Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction
Abstract
:1. Introduction
2. Radiomics Workflow
2.1. Feature Selection Techniques
2.2. Machine Learning Models for Response Prediction
3. MRI Radiomics Models for Response Prediction
3.1. Literature Review
3.2. Overview of MRI Radiomics Models for Response Prediction
3.2.1. Brain Cancer
3.2.2. Nasopharyngeal Carcinoma
3.2.3. Liver Cancer
3.2.4. Breast Cancer
3.2.5. Other Cancer Sites
4. Magnetic Resonance for Image-Guided Radiotherapy
Delta Radiomics and MRgRT Radiomics Models for Response Predictions
5. Quality of Radiomics Model
Effect of Magnetic Field on Radiomics Features
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under receiver operating Curve |
ADC | Apparent Diffusion Coefficient |
iAUC | incremental Area Under the Curve |
CE-T1WI | Contrast Enhanced T1-weighted image |
DCE | Dynamic Contrast Enhanced |
DWI | Diffusion Weighted Image |
DT | Decision Trees |
GLCM | Gray Level Co-occurrence Matrix |
GLDM | Gray Level Difference Matrix |
GLSZM | Gray Level Zone Matrix |
GLSZM | Gray Level Size Zone Matrix |
GLZLM | Gray Level Zone Length Matrix |
GLRLM | Gray Level Run Length Matrix |
HR | Hazard Ratio |
NTZ | Nitazoxanide |
ICC | Intraclass Correlation Coefficient |
IMRT | Intensity Modulated Radiation Therapy |
KNN | K Nearest Neighbor |
LASSO | Least Absolute Shrinkage and Selection Operator |
LC | Local Control |
LF | Local Failure |
LR | Logistic Regression |
MRI | Magnetic Resonance Imaging |
mRMR | maximum Relevance Minimum Redundancy |
MI | Mutual Information |
NB | Naïve Bayes |
NGTDM | Neighborhood Gray Tone Difference Matrix |
OS | Overall Survival |
PCC | Pearson Correlation Coefficient |
PFS | Progression-Free Survival |
RF | Random Forest |
ROC | Receivers Operating Curve |
SVM | Support Vector Machine |
T1WI | T1-Weighted Image |
T2WI | T2-Weighted Image |
wavelet-H | High pass filter |
wavelet-L | Low pass filter |
References
- Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- European Society of Radiology. Medical Imaging in Personalized Medicine: A White Paper of the Research Committee of the European Society of Radiology (ESR). Insights Imaging 2011, 2, 621–630. [Google Scholar] [CrossRef]
- Bushberg, J.T.; Boone, J.M. The Essential Physics of Medical Imaging; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 0781780578. [Google Scholar]
- Pope, W.B.; Lai, A.; Nghiemphu, P.; Mischel, P.; Cloughesy, T.F. MRI in Patients with High-Grade Gliomas Treated with Bevacizumab and Chemotherapy. Neurology 2006, 66, 1258–1260. [Google Scholar] [CrossRef]
- Hylton, N.; Blume, J.; Gatsonis, C.; Gomez, R.; Bernreuter, W.; Pisano, E.; Rosen, M.; Marques, H.; Esserman, L.; Schnall, M. MRI Tumor Volume for Predicting Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer: Findings from ACRIN 6657/CALGB 150007. J. Clin. Oncol. 2009, 27, 529. [Google Scholar] [CrossRef]
- Loo, C.E.; Straver, M.E.; Rodenhuis, S.; Muller, S.H.; Wesseling, J.; Vrancken Peeters, M.-J.T.F.D.; Gilhuijs, K.G.A. Magnetic Resonance Imaging Response Monitoring of Breast Cancer During Neoadjuvant Chemotherapy: Relevance of Breast Cancer Subtype. J. Clin. Oncol. 2011, 29, 660–666. [Google Scholar] [CrossRef]
- Ahdoot, M.; Wilbur, A.R.; Reese, S.E.; Lebastchi, A.H.; Mehralivand, S.; Gomella, P.T.; Bloom, J.; Gurram, S.; Siddiqui, M.; Pinsky, P.; et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020, 382, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Gregucci, F.; Pennell, R.T.; Nagar, H.; Golden, E.B.; Knisely, J.P.S.; Sanfilippo, N.J.; Formenti, S.C. MRI-LINAC: A Transformative Technology in Radiation Oncology. Front. Oncol. 2023, 13, 1117874. [Google Scholar] [CrossRef] [PubMed]
- Sim, A.J.; Hoffe, S.E.; Latifi, K.; Palm, R.F.; Feygelman, V.; Leuthold, S.; Dookhoo, M.; Dennett, M.; Rosenberg, S.A.; Frakes, J.M. A Practical Workflow for Magnetic Resonance-Guided Stereotactic Radiation Therapy to the Pancreas. Pract. Radiat. Oncol. 2023, 13, e45–e53. [Google Scholar] [CrossRef]
- Sandoval, M.L.; Youssef, I.; Latifi, K.; Grass, G.D.; Torres-Roca, J.; Rosenberg Stephen and Yamoah, K.; Johnstone, P.A. Non-Adaptive MR-Guided Radiotherapy for Prostate SBRT: Less, Equal Results. J. Clin. Med. 2021, 10, 3396. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Valentini, V.; Fuller, C.D.; Slotman, B.J. Editorial: Online Adaptive MR-Guided Radiotherapy. Front. Oncol. 2021, 11, 748685. [Google Scholar] [CrossRef]
- McGee, K.P.; Hwang, K.P.; Sullivan, D.C.; Kurhanewicz, J.; Hu, Y.; Wang, J.; Li, W.; Debbins, J.; Paulson, E.; Olsen, J.R.; et al. Magnetic Resonance Biomarkers in Radiation Oncology: The Report of AAPM Task Group 294. Med. Phys. 2021, 48, e697–e732. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.R.; Gillies, R.J. The Biological Meaning of Radiomic Features. Radiology 2021, 298, 505–516. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Cavalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting Cancer Outcomes with Radiomics and Artificial Intelligence in Radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image Biomarker Standardisation Initiative. arXiv 2016, arXiv:1612.07003. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Bivona, T.; Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Rios Velazquez, E.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains, B.; Lambin, P.; et al. Defining the Biological Basis of Radiomic Phenotypes in Lung Cancer. eLife 2017, 6, e23421. [Google Scholar] [CrossRef]
- Wang, J.H.; Wahid, K.A.; van Dijk, L.V.; Farahani, K.; Thompson, R.F.; Fuller, C.D. Radiomic Biomarkers of Tumor Immune Biology and Immunotherapy Response. Clin. Transl. Radiat. Oncol. 2021, 28, 97–115. [Google Scholar] [CrossRef]
- Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging Imaging and Genomics. Abdom. Radiol. 2019, 44, 1960–1984. [Google Scholar] [CrossRef]
- Tseng, H.H.; Luo, Y.; Ten Haken, R.K.; El Naqa, I. The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. Front. Oncol. 2018, 8, 266. [Google Scholar] [CrossRef] [PubMed]
- Shafiq-ul-Hassan, M.; Zhang, G.G.; Hunt, D.C.; Latifi, K.; Ullah, G.; Gillies, R.J.; Moros, E.G. Accounting for Reconstruction Kernel-Induced Variability in CT Radiomic Features Using Noise Power Spectra. J. Med. Imaging 2017, 5, 011013. [Google Scholar] [CrossRef] [PubMed]
- Shafiq-Ul-hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof, D.G.; Mackin, D.; et al. Intrinsic Dependencies of CT Radiomic Features on Voxel Size and Number of Gray Levels. Med. Phys. 2017, 44, 1050–1062. [Google Scholar] [CrossRef]
- Ericsson-Szecsenyi, R.; Zhang, G.; Redler, G.; Feygelman, V.; Rosenberg, S.; Latifi, K.; Ceberg, C.; Moros, E.G. Robustness Assessment of Images From a 0.35T Scanner of an Integrated MRI-Linac: Characterization of Radiomics Features in Phantom and Patient Data. Technol. Cancer Res. Treat. 2022, 21. [Google Scholar] [CrossRef] [PubMed]
- Panth, K.M.; Leijenaar, R.T.H.; Carvalho, S.; Lieuwes, N.G.; Yaromina, A.; Dubois, L.; Lambin, P. Is There a Causal Relationship between Genetic Changes and Radiomics-Based Image Features? An in Vivo Preclinical Experiment with Doxycycline Inducible GADD34 Tumor Cells. Radiother. Oncol. 2015, 116, 462–466. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef]
- Patel, M.; Zhan, J.; Natarajan, K.; Flintham, R.; Davies, N.; Sanghera, P.; Grist, J.; Duddalwar, V.; Peet, A.; Sawlani, V. Machine Learning-Based Radiomic Evaluation of Treatment Response Prediction in Glioblastoma. Clin. Radiol. 2021, 76, 628.e17–628.e27. [Google Scholar] [CrossRef]
- Ammari, S.; de Chou, R.S.; Assi, T.; Touat, M.; Chouzenoux, E.; Quillent, A.; Limkin, E.; Dercle, L.; Hadchiti, J.; Elhaik, M.; et al. Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab. Diagnostics 2021, 11, 1263. [Google Scholar] [CrossRef]
- Du, R.; Lee, V.H.; Yuan, H.; Lam, K.-O.; Pang, H.H.; Chen, Y.; Lam, E.Y.; Khong, P.-L.; Lee, A.W.; Kwong, D.L.; et al. Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study. Radiol. Artif. Intell. 2019, 1, e180075. [Google Scholar] [CrossRef]
- Chen, M.; Kong, C.; Qiao, E.; Chen, Y.; Chen, W.; Jiang, X.; Fang, S.; Zhang, D.; Chen, M.; Chen, W.; et al. Multi-Algorithms Analysis for Pre-Treatment Prediction of Response to Transarterial Chemoembolization in Hepatocellular Carcinoma on Multiphase MRI. Insights Imaging 2023, 14, 38. [Google Scholar] [CrossRef]
- Chen, S.; Shu, Z.; Li, Y.; Chen, B.; Tang, L.; Mo, W.; Shao, G.; Shao, F. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Front. Oncol. 2020, 10, 1410. [Google Scholar] [CrossRef] [PubMed]
- Jajodia, A.; Gupta, A.; Prosch, H.; Mayerhoefer, M.; Mitra, S.; Pasricha, S.; Mehta, A.; Puri, S.; Chaturvedi, A. Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer. Tomography 2021, 7, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, T.; Li, Q.; Bi, Q.; Wang, Y.; Luo, Y.; Feng, F.; Xiao, M.; Gu, Y.; Qiang, J.; et al. Development and Validation of MRI-Based Radiomics Model to Predict Recurrence Risk in Patients with Endometrial Cancer: A Multicenter Study. Eur. Radiol. 2023, 33, 5814–5824. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.M.; Weygand, J.; Keit, E.; Cruz-Chamorro, R.; Sandoval, M.L.; Oraiqat, I.M.; Andreozzi, J.; Redler, G.; Latifi, K.; Feygelman, V.; et al. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers 2023, 15, 2081. [Google Scholar] [CrossRef] [PubMed]
- Liney, G.P.; Whelan, B.; Oborn, B.; Barton, M.; Keall, P. MRI-Linear Accelerator Radiotherapy Systems. Clin. Oncol. 2018, 30, 686–691. [Google Scholar] [CrossRef]
- Rudra, S.; Malik, R.; Ranck, M.C.; Farrey, K.; Golden, D.W.; Hasselle, M.D.; Weichselbaum, R.R.; Salama, J.K. Stereotactic Body Radiation Therapy for Curative Treatment of Adrenal Metastases. Technol. Cancer Res. Treat. 2013, 12, 217–224. [Google Scholar] [CrossRef]
- Parikh, P.J.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Portelance, L.; et al. A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Magnetic Resonance-Guided on-Table Adaptive Therapy for Borderline Resectable and Locally Advanced Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 799–808. [Google Scholar] [CrossRef]
- Sandoval, M.L.; Sim, A.J.; Bryant, J.M.; Bhandari, M.; Wuthrick, E.J.; Perez, B.A.; Dilling, T.J.; Redler, G.; Andreozzi, J.; Nardella, L.; et al. MR-Guided SBRT/Hypofractionated RT for Metastatic and Primary Central and Ultracentral Lung Lesions. JTO Clin. Res. Rep. 2023, 4, 100488. [Google Scholar] [CrossRef]
- Raaymakers, B.W.; Lagendijk, J.J.W.; Overweg, J.; Kok, J.G.M.; Raaijmakers, A.J.E.; Kerkhof, E.M.; Van Der Put, R.W.; Meijsing, I.; Crijns, S.P.M.; Benedosso, F.; et al. Integrating a 1.5 T MRI Scanner with a 6 MV Accelerator: Proof of Concept. Phys. Med. Biol. 2009, 54, N229. [Google Scholar] [CrossRef]
- Mutic, S.; Dempsey, J.F. The ViewRay System: Magnetic Resonance-Guided and Controlled Radiotherapy. Semin. Radiat. Oncol. 2014, 24, 196–199. [Google Scholar] [CrossRef]
- Thorwarth, D.; Low, D.A. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front. Oncol. 2021, 11, 634507. [Google Scholar] [CrossRef] [PubMed]
- Klüter, S. Technical Design and Concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Kurz, C.; Buizza, G.; Landry, G.; Kamp, F.; Rabe, M.; Paganelli, C.; Baroni, G.; Reiner, M.; Keall, P.J.; Van Den Berg, C.A.T.; et al. Medical Physics Challenges in Clinical MR-Guided Radiotherapy. Radiat. Oncol. 2020, 15, 93. [Google Scholar] [CrossRef] [PubMed]
- Lagendijk, J.J.W.; Raaymakers, B.W.; van Vulpen, M. The Magnetic Resonance Imaging-Linac System. Semin. Radiat. Oncol. 2014, 24, 207–209. [Google Scholar] [CrossRef]
- Crombé, A.; Lafon, M.; Nougaret, S.; Kind, M.; Cousin, S. Ranking the Most Influential Predictors of CT-Based Radiomics Feature Values in Metastatic Lung Adenocarcinoma. Eur. J. Radiol. 2022, 155, 110472. [Google Scholar] [CrossRef]
- Chang, Y.; Lafata, K.; Sun, W.; Wang, C.; Chang, Z.; Kirkpatrick, J.P.; Yin, F.-F. An Investigation of Machine Learning Methods in Delta-Radiomics Feature Analysis. PLoS ONE 2019, 14, e0226348. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, W.; Jin, H.; Qin, X.; Hou, J.; Yang, Z.; Shu, Z. Develop and Validate a Radiomics Space-Time Model to Predict the Pathological Complete Response in Patients Undergoing Neoadjuvant Treatment of Rectal Cancer: An Artificial Intelligence Model Study Based on Machine Learning. BMC Cancer 2023, 23, 365. [Google Scholar] [CrossRef]
- Tomaszewski, M.R.; Latifi, K.; Boyer, E.; Palm, R.F.; El Naqa, I.; Moros, E.G.; Hoffe, S.E.; Rosenberg, S.A.; Frakes, J.M.; Gillies, R.J. Delta Radiomics Analysis of Magnetic Resonance Guided Radiotherapy Imaging Data Can Enable Treatment Response Prediction in Pancreatic Cancer. Radiat. Oncol. 2021, 16, 237. [Google Scholar] [CrossRef]
- Cusumano, D.; Boldrini, L.; Yadav, P.; Casà, C.; Lee, S.L.; Romano, A.; Piras, A.; Chiloiro, G.; Placidi, L.; Catucci, F.; et al. Delta Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided Radiotherapy. Diagnostics 2021, 11, 72. [Google Scholar] [CrossRef]
- Boldrini, L.; Cusumano, D.; Chiloiro, G.; Casà, C.; Masciocchi, C.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Azario, L.; Teodoli, S.; et al. Delta Radiomics for Rectal Cancer Response Prediction with Hybrid 0.35 T Magnetic Resonance-Guided Radiotherapy (MRgRT): A Hypothesis-Generating Study for an Innovative Personalized Medicine Approach. Radiol. Medica 2019, 124, 145–153. [Google Scholar] [CrossRef]
- Cusumano, D.; Boldrini, L.; Yadav, P.; Yu, G.; Musurunu, B.; Chiloiro, G.; Piras, A.; Lenkowicz, J.; Placidi, L.; Romano, A.; et al. Delta Radiomics for Rectal Cancer Response Prediction Using Low Field Magnetic Resonance Guided Radiotherapy: An External Validation. Phys. Medica 2021, 84, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xiao, J.; Li, Y.; Wu, F.; Peng, Q.; Li, C.; Tang, B.; Orlandini, L.C. Feasibility of Delta Radiomics–Based PCR Prediction for Rectal Cancer Patients Treated with Magnetic Resonance–Guided Adaptive Radiotherapy. Front. Oncol. 2023, 13, 1230519. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, X.; Wang, Y.; Ma, X. Application of Deep Learning as a Noninvasive Tool to Differentiate Muscle-Invasive Bladder Cancer and Non–Muscle-Invasive Bladder Cancer with CT. Eur. J. Radiol. 2021, 139, 109666. [Google Scholar] [CrossRef] [PubMed]
- Larroza, A.; Bodí, V.; Moratal, D. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications. In Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Cui, Y.; Yin, F.F. Impact of Image Quality on Radiomics Applications. Phys. Med. Biol. 2022, 67, 15TR03. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.A.; Huston, J.; Ward, H.A. Imaging Artifacts at 3.0T. J. Magn. Reson. Imaging 2006, 24, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Hagiwara, A.; Goto, M.; Wada, A.; Aoki, S. Low-Field Magnetic Resonance Imaging Its History and Renaissance. Investig. Radiol. 2021, 56, 669–679. [Google Scholar] [CrossRef]
- Soher, B.J.; Dale, B.M.; Merkle, E.M. A Review of MR Physics: 3T versus 1.5T. Magn. Reson. Imaging Clin. N. Am. 2007, 15, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.P.; Simonis, F.F.J.; Webb, A.G. Low-Field MRI: An MR Physics Perspective. J. Magn. Reson. Imaging 2019, 49, 1528–1542. [Google Scholar] [CrossRef]
- Ammari, S.; Pitre-Champagnat, S.; Dercle, L.; Chouzenoux, E.; Moalla, S.; Reuze, S.; Talbot, H.; Mokoyoko, T.; Hadchiti, J.; Diffetocq, S.; et al. Influence of Magnetic Field Strength on Magnetic Resonance Imaging Radiomics Features in Brain Imaging, an In Vitro and In Vivo Study. Front. Oncol. 2021, 10, 541663. [Google Scholar] [CrossRef]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.; et al. A Field Strength Independent MR Radiomics Model to Predict Pathological Complete Response in Locally Advanced Rectal Cancer. Radiol. Medica 2021, 126, 421–429. [Google Scholar] [CrossRef]
- Shahveranova, A.; Balli, H.T.; Aikimbaev, K.; Piskin, F.C.; Sozutok, S.; Yucel, S.P. Prediction of Local Tumor Progression After Microwave Ablation in Colorectal Carcinoma Liver Metastases Patients by MRI Radiomics and Clinical Characteristics-Based Combined Model: Preliminary Results. Cardiovasc. Intervent. Radiol. 2023, 46, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; Luppino, L.T.; Pérez-Núñez, A.; Solheim, O.; García-García, S.; Velasco-Casares, M.; Karlberg, A.; Eikenes, L.; Sarabia, R.; Arrese, I.; et al. Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI. Cancers 2023, 15, 1894. [Google Scholar] [CrossRef]
- Du, P.; Liu, X.; Shen, L.; Wu, X.; Chen, J.; Chen, L.; Cao, A.; Geng, D. Prediction of Treatment Response in Patients with Brain Metastasis Receiving Stereotactic Radiosurgery Based on Pre-Treatment Multimodal MRI Radiomics and Clinical Risk Factors: A Machine Learning Model. Front. Oncol. 2023, 13, 1114194. [Google Scholar] [CrossRef]
- Suter, Y.; Knecht, U.; Alão, M.; Valenzuela, W.; Hewer, E.; Schucht, P.; Wiest, R.; Reyes, M. Radiomics for Glioblastoma Survival Analysis in Pre-Operative MRI: Exploring Feature Robustness, Class Boundaries, and Machine Learning Techniques. Cancer Imaging 2020, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Ammari, S.; Sallé de Chou, R.; Balleyguier, C.; Chouzenoux, E.; Touat, M.; Quillent, A.; Dumont, S.; Bockel, S.; Garcia, G.C.T.E.; Elhaik, M.; et al. A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI. Diagnostics 2021, 11, 2043. [Google Scholar] [CrossRef]
- Jaberipour, M.; Soliman, H.; Sahgal, A.; Sadeghi-Naini, A. A Priori Prediction of Local Failure in Brain Metastasis after Hypo-Fractionated Stereotactic Radiotherapy Using Quantitative MRI and Machine Learning. Sci. Rep. 2021, 11, 21620. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Soliman, H.; Ruschin, M.; Sahgal, A.; Myrehaug, S.; Tseng, C.-L.; Czarnota, G.J.; Jabehdar-Maralani, P.; Chugh, B.; Lau, A.; et al. Quantitative MRI Biomarkers of Stereotactic Radiotherapy Outcome in Brain Metastasis. Sci. Rep. 2019, 9, 19830. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Yan, L.-F.; Han, Y.; Nan, H.-Y.; Xiao, G.; Tian, Q.; Pu, W.-H.; Li, Z.-Y.; Wei, X.-C.; Wang, W.; et al. Differentiation of Pseudoprogression from True Progression in Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combined with Radiomics Features from T1-Weighted Contrast-Enhanced Imaging. BMC Med. Imaging 2021, 21, 17. [Google Scholar] [CrossRef]
- Park, Y.W.; Choi, D.; Park, J.E.; Ahn, S.S.; Kim, H.; Chang, J.H.; Kim, S.H.; Kim, H.S.; Lee, S.-K. Differentiation of Recurrent Glioblastoma from Radiation Necrosis Using Diffusion Radiomics with Machine Learning Model Development and External Validation. Sci. Rep. 2021, 11, 2913. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Song, Y.; Dai, G.; Duan, L.; Luo, Y.; Wang, G.; Xiao, Q.; Li, G.; Bai, S. Predictive Value of Magnetic Resonance Imaging Radiomics-Based Machine Learning for Disease Progression in Patients with High-Grade Glioma. Quant. Imaging Med. Surg. 2023, 13, 224–236. [Google Scholar] [CrossRef]
- Hettal, L.; Stefani, A.; Salleron, J.; Courrech, F.; Behm-Ansmant, I.; Constans, J.M.; Gauchotte, G.; Vogin, G. Radiomics Method for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain Oligometastasis. Radiat. Res. 2020, 193, 471–480. [Google Scholar] [CrossRef]
- Li, W.-Z.; Wu, G.; Li, T.-S.; Dai, G.-M.; Liao, Y.-T.; Yang, Q.-Y.; Chen, F.; Huang, W.-Y. Dynamic Contrast-Enhanced Magnetic Resonance Imaging-Based Radiomics for the Prediction of Progression-Free Survival in Advanced Nasopharyngeal Carcinoma. Front. Oncol. 2022, 12, 955866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gong, J.; Xi, Y.; Xu, M.; Li, C.; Kang, X.; Yin, Y.; Qin, W.; Yin, H.; Shi, M. MRI-Based Radiomics Nomogram May Predict the Response to Induction Chemotherapy and Survival in Locally Advanced Nasopharyngeal Carcinoma. Eur. Radiol. 2020, 30, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-P.; Yang, K.-L.; Xu, X.; Liu, X.-S.; Qu, J.-R.; Zhang, Y.-D. Radiomics Analysis of Pretreatment MRI in Predicting Tumor Response and Outcome in Hepatocellular Carcinoma with Transarterial Chemoembolization: A Two-Center Collaborative Study. Abdom. Radiol. 2022, 47, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Bodalal, Z.; Bogveradze, N.; ter Beek, L.C.; van den Berg, J.G.; Sanders, J.; Hofland, I.; Trebeschi, S.; Groot Lipman, K.B.W.; Storck, K.; Hong, E.K.; et al. Radiomic Signatures from T2W and DWI MRI Are Predictive of Tumour Hypoxia in Colorectal Liver Metastases. Insights Imaging 2023, 14, 133. [Google Scholar] [CrossRef]
- McAnena, P.; Moloney, B.M.; Browne, R.; O’Halloran, N.; Walsh, L.; Walsh, S.; Sheppard, D.; Sweeney, K.J.; Kerin, M.J.; Lowery, A.J. A Radiomic Model to Classify Response to Neoadjuvant Chemotherapy in Breast Cancer. BMC Med. Imaging 2022, 22, 225. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Hu, B.; Gao, Y.; Chen, J.; Li, J. Development and Validation of an MRI-Based Radiomic Nomogram to Distinguish between Good and Poor Responders in Patients with Locally Advanced Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy. Abdom. Radiol. 2021, 46, 1805–1815. [Google Scholar] [CrossRef]
- Fang, M.; Kan, Y.; Dong, D.; Yu, T.; Zhao, N.; Jiang, W.; Zhong, L.; Hu, C.; Luo, Y.; Tian, J. Multi-Habitat Based Radiomics for the Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer. Front. Oncol. 2020, 10, 563. [Google Scholar] [CrossRef]
- Speckter, H.; Radulovic, M.; Trivodaliev, K.; Vranes, V.; Joaquin, J.; Hernandez, W.; Mota, A.; Bido, J.; Hernandez, G.; Rivera, D.; et al. MRI Radiomics in the Prediction of the Volumetric Response in Meningiomas after Gamma Knife Radiosurgery. J. Neuro-Oncol. 2022, 159, 281–291. [Google Scholar] [CrossRef]
- Yang, H.-C.; Wu, C.-C.; Lee, C.-C.; Huang, H.-E.; Lee, W.-K.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Wu, Y.-T.; Lu, C.-F. Prediction of Pseudoprogression and Long-Term Outcome of Vestibular Schwannoma after Gamma Knife Radiosurgery Based on Preradiosurgical MR Radiomics. Radiother. Oncol. 2021, 155, 123–130. [Google Scholar] [CrossRef]
- Siow, T.Y.; Yeh, C.-H.; Lin, G.; Lin, C.-Y.; Wang, H.-M.; Liao, C.-T.; Toh, C.-H.; Chan, S.-C.; Lin, C.-P.; Ng, S.-H. MRI Radiomics for Predicting Survival in Patients with Locally Advanced Hypopharyngeal Cancer Treated with Concurrent Chemoradiotherapy. Cancers 2022, 14, 6119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-M.; Zhang, H.; Ge, M.; Hao, X.-L.; An, X.; Tian, Y.-J. Radiomics Signature for the Prediction of Progression-Free Survival and Radiotherapeutic Benefits in Pediatric Medulloblastoma. Child’s Nerv. Syst. 2022, 38, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
High-Field Design | Low-Field Design | |
---|---|---|
Radiation source | 7 MV Flattening Filter Free. | 6 MV Flattening Filter Free |
Magnetic field strength | 1.5 T | 0.35 T |
Magnet orientation | Closed superconducting. The radiation beam is perpendicular to the magnetic field, Bo. | Split superconducting. The radiation beam is perpendicular to the magnetic field, Bo. |
Linac in the MRI Environment | ||
RF power source (Magnetron) in B-field | Magnetron rotates with the linac and is positioned to sit in the low-magnetic-field region. | |
Waveguide design | Short waveguide design with no bending magnet. | |
The angle of radiation delivery without significant beam perturbation | Accelerate through cryostat. The exclusion zone depends on the target location to guarantee that no portion of the beam penetrates via the cryostat pipe. | There is no full gantry motion. It cannot rotate between 30° and 33°. |
Motors—collimator, MLC, gantry, Couch in B-field | The superconducting coil’s arrangement is adjusted to create a low-intensity toroidal magnetic field, ensuring the optimal positioning of the most sensitive linac component. | The linac-sensitive components are isolated on a gantry ring and housed within shielded cylindrical baskets. |
MRI Scanner in the Linac Environment | ||
Effect of RF power source and motors on image noise | Use of a Faraday cage to separate the electrically noisy components from the MRI environment. | A radiofrequency cage around the linac and MRI components individually. |
Effect of gantry rotation, moving jaws, and MLC on Bo homogeneity | Passive shimming. Active shimming. | Gantry angle-specific active shimming. |
First Author | Cancer Site | No of Centers | Sample Size | Treatment Modality | Outcomes | MRI-Linac (Magnetic Field) | Radiomics/Delta Features Extracted | Features Used in Modeling | Prediction Model Assessment | Model Evaluation Results |
---|---|---|---|---|---|---|---|---|---|---|
Boldrini et al., 2021 [51,52] | Rectal Cancer | 3 | 59 Training = 16 Testing = 43 | Neoadjuvant radiochemotherapy | Clinical complete response, nCR Partial response, pCR | 0.35 T MRI-Linac TRUFI sequence | 318 features Delta features = ratio of features at BED = 26.8 Gy to the simulation fraction. | ΔGray level non-uniformity, Δglnu ΔLeast axis length, ΔLleast | ROC curve analysis Youden Index | Training Data ΔLLeast AUC = 0.82 for cCR and 0.93 for pCR Δglnu AUC = 0.72 for cCR and 0.54 for pCR External Validation ΔLLeast = 0.81 for cCR and 0.71 for pCR Δglnu = 0.63 for cCR and 0.40 for pCR |
Cusumano et al., 2021 [50] | Pancreatic Cancer | 2 | 35 | MRgRT | One-year local control | 0.35 T MRI-Linac TRUFI Sequence | 644 features | Most significant feature GLCM variation of cluster shade (p-value = 0.005) | ROC curve analysis | Cross-validation AUC = 0.79 (95% CI = 0.62–0.97) |
Tomaszewski et al., 2021 [49] | Pancreatic Cancer | 1 | 26 | MRgRT | PFS | 0.35 T MRI-Linac TRUFI Sequence | 73 features Delta features = F5/F1 | Histogram Skewness (Hazard Ratio 2.75 (1.36–5.56) p = 0.038 | ||
Wu et al., 2023 [53] | Rectal Cancer | 1 | 28 | MRgRT | Pathological Complete Response, pCR Clinical Complete Response, cCR | 1.5 T MRI-Linac | 2324 features Delta features ΔFi = Fi/F1 Fi = features from MRI of ith fraction | Clinical: N-stage Radiomics: F1_GLZM Zone Entropy Delta Radiomics: ΔF2_GLSZM_Gray-level_variance, ΔF2_GLSZM_High_gray_level_zone_emphasis, ΔF2_GLSZM_Small_area_high_gray_level_emphasis, ΔF2_First_order_Range, ΔF2_GLSZM_gray_level_nonuniformity. | Rad Score LASSO Regression | These features significantly discriminate between pCR and non-pCR patients (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajemisin, J.A.; Gonzalez, G.; Rosenberg, S.A.; Ullah, G.; Redler, G.; Latifi, K.; Moros, E.G.; El Naqa, I. Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction. Tomography 2024, 10, 1439-1454. https://doi.org/10.3390/tomography10090107
Fajemisin JA, Gonzalez G, Rosenberg SA, Ullah G, Redler G, Latifi K, Moros EG, El Naqa I. Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction. Tomography. 2024; 10(9):1439-1454. https://doi.org/10.3390/tomography10090107
Chicago/Turabian StyleFajemisin, Jesutofunmi Ayo, Glebys Gonzalez, Stephen A. Rosenberg, Ghanim Ullah, Gage Redler, Kujtim Latifi, Eduardo G. Moros, and Issam El Naqa. 2024. "Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction" Tomography 10, no. 9: 1439-1454. https://doi.org/10.3390/tomography10090107