Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects, Data Acquisition, and Preprocessing
2.2. Definition of Regions of Interest (ROIs)
2.3. Probabilistic Tractography
2.4. Comparison of Structural Connectivity between Macaque and Human Areas
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wernicke, C. The symptom complex of aphasia: A psychological study on an anatomical basis. In Proceedings of the Boston Colloquium for the Philosophy of Science 1966/1968; Springer: Berlin/Heidelberg, Germany, 1969; pp. 34–97. [Google Scholar]
- Geschwind, N. Disconnexion syndromes in animals and man: Part I. Neuropsychol. Rev. 2010, 20, 128–157. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G.A. Cortical organization of language. J. Neurosci. 1991, 11, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, E.; Behr, M.K.; Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl. Acad. Sci. USA 2011, 108, 16428–16433. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, B.L.; Hoeflin, C.; Koldewyn, K.; Dechter, E.; Fedorenko, E. High-level language processing regions are not engaged in action observation or imitation. J. Neurophysiol. 2018, 120, 2555–2570. [Google Scholar] [CrossRef] [PubMed]
- Rilling, J.K. Comparative primate neurobiology and the evolution of brain language systems. Curr. Opin. Neurobiol. 2014, 28, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Heilbronner, S.R.; Chafee, M.V. Learning How Neurons Fail Inside of Networks: Nonhuman Primates Provide Critical Data for Psychiatry. Neuron 2019, 102, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Spocter, M.A.; Hopkins, W.D.; Garrison, A.R.; Bauernfeind, A.L.; Stimpson, C.D.; Hof, P.R.; Sherwood, C.C. Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proc. R. Soc. B Biol. Sci. 2010, 277, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Neubert, F.X.; Mars, R.B.; Sallet, J.; Rushworth, M.F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl. Acad. Sci. USA 2015, 112, E2695–E2704. [Google Scholar] [CrossRef] [PubMed]
- Caspers, S.; Eickhoff, S.B.; Rick, T.; von Kapri, A.; Kuhlen, T.; Huang, R.; Shah, N.J.; Zilles, K. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 2011, 58, 362–380. [Google Scholar] [CrossRef] [PubMed]
- Mars, R.B.; Jbabdi, S.; Sallet, J.; O’Reilly, J.X.; Croxson, P.L.; Olivier, E.; Noonan, M.P.; Bergmann, C.; Mitchell, A.S.; Baxter, M.G.; et al. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 2011, 31, 4087–4100. [Google Scholar] [CrossRef]
- Niu, M.; Palomero-Gallagher, N. Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Struct. Funct. 2023, 228, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Neubert, F.-X.; Mars, R.B.; Thomas, A.G.; Sallet, J.; Rushworth, M.F. Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex. Neuron 2014, 81, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D.; Gierhan, S.M. The language network. Curr. Opin. Neurobiol. 2013, 23, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Cerri, G.; Cabinio, M.; Blasi, V.; Borroni, P.; Iadanza, A.; Fava, E.; Fornia, L.; Ferpozzi, V.; Riva, M.; Casarotti, A.; et al. The mirror neuron system and the strange case of Broca’s area. Hum. Brain Mapp. 2015, 36, 1010–1027. [Google Scholar] [CrossRef]
- Petkov, C.I.; Marslen-Wilson, W.D. Editorial overview: The evolution of language as a neurobiological system. Curr. Opin. Behav. Sci. 2018, 21, v–xii. [Google Scholar] [CrossRef] [PubMed]
- Zilles, K.; Amunts, K. Cytoarchitectonic and receptorarchitectonic organization in Broca’s region and surrounding cortex. Curr. Opin. Behav. Sci. 2018, 21, 93–105. [Google Scholar] [CrossRef]
- Gil-da-Costa, R.; Martin, A.; Lopes, M.A.; Munoz, M.; Fritz, J.B.; Braun, A.R. Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat. Neurosci. 2006, 9, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.S.; Roberts, N.; Hopkins, W. A comparative magnetic resonance imaging study of the anatomy, variability, and asymmetry of Broca’s area in the human and chimpanzee brain. J. Neurosci. 2009, 29, 14607–14616. [Google Scholar] [CrossRef] [PubMed]
- Schenker, N.M.; Hopkins, W.D.; Spocter, M.A.; Garrison, A.R.; Stimpson, C.D.; Erwin, J.M.; Hof, P.R.; Sherwood, C.C. Broca’s area homologue in chimpanzees (Pan troglodytes): Probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex 2010, 20, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Spocter, M.A.; Sherwood, C.C.; Schapiro, S.J.; Hopkins, W.D. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol Sci. 2020, 287, 20201320. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Wu-Minn HCP Consortium. The WU-Minn Human Connectome Project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Milham, M.P.; Ai, L.; Koo, B.; Xu, T.; Amiez, C.; Balezeau, F.; Baxter, M.G.; Blezer, E.L.; Brochier, T.; Chen, A.; et al. An Open Resource for Non-human Primate Imaging. Neuron 2018, 100, 61–74.E2. [Google Scholar] [CrossRef] [PubMed]
- Jbabdi, S.; Sotiropoulos, S.N.; Savio, A.M.; Grana, M.; Behrens, T.E. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn. Reson. Med. 2012, 68, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fei, H.; Nasher, S.N.A.; Xia, X.; Li, H. A Macaque Brain Extraction Model Based on U-Net Combined with Residual Structure. Brain Sci. 2022, 12, 260. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Li, H.; Zhuo, J.; Zhang, Y.; Wang, J.; Chen, L.; Yang, Z.; Chu, C.; Xie, S.; Laird, A.R.; et al. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex 2016, 26, 3508–3526. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lyu, H.; Li, T.; Xu, Z.; Fu, X.; Jia, F.; Wang, J.; Hu, Q. Delineating functional segregations of the human middle temporal gyrus with resting-state functional connectivity and coactivation patterns. Hum. Brain Mapp. 2019, 40, 5159–5171. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Fan, L.; Li, H.; Zhang, W.; Hu, Q.; Jiang, T. Tractography-based Parcellation of the Human Middle Temporal Gyrus. Sci. Rep. 2015, 5, 18883. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Fan, L.; Xia, X.; Eickhoff, S.B.; Li, H.; Li, H.; Chen, J.; Jiang, T. Rostro-caudal organization of the human posterior superior temporal sulcus revealed by connectivity profiles. Hum. Brain Mapp. 2018, 39, 5112–5125. [Google Scholar] [CrossRef] [PubMed]
- Reveley, C.; Gruslys, A.; Ye, F.Q.; Glen, D.; Samaha, J.; Russ, B.E.; Saad, Z.; Seth, A.K.; Leopold, D.A.; Saleem, K.S. Three-Dimensional Digital Template Atlas of the Macaque Brain. Cereb. Cortex 2017, 27, 4463–4477. [Google Scholar] [CrossRef] [PubMed]
- Passingham, R.E.; Stephan, K.E.; Kötter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 2003, 3, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Xu, W.; Chen, X.; Li, X.; Li, Q.; Li, H. Corresponding Anatomical of the Macaque Superior Parietal Lobule areas 5 (PE) Subdivision Reveal Similar Connectivity Patterns with Human. Front. Neurosci. 2022, 16, 964310. [Google Scholar] [CrossRef] [PubMed]
- Petrides, M.; Cadoret, G.; Mackey, S. Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 2005, 435, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Inder, T.; Neil, J.; Dierker, D.; Harwell, J.; Van Essen, D. Similar patterns of cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 13135–13140. [Google Scholar] [CrossRef] [PubMed]
- Hackett, T.A.; Preuss, T.M.; Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 2001, 441, 197–222. [Google Scholar] [CrossRef] [PubMed]
- Bryant, K.L.; Preuss, T.M. A comparative perspective on the human temporal lobe. In Digital Endocasts: From Skulls to Brains; Springer: Tokyo, Japan, 2018; pp. 239–258. [Google Scholar]
Brain Area | BN_246_Name | D99_Name |
---|---|---|
44v | IFG_6_6 | 44 |
SMA | SFG_7_5 | F3 |
8m | SFG_7_3 | 8Bm |
M1 | PoG_4_1 | F1_(4) |
S1 | PoG_4_3 | 3a/b |
ParOp | IPL_6_4 | 7op |
pIPS | SPL_5_3 | 5_(PEa) |
pIPL | LOcG_2_2 | LIPv |
23ab | CG_7_6 | 23b |
rsplC | CG_7_4 | 30 |
perirhinal | ITG_7_3 | IPa |
ventrStr | BG_6_3 | Striatum |
hippoc | Hipp_2_2 | CA3 |
9m | SFG_7_6 | 9m |
8dl | SFG_7_2 | 8Bd |
granular insula | INS_6_5 | lg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Lu, X.; Chen, X.; Wang, Q.; Li, Q.; Li, H. Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas. Tomography 2024, 10, 1089-1098. https://doi.org/10.3390/tomography10070082
Wang F, Lu X, Chen X, Wang Q, Li Q, Li H. Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas. Tomography. 2024; 10(7):1089-1098. https://doi.org/10.3390/tomography10070082
Chicago/Turabian StyleWang, Fangyuan, Xiaohua Lu, Xiaofeng Chen, Qianshan Wang, Qi Li, and Haifang Li. 2024. "Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas" Tomography 10, no. 7: 1089-1098. https://doi.org/10.3390/tomography10070082
APA StyleWang, F., Lu, X., Chen, X., Wang, Q., Li, Q., & Li, H. (2024). Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas. Tomography, 10(7), 1089-1098. https://doi.org/10.3390/tomography10070082