 2010, 255, 563–569. [Google Scholar] [CrossRef]
- Jentzsch, T.; Farshad-Amacker, N.A.; Mächler, P.; Farei-Campagna, J.; Hoch, A.; Rosskopf, A.B.; Werner, C.M.L. Diurnal T2-changes of the intervertebral discs of the entire spine and the influence of weightlifting. Sci. Rep. 2020, 10, 14395. [Google Scholar] [CrossRef]
- Sivan, S.; Neidlinger-Wilke, C.; Würtz, K.; Maroudas, A.; Urban, J.P. Diurnal fluid expression and activity of intervertebral disc cells. Biorheology 2006, 43, 283–291. [Google Scholar]
- Tha, K.K.; Terae, S.; Kudo, K.; Yamamoto, T.; Hamada, S.; Ogata, A.; Sasaki, H.; Miyasaka, K. Early detection of subacute sclerosing panencephalitis by high b-value diffusion-weighted imaging: A case report. J. Comput. Assist. Tomogr. 2006, 30, 126–130. [Google Scholar] [CrossRef]
- Wang, Y.-X.J.; Zhao, F.; Griffith, J.; Mok, G.S.P.; Leung, J.C.S.; Ahuja, A.T.; Yuan, J. T1rho and T2 relaxation times for lumbar disc degeneration: An in vivo comparative study at 3.0-Tesla MRI. Eur. Radiol. 2013, 23, 228–234. [Google Scholar] [CrossRef]
- Hatcher, C.C.; Collins, A.T.; Kim, S.Y.; Michel, L.C.; Mostertz, W.C., III; Ziemian, S.N.; Spritzer, C.E.; Guilak, F.; DeFrate, L.E.; McNultya, A.L. Relationship between T1rho magnetic resonance imaging, synovial fluid biomarkers, and the biochemical and biomechanical properties of cartilage. J. Biomech. 2017, 55, 18–26. [Google Scholar] [CrossRef]
- Paul, C.P.L.; Smit, T.H.; de Graaf, M.; Holewijn, R.M.; Bisschop, A.; van de Ven, P.M.; Mullender, M.G.; Helder, M.N.; Strijkers, G.J. Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content. PLoS ONE 2018, 13, e0191442. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.J.; Lee, J.; Nam, Y.; Kim, M.O.; Choi, N.; Kim, S.; Kim, D.H. Initial study on in vivo conductivity mapping of breast cancer using MRI. J. Magn. Reson. Imaging 2014, 42, 371–378. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoon, Y.C.; Kim, H.S.; Lee, J.; Kim, E.; Findeklee, C.; Katscher, U. In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography. Sci. Rep. 2022, 12, 73. [Google Scholar] [CrossRef]
- Roughley, P.J.; White, R.J.; Magny, M.C.; Liu, J.; Pearce, R.H.; Mort, J.S. Non-proteoglycan forms of biglycan increase with age in human articular cartilage. Biochem. J. 1993, 295, 421–426. [Google Scholar] [CrossRef]
- Cheung, K.M.C.; Karppinen, J.; Chan, D.; Ho, D.W.H.; Song, Y.Q.; Sham, P.; Cheah, K.S.E.; Leong, J.C.Y.; Luk, K.D.H. Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals. Spine 2009, 34, 934–940. [Google Scholar] [CrossRef]
- Chadha, M.; Srivastava, A.; Kumar, V.; Tandon, A. Disc Degeneration in Lumbar Spine of Asymptomatic Young Adults: A Descriptive Cross-Sectional Study. Indian J. Orthop. 2022, 56, 1083–1089. [Google Scholar] [CrossRef]
- Teraguchi, M.; Yoshimura, N.; Hashizume, H.; Muraki, S.; Yamada, H.; Minamide, A.; Oka, H.; Ishimoto, Y.; Nagata, K.; Kagotani, R.; et al. Prevalence and distribution of interver-tebral disc degeneration over the entire spine in a population-based cohort: The Wakayama Spine Study. Osteoarthr. Cartil. 2014, 22, 104–110. [Google Scholar] [CrossRef]
All IVDs | Individual IVD | ||||||
---|---|---|---|---|---|---|---|
L1/L2 | L2/L3 | L3/L4 | L4/L5 | L5/S1 | |||
IVD height index | Morning | 0.410 ± 0.071 | 0.341 ± 0.049 | 0.403 ± 0.062 | 0.449 ± 0.044 | 0.461 ± 0.059 | 0.410 ± 0.071 |
(0.25 − 0.55) | (0.28 − 0.47) | (0.27 − 0.54) | (0.37 − 0.53) | (0.30 − 0.55) | (0.25 − 0.51) | ||
Evening | 0.382 ± 0.073 | 0.313 ± 0.057 | 0.374 ± 0.066 | 0.422 ± 0.054 | 0.428 ± 0.051 | 0.371 ± 0.074 | |
(0.20 − 0.52) | (0.23 − 0.45) | (0.25 − 0.52) | (0.36 − 0.52) | (0.29 − 0.51) | (0.20 − 0.51) | ||
N | 85 | 17 | 17 | 17 | 17 | 17 | |
p | <0.001 | <0.001 | <0.006 | <0.010 | <0.001 | 0.001 | |
T1ρ[ms] | Morning | 59.069 ± 15.308 | 51.426 ± 8.338 | 61.095 ± 13.444 | 70.199 ± 16.177 | 63.409 ± 18.038 | 49.215 ± 8.467 |
(32.6 − 98.98) | (40.0 − 70.05) | (32.66 − 87.01) | (48.0 − 98.98) | (39.3 − 96.88) | (33.3 − 70.78) | ||
Evening | 56.292 ± 12.991 | 49.835 ± 10.490 | 59.103 ± 12.061 | 65.635 ± 11.930 | 58.293 ± 13.502 | 48.596 ± 9.657 | |
(32.7 − 90.19) | (32.7 − 69.47) | (33.8 − 74.57) | (43.3 − 86.13) | (36.7 − 90.19) | (36.57 − 70.42) | ||
N | 85 | 17 | 17 | 17 | 17 | 17 | |
p | 0.002 | 0.196 | 0.207 | 0.065 | 0.055 | 0.779 | |
ADC [×10−6 mm2/s] | Morning | 1784.633 ±124.527 | 1744.867 ±84.098 | 1810.641 ±116.277 | 1849.257 ±89.464 | 1776.74 1 ± 168.954 | 1738.196 ±127.040 |
(1328.54 − 2005.07) | (1633.64 − 1909.40) | (1507.33 − 2005.07) | (1689.26 − 1986.82) | (1328.54 − 1922.59) | (1345.55 − 1872.46) | ||
Evening | 1761.456 ±134.130 | 1728.474 ±63.042 | 1769.122 ±142.371 | 1824.274 ±103.646 | 1751.606 ±183.742 | 1733.224 ±142.604 | |
(1247.46 − 1972.04) | (1605.50 − 1849.15) | (1356.50 − 1926.90) | (1602.80 − 1972.04) | (1247.46 − 1897.12) | (1376.50 − 1912.06) | ||
N | 84 | 17 | 17 | 17 | 16 | 17 | |
p | <0.001 | 0.101 | 0.002 | 0.025 | 0.056 | 0.741 | |
σ [mS/m] | Morning | 374.696 ±123.957 | 333.879 ±155.562 | 365.987 ±93.528 | 440.309 ±98.890 | 375.274 ±96.922 | 361.091 ±149.300 |
(94.83 − 770.99) | (137.39 − 770.99) | (209.03 − 568.22) | (295.05 − 605.21) | (186.04 − 520.26) | (94.83 − 717.46) | ||
Evening | 401.607 ±113.978 | 348.211 ±81.711 | 396.742 ±108.578 | 420.614 ±99.149 | 440.663 ±98.776 | 403.005 ±160.339 | |
(108.88 − 777.75) | (241.14 − 492.45) | (177.25 − 556.25) | (182.58 − 609.89) | (299.25 − 585.64) | (147.30 − 661.28) | ||
N | 83 | 17 | 17 | 16 | 17 | 16 | |
p | 0.035 | 0.554 | 0.236 | 0.492 | 0.010 | 0.134 | |
No. of IVDs with Pfirrmann grade | Grade II | 7 | 2 | 2 | 2 | 1 | 0 |
Grade III | 70 | 14 | 14 | 15 | 12 | 15 | |
Grade IV | 8 | 1 | 1 | 0 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamaguchi, H.; Kitagawa, M.; Sakamoto, D.; Katscher, U.; Sudo, H.; Yamada, K.; Kudo, K.; Tha, K.K. Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation. Tomography 2023, 9, 1029-1040. https://doi.org/10.3390/tomography9030084
Hamaguchi H, Kitagawa M, Sakamoto D, Katscher U, Sudo H, Yamada K, Kudo K, Tha KK. Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation. Tomography. 2023; 9(3):1029-1040. https://doi.org/10.3390/tomography9030084
Chicago/Turabian StyleHamaguchi, Hiroyuki, Maho Kitagawa, Daiki Sakamoto, Ulrich Katscher, Hideki Sudo, Katsuhisa Yamada, Kohsuke Kudo, and Khin Khin Tha. 2023. "Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation" Tomography 9, no. 3: 1029-1040. https://doi.org/10.3390/tomography9030084
APA StyleHamaguchi, H., Kitagawa, M., Sakamoto, D., Katscher, U., Sudo, H., Yamada, K., Kudo, K., & Tha, K. K. (2023). Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation. Tomography, 9(3), 1029-1040. https://doi.org/10.3390/tomography9030084