Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Metrics and CT Annotation
2.2. Semi-Supervised Learning
2.3. Improved Semantic Segmentation Model
2.4. D Volumetric Image Analysis
3. Statistical Analysis
4. Ethical Considerations
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, S.G.; Trope, M.; Blasetti, M.; Doghramji, L.; Parasher, A.; Glicksman, J.T.; Kennedy, D.W.; Thaler, E.R.; Cohen, N.A.; Palmer, J.N.; et al. Preoperative Lund-Mackay computed tomography score is associated with preoperative symptom severity and predicts quality-of-life outcome trajectories after sinus surgery. Int. Forum Allergy Rhinol. 2018, 8, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Thwin, M.; Weitzel, E.K.; McMains, K.C.; Athanasiadis, T.; Psaltis, A.; Field, J.; Wormald, P.J. Validating the use of report-derived Lund-MacKay scores. Am. J. Rhinol. Allergy 2009, 23, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Wabnitz, D.A.; Nair, S.; Wormald, P.J. Correlation between preoperative symptom scores, quality-of-life questionnaires, and staging with computed tomography in patients with chronic rhinosinusitis. Am. J. Rhinol. 2005, 19, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.H.; Gao, J.; Philpott, C. A systematic review to examine the relationship between objective and patient-reported outcome measures in sinonasal disorders: Recommendations for use in research and clinical practice. Int. Forum Allergy Rhinol. 2021, 11, 910–923. [Google Scholar] [CrossRef]
- Snidvongs, K.; Dalgorf, D.; Kalish, L.; Sacks, R.; Pratt, E.; Harvey, R.J. Modified Lund Mackay Postoperative Endoscopy Score for defining inflammatory burden in chronic rhinosinusitis. Rhinology 2014, 52, 53–59. [Google Scholar] [CrossRef]
- Garneau, J.; Ramirez, M.; Armato III, S.G.; Sensakovic, W.F.; Ford, M.K.; Poon, C.S.; Ginat, D.T.; Starkey, A.; Baroody, F.M.; Pinto, J.M. Computer-assisted staging of chronic rhinosinusitis correlates with symptoms. Int. Forum Allergy Rhinol. 2015, 5, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Pallanch, J.F.; Yu, L.; Delone, D.; Robb, R.; Holmes, D.R., III; Camp, J.; Edwards, P.; McCollough, C.H.; Ponikau, J.; Dearking, A.C.; et al. Three-dimensional volumetric computed tomographic scoring as an objective outcome measure for chronic rhinosinusitis: Clinical correlations and comparison to Lund-Mackay scoring. Int. Forum Allergy Rhinol. 2013, 3, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Jing, X.Y.; Zhu, X.; Chen, S.; Du, B.; Cai, Z.; He, Z.; Yue, D. Semi-Supervised Multi-View Deep Discriminant Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2496–2509. [Google Scholar] [CrossRef]
- Humphries, S.M.; Centeno, J.P.; Notary, A.M.; Gerow, J.; Cicchetti, G.; Katial, R.K.; Beswick, D.M.; Ramakrishnan, V.R.; Alam, R.; Lynch, D.A. Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network. Int. Forum Allergy Rhinol. 2020, 10, 1218–1225. [Google Scholar] [CrossRef]
- Soler, Z.M.; Jones, R.; Le, P.; Rudmik, L.; Mattos, J.L.; Nguyen, S.A.; Schlosser, R.J. Sino-Nasal outcome test-22 outcomes after sinus surgery: A systematic review and meta-analysis. Laryngoscope 2018, 128, 581–592. [Google Scholar] [CrossRef]
- Pacal, I.; Karaboga, D. A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 2021, 134, 104519. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, A.; Wang, W.; Liu, C. An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease. Sensors 2021, 21, 4182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhong, Y.; Yao, M.; Ma, Y.; Zhang, W.; Li, C.; Tao, Z.; Jiang, Q.; Yan, B. Automated segmentation of macular edema for the diagnosis of ocular disease using deep learning method. Sci. Rep. 2021, 11, 13392. [Google Scholar] [CrossRef] [PubMed]
- Dunnhofer, M.; Antico, M.; Sasazawa, F.; Takeda, Y.; Camps, S.; Martinel, N.; Micheloni, C.; Carneiro, G.; Fontanarosa, D. Siam-U-Net: Encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Med. Image Anal. 2020, 60, 101631. [Google Scholar] [CrossRef] [PubMed]
- Gang, L.; Haixuan, Z.; Linning, E.; Ling, Z.; Yu, L.; Juming, Z. Recognition of honeycomb lung in CT images based on improved MobileNet model. Med. Phys. 2021, 48, 4304–4315. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Liu, T.; Tao, D. Why ResNet Works? Residuals Generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362. [Google Scholar] [CrossRef] [Green Version]
- Gibelli, D.; Cellina, M.; Cappella, A.; Gibelli, S.; Panzeri, M.M.; Oliva, A.G.; Termine, G.; De Angelis, D.; Cattaneo, C.; Sforza, C. An innovative 3D-3D superimposition for assessing anatomical uniqueness of frontal sinuses through segmentation on CT scans. Int. J. Leg. Med. 2019, 133, 1159–1165. [Google Scholar] [CrossRef]
- Lim, S.; Ramirez, M.V.; Garneau, J.C.; Ford, M.K.; McKeough, K.; Ginat, D.T.; Baroody, F.M.; Armato III, S.G.; Pinto, J.M. Three-dimensional image analysis for staging chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 1052–1057. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.; Yu, D.; Xiong, T.; Zhao, H.; Xue, H.; Liang, W.B.; Deng, Z.H.; Zhang, L. Computer-aided superimposition of the frontal sinus via 3D reconstruction for comparative forensic identification. Int. J. Leg. Med. 2021, 135, 1993–2001. [Google Scholar] [CrossRef]
- Wanzeler, A.M.V.; Alves-Júnior, S.M.; Ayres, L.; da Costa Prestes, M.C.; Gomes, J.T.; Tuji, F.M. Sex estimation using paranasal sinus discriminant analysis: A new approach via cone beam computerized tomography volume analysis. Int. J. Leg. Med. 2019, 133, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Przystańska, A.; Rewekant, A.; Sroka, A.; Gedrange, T.; Ekkert, M.; Jończyk-Potoczna, K.; Czajka-Jakubowska, A. Sexual dimorphism of maxillary sinuses in children and adolescents—A retrospective CT study. Ann. Anat. 2020, 229, 151437. [Google Scholar] [CrossRef] [PubMed]
- Ariji, Y.; Kuroki, T.; Moriguchi, S.; Ariji, E.; Kanda, S. Age changes in the volume of the human maxillary sinus: A study using computed tomography. Dentomaxillofacial Radiol. 1994, 23, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Emirzeoglu, M.; Sahin, B.; Bilgic, S.; Celebi, M.; Uzun, A. Volumetric evaluation of the paranasal sinuses in normal subjects using computer tomography images: A stereological study. Auris Nasus Larynx 2007, 34, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Likness, M.M.; Pallanch, J.F.; Sherris, D.A.; Kita, H.; Mashtare, T.L., Jr.; Ponikau, J.U. Computed tomography scans as an objective measure of disease severity in chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 2014, 150, 305–311. [Google Scholar] [CrossRef]
- Pirner, S.; Tingelhoff, K.; Wagner, I.; Westphal, R.; Rilk, M.; Wahl, F.M.; Bootz, F.; Eichhorn, K.W. CT-based manual segmentation and evaluation of paranasal sinuses. Eur. Arch. Otorhinolaryngol. 2009, 266, 507–518. [Google Scholar] [CrossRef]
- Singh, G.B.; Arora, N.; Tomar, S.; Kwatra, D.; Kumar, S. The role of sinus CT in surgical treatment decisions for chronic rhinosinusitis. Am. J. Otolaryngol. 2020, 41, 102729. [Google Scholar] [CrossRef]
- Hopkins, C.; Browne, J.P.; Slack, R.; Lund, V.; Brown, P. The Lund-Mackay staging system for chronic rhinosinusitis: How is it used and what does it predict? Otolaryngol. Head Neck Surg. 2007, 137, 555–561. [Google Scholar] [CrossRef]
Maxillary | AE | PE | Frontal | Sphenoid | |
---|---|---|---|---|---|
Left | 98% | 88.5% | 92.5% | 95% | 98.5% |
Right | 98.5% | 88.5% | 91% | 96% | 99.% |
Methods | PA | Dice | MIoU |
---|---|---|---|
UNet | 99.56% | 89.68% | 87.83% |
PSPNet | 99.31% | 87.52% | 85.78% |
DeepLab-V3 | 99.55% | 89.64% | 87.69% |
Ours | 99.75% | 91.57% | 89.43% |
Overall | Male | Female | p-Value | Male/Female | |
---|---|---|---|---|---|
Age | 47.88 ± 15.81 | 46.19 ± 16.35 | 51.16 ± 14.31 | 0.074 | 0.90 |
BH | 167.07 ± 8.93 | 171.06 ± 7.64 | 159.33 ± 5.54 | <0.01 | 1.07 |
BW | 66.70 ± 12.58 | 71.16 ± 11.1 | 58.06 ± 10.71 | <0.01 | 1.23 |
BMI | 23.81 ± 3.63 | 24.30 ± 3.35 | 22.87 ± 3.98 | 0.024 | 1.06 |
Max-L | 14.26 ± 6.12 | 15.39 ± 6.27 | 11.88 ± 5.06 | <0.01 | 1.39 |
Max-R | 14.39 ± 6.26 | 15.50 ± 6.45 | 12.04 ± 5.17 | 0.02 | 1.38 |
AE-L | 1.49 ± 0.67 | 1.60 ± 0.72 | 1.28 ± 0.52 | <0.01 | 1.25 |
AE-R | 1.49 ± 0.56 | 1.57 ± 0.57 | 1.34 ± 0.50 | <0.01 | 1.17 |
PE-L | 1.35 ± 0.58 | 1.47 ± 0.57 | 1.13 ± 0.54 | <0.01 | 1.30 |
PE-R | 1.40 ± 0.61 | 1.50 ± 0.61 | 1.21 ± 0.57 | <0.01 | 1.23 |
Fro-L | 1.42 ± 1.24 | 1.68 ± 1.30 | 0.91 ± 0.92 | <0.01 | 1.84 |
Fro-R | 1.34 ± 1.23 | 1.64 ± 1.33 | 0.77 ± 0.69 | <0.01 | 2.13 |
Sph-L | 3.32 ± 2.00 | 3.64 ± 2.04 | 2.70 ± 1.77 | <0.01 | 1.35 |
Sph-R | 3.43 ± 2.35 | 3.81 ± 2.47 | 2.70 ± 1.90 | <0.01 | 1.41 |
Left/Right | Overall | Male | Female |
---|---|---|---|
Max | 101.69 ± 19.76 | 102.24 ± 21.13 | 100.51 ± 16.95 |
AE | 99.46 ± 18.83 | 101.48 ± 18.62 | 95.53 ± 18.81 |
PE | 107.69 ± 21.76 | 107.01 ± 22.39 | 109.03 ± 20.31 |
Fro | 188.68 ± 61.06 | 180.19 ± 59.92 | 206.01 ± 63.06 |
Sph | 114.43 ± 69.47 | 113.70 ± 71.00 | 115.86 ± 67.11 |
Surgery (+) | Surgery (−) | |||||||
---|---|---|---|---|---|---|---|---|
TLMs | VMLMs | TLMs | VMLMs | |||||
Total | 14.9 ± 3.66 | 11.65 ± 4.23 | 7.38 ± 2.36 | 4.34 ± 1.73 | ||||
Left | Right | Left | Right | Left | Right | Left | Right | |
Max | 1.36 ± 0.72 | 1.56 ± 0.64 | 1.11 ± 0.72 | 1.32 ± 0.73 | 0.53 ± 0.67 | 0.56 ± 0.66 | 0.40 ± 0.50 | 0.37 ± 0.46 |
AE | 1.7 ± 0.46 | 1.64 ± 0.48 | 1.32 ± 0.44 | 1.33 ± 0.45 | 1.04 ± 0.20 | 1.06 ± 0.25 | 0.68 ± 0.19 | 0.69 ± 0.23 |
PE | 1.26 ± 0.49 | 1.22 ± 0.46 | 0.85 ± 0.50 | 0.77 ± 0.44 | 1.00 ± 0.29 | 1.02 ± 0.21 | 0.47 ± 0.25 | 0.47 ± 0.21 |
Fro | 1.3 ± 0.54 | 1.34 ± 0.59 | 0.94 ± 0.69 | 1.02 ± 0.71 | 0.67 ± 0.47 | 0.70 ± 0.50 | 0.27 ± 0.14 | 0.31 ± 0.21 |
Sph | 0.78 ± 0.65 | 0.66 ± 0.66 | 0.47 ± 0.52 | 0.44 ± 0.49 | 0.21 ± 0.41 | 0.23 ± 0.43 | 0.17 ± 0.10 | 0.17 ± 0.08 |
OMC | 0.88 ± 1 | 1.2 ± 0.99 | 0.88 ± 2.01 | 1.2 ± 1.98 | 0.19 ± 0.59 | 0.15 ± 0.53 | 0.19 ± 1.18 | 0.15 ± 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-F.J.; Liao, Y.-S.; Barman, J.; Liu, S.-C. Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring. Tomography 2022, 8, 718-729. https://doi.org/10.3390/tomography8020059
Kuo C-FJ, Liao Y-S, Barman J, Liu S-C. Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring. Tomography. 2022; 8(2):718-729. https://doi.org/10.3390/tomography8020059
Chicago/Turabian StyleKuo, Chung-Feng Jeffrey, Yu-Shu Liao, Jagadish Barman, and Shao-Cheng Liu. 2022. "Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring" Tomography 8, no. 2: 718-729. https://doi.org/10.3390/tomography8020059
APA StyleKuo, C. -F. J., Liao, Y. -S., Barman, J., & Liu, S. -C. (2022). Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring. Tomography, 8(2), 718-729. https://doi.org/10.3390/tomography8020059