Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain
Abstract
:1. Background
2. Imaging Methods for Assessing Cortical Brain Changes
- -
- Transcranial magnetic stimulation (TMS): Represents a painless and non-invasive technique for investigating the integrity and function of the corticospinal pathway and the primary motor cortex (M1). A magnetic body on M1 can depolarize the corticospinal cells by which, at a sufficient intensity, the stimulus produces a muscular response which is called motor evoked potential (MEP), which is recorded by electromyography electrodes. The PEM latency and amplitude are considered primary outcomes for corticospinal function testing [13].
- -
- Voxel-based morphometry: This brain morphological imaging method uses 3D magnetic resonance and allows the measurement of gray matter (GM) volume and morphological and structural brain changes detection. The intensity of these changes is shown to be negatively associated with the duration of pain, and the tendency in chronic LBP is toward a decrease in gray matter [14].
- -
- Functional magnetic resonance imaging (fMRI): It is a non-invasive medical examination. It is based on a powerful magnetic field for observing small changes which occur in brain (particularly, changes in the cerebral blood flow). The BOLD signal is an indirect marker of neural activity. It is used to examine the functional anatomy and perform a brain mapping (determining which part of the brain is controlling essential functions). The most evaluated areas using fMRI in patients with CLBP are the primary and secondary somatosensory cortex (S1 and S2), the anterior cingulate cortex (ACC), the prefrontal cortices and the thalamus [15].
- -
- Arterial spin labeling: This is the fMRI technique based on measuring cerebral perfusion (uses water in arterial blood as a free diffusion marker) non-invasively. It allows the absolute quantification of regional cerebral blood flow, whose image may be more accurate than BOLD and seems to be one of the most appropriate tools for studying chronic pain experience features [16].
- -
- Magnetic resonance spectroscopy: It is a non-invasive brain imaging method used for exploring metabolic concentrations in certain regions of the brain. It detects radiofrequency signals generated by the magnetic nuclear spins of magnetically active nuclei such as protons, phosphorus, carbon, and fluorine, which are excited by external magnetic fields. Some changes in the concentration of metabolites (N-acetyl-aspartate (NAA), creatine or glutamate) that have been found in several patients with chronic pain are represented, suggesting biochemical brain alterations in chronic pain [17].
- -
- FreeSurfer: A set of tools for neuroimaging analysis through algorithms to quantify the functional and structural properties of the brain. It automatically creates models of the macroscopically visible structures in the human brain, given a reasonable T1-weighted input image [18].
- -
- Diffusion-weighted (DWI) and diffusion tensor imaging (DTI): This magnetic resonance base allows the exploration of the micro and macro architecture of the brain, allowing the understanding of tissue injury in vivo, the development of white matter tracts and functional connectivity within the brain [19]. DWI can produce multiple informative metrics at each voxel, including fractional anisotropy (the degree of diffusion restriction to reflect white matter integrity), apparent diffusion coefficient (a measure of the magnitude of diffusion of water within a tissue, and can be used in monitoring brain infarctions), axial diffusivity and radial diffusivity (diffusion rates along the main and transverse diffusion directions respectively). Among the different signal models, DTI is one of the most popular [20]. DTI provides information about the covariance structure of the molecule diffusion displacement distribution, which is related to the directionality of the water diffusion process. Therefore, this method is characterized by high sensitivity to small macro and microstructural changes in white matter tissue. The trace images provide information about the magnitude of diffusion, and the shape of the diffusion tensor may change independently from the overall size or magnitude of the diffusion tensor [19].
3. Cortical Changes in Chronic Low Back Pain
3.1. Neurochemical Changes
3.2. Structural Changes
3.3. Functional Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knezevic, N.N.; Candido, K.D.; Vlaeyen, J.W.S.; Van Zundert, J.; Cohen, S.P. Low back pain. Lancet 2021, 398, 78–92. [Google Scholar] [CrossRef]
- Patrick, N.; Emanski, E.; Knaub, M.A. Acute and chronic low back pain. Med. Clin. N. Am. 2014, 98, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Parreira, P.; Maher, C.G.; Steffens, D.; Hancock, M.J.; Ferreira, M.L. Risk factors for low back pain and sciatica: An umbrella review. Spine J. 2018, 18, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Singh, V.; Falco, F.J.; Benyamin, R.M.; Hirsch, J.A. Epidemiology of low back pain in adults. Neuromodulation 2014, 17 (Suppl. 2), 3–10. [Google Scholar] [CrossRef]
- Apkarian, A.V.; Baliki, M.N.; Farmer, M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 2013, 26, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Castellamo-Tejedor, C.; Costa Requena, G.; Lusilla Palacios, P.; Barnola Serra, E. Calidad de vida en pacientes con dolor lumbar crónico. Apunt. Psicol. 2014, 32, 77–84. [Google Scholar]
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-specific low back pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef]
- Juniper, M.; Le, T.K.; Mladsi, D. The epidemiology, economic burden, and pharmacological treatment of chronic low back pain in France, Germany, Italy, Spain and the UK: A literature-based review. Expert Opin. Pharmacother. 2009, 10, 2581–2592. [Google Scholar] [CrossRef]
- Bosch, M.A.; Hollingworth, W.; Kinmonth, A.L.; Dixon, A.K. Evidence against the use of lumbar spine radiography for low back pain. Clin. Radiol. 2004, 59, 69–76. [Google Scholar] [CrossRef]
- Goubert, D.; Oosterwijck, J.V.; Meeus, M.; Danneels, L. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review. Pain Physician 2016, 19, E985–E1000. [Google Scholar]
- Casado Morales, M.I.; Moix Queraltó, J.; Vidal Fernández, J. Etiología, cronificación y tratamiento del dolor lumbar. Clínica Y Salud 2008, 19, 379–392. [Google Scholar]
- Peterson, J.C. The adaptive neuroplasticity hypothesis of behavioral maintenance. Neural Plast. 2012, 2012, 516364. [Google Scholar] [CrossRef] [PubMed]
- Massé-Alarie, H.; Schneider, C. Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives. Healthcare 2016, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Konno, S.I.; Sekiguchi, M. Association between brain and low back pain. J. Orthop. Sci. 2018, 23, 3–7. [Google Scholar] [CrossRef]
- Martucci, K.T.; Ng, P.; Mackey, S. Neuroimaging chronic pain: What have we learned and where are we going? Future Neurol. 2014, 9, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Wasan, A.D.; Loggia, M.L.; Chen, L.Q.; Napadow, V.; Kong, J.; Gollub, R.L. Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology 2011, 115, 364–374. [Google Scholar] [CrossRef]
- Rhodes, C.J. Magnetic resonance spectroscopy. Sci. Prog. 2017, 100, 241–292. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Huisman, T.A. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 2010, 10, S163–S171. [Google Scholar] [CrossRef]
- Grier, M.D.; Zimmermann, J.; Heilbronner, S.R. Estimating Brain Connectivity with Diffusion-Weighted Magnetic Resonance Imaging: Promise and Peril. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 846–854. [Google Scholar] [CrossRef]
- Crofford, L.J. Chronic Pain: Where the Body Meets the Brain. Trans. Am. Clin. Climatol. Assoc. 2015, 126, 167–183. [Google Scholar]
- Apkarian, A.V. Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density. J. Neurosci. 2004, 24, 10410–10415. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L.; Thacker, M.; Wand, B.M.; Parkitny, L.; O’Connell, N.E.; Luomajoki, H.; McAuley, J.H. Cortical changes in chronic low back pain: Current state of the art and implications for clinical practice. Man. Ther. 2010, 16, 15–20. [Google Scholar]
- Zhao, X.; Xu, M.; Jorgenson, K.; Kong, J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review. NeuroImage Clin. 2017, 13, 33–38. [Google Scholar] [CrossRef]
- Clark, J.B. N-acetyl aspartate: A marker for neuronal loss or mitochondrial dysfunction. Dev. Neurosci. 1998, 20, 271–276. [Google Scholar] [CrossRef]
- Gussew, A.; Rzanny, R.; Güllmar, D.; Scholle, H.C.; Reichenbach, J.R. 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 2011, 54, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Janetzki, L.; Gussew, A.; Malessa, R.; Habenicht, U.; Reichenbach, J.R.; Strauß, B.; Borys, C. Cerebral metabolic changes and chronic back pain: Study taking into consideration clinical and psychological parameters. Schmerz 2016, 30, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Clauw, D.J. Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci. Lett. 2012, 520, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lezama, R.; Bravo-Hernández, M.; Franco-Enzástiga, Ú.; De la Luz-Cuellar, Y.E.; Alvarado-Cervantes, N.S.; Raya-Tafolla, G.; Martínez-Zaldivar, L.A.; Vargas-Parada, A.; Rodríguez-Palma, E.J.; Vidal-Cantú, G.C.; et al. The role of spinal cord extrasynaptic α5 GABAA receptors in chronic pain. Physiol. Rep. 2021, 9, e14984. [Google Scholar] [CrossRef]
- Ivo, R.; Nicklas, A.; Dargel, J.; Sobottke, R.; Delank, K.-S.; Eysel, P.; Weber, B. Brain structural and psychometric alterations in chronic low back pain. Eur. Spine J. 2013, 22, 1958–1964. [Google Scholar] [CrossRef]
- Kong, J.; Spaeth, R.B.; Wey, H.Y.; Cheetham, A.; Cook, A.H.; Jensen, K.; Tan, Y.; Liu, H.; Wang, D.; Loggia, M.L.; et al. S1 is associated with chronic low back pain: A functional and structural MRI study. Mol. Pain 2013, 9, 43. [Google Scholar] [CrossRef]
- Ung, H.; Brown, J.E.; Johnson, K.A.; Younger, J.; Hush, J.; Mackey, S. Multivariate classification of structural MRI data detects chronic low back pain. Cereb. Cortex 2014, 24, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Teutsch, S.; Herken, W.; Bingel, U.; Schoell, E.; May, A. Changes in brain gray matter due to repetitive painful stimulation. Neuroimage 2008, 42, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Chehadi, O.; Rusu, A.C.; Konietzny, K.; Schulz, E.; Köster, O.; Schmidt-Wilcke, T.; Hasenbring, M. Brain structural alterations associated with dysfunctional cognitive control of pain in patients with low back pain. Eur. J. Pain 2018, 22, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Dolman, A.J.; Loggia, M.L.; Edwards, R.R.; Gollub, R.L.; Kong, J.; Napadow, V.; Wasan, A.D. Phenotype matters: The absence of a positive association between cortical thinning and chronic low back pain when controlling for salient clinical variables. Clin. J. Pain 2014, 30, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.P.; Yang, Q.X.; Tang, J.; Yang, H.J.; Bai, Z.L.; Zhang, Q.J.; Zahid, N. Brain gray matter abnormalities revealed by voxel-based morphometry in patients with chronic low back pain. Nan Fang Yi Ke Da Xue Xue Bao 2016, 36, 1041–1047. [Google Scholar]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef]
- Kregel, J.; Meeus, M.; Malfliet, A.; Dolphens, M.; Danneels, L.; Nijs, J.; Cagnie, B. Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin. Arthritis Rheum. 2015, 45, 229–237. [Google Scholar] [CrossRef]
- Matsuo, Y.; Kurata, J.; Sekiguchi, M.; Yoshida, K.; Nikaido, T.; Konno, S.I. Attenuation of cortical activity triggering descending pain inhibition in chronic low back pain patients: A functional magnetic resonance imaging study. J. Anesth. 2017, 31, 523–530. [Google Scholar] [CrossRef]
- Baliki, M.N.; Chialvo, D.R.; Geha, P.Y.; Levy, R.M.; Harden, R.N.; Parrish, T.; Apkarian, A.V. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 2006, 26, 12165–12173. [Google Scholar] [CrossRef]
- Hashmi, J.A.; Baliki, M.N.; Huang, L.; Baria, A.T.; Torbey, S.; Hermann, K.M.; Schnitzer, T.J.; Apkarian, A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 2013, 136 Pt 9, 2751–2768. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.; Kurata, J. Suppressed descending pain modulatory and enhanced sensorimotor networks in patients with chronic low back pain. J. Anesth. 2018, 32, 831–843. [Google Scholar] [CrossRef]
- Tsao, H.; Galea, M.P.; Hodges, P.W. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain 2008, 131 Pt 8, 2161–2171. [Google Scholar] [CrossRef]
- Čeko, M.; Shir, Y.; Ouellet, J.A.; Ware, M.A.; Stone, L.S.; Seminowicz, D.A. Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment. Hum. Brain Mapp. 2015, 36, 2075–2092. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Qiu, Q.; Zhan, H.; Wu, W. Changes in Empathy in Patients with Chronic Low Back Pain: A Structural-Functional Magnetic Resonance Imaging Study. Front. Hum. Neurosci. 2020, 14, 326. [Google Scholar] [CrossRef]
- Mao, C.P.; Wilson, G.; Cao, J.; Meshberg, N.; Huang, Y.; Kong, J. Abnormal Anatomical and Functional Connectivity of the Thalamo-sensorimotor Circuit in Chronic Low Back Pain: Resting-state Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Study. Neuroscience 2022, 487, 143–154. [Google Scholar] [CrossRef]
- Massé-Alarie, H.; Schneider, C. Cerebral reorganization in chronic low back pain and neurostimulation to improve motor control. Neurophysiol. Clin. 2011, 41, 51–60. [Google Scholar] [CrossRef]
- Martinez-Heras, E.; Grussu, F.; Prados, F.; Solana, E.; Llufriu, S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin. Ultrasound CT MRI 2021, 42, 490–506. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medrano-Escalada, Y.; Plaza-Manzano, G.; Fernández-de-las-Peñas, C.; Valera-Calero, J.A. Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomography 2022, 8, 2153-2163. https://doi.org/10.3390/tomography8050180
Medrano-Escalada Y, Plaza-Manzano G, Fernández-de-las-Peñas C, Valera-Calero JA. Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomography. 2022; 8(5):2153-2163. https://doi.org/10.3390/tomography8050180
Chicago/Turabian StyleMedrano-Escalada, Yara, Gustavo Plaza-Manzano, César Fernández-de-las-Peñas, and Juan Antonio Valera-Calero. 2022. "Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain" Tomography 8, no. 5: 2153-2163. https://doi.org/10.3390/tomography8050180
APA StyleMedrano-Escalada, Y., Plaza-Manzano, G., Fernández-de-las-Peñas, C., & Valera-Calero, J. A. (2022). Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomography, 8(5), 2153-2163. https://doi.org/10.3390/tomography8050180