Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Imaging Protocol
2.3. Image Segmentation
2.4. First-Order Features Analysis
2.5. Statistical Analysis
3. Results
Agreement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petralia, G.; Padhani, A.R.; Pricolo, P.; Zugni, F.; Martinetti, M.; Summers, P.E.; Grazioli, L.; Colagrande, S.; Giovagnoni, A.; Bellomi, M.; et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: Recommendations and key uses. Radiol Med. 2019, 124, 218–233. [Google Scholar] [CrossRef]
- Padhani, A.R.; Gogbashian, A. Bony metastases: Assessing response to therapy with whole-body diffusion MRI. Cancer Imaging 2011, 11, S129–S154. [Google Scholar] [CrossRef]
- Padhani, A.R.; Lecouvet, F.E.; Tunariu, N.; Koh, D.M.; De Keyzer, F.; Collins, D.J.; Sala, E.; Schlemmer, H.P.; Petralia, G.; Vargas, H.A.; et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur. Urol. 2017, 71, 81–92. [Google Scholar] [CrossRef]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.; Collins, D.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019, 291, 5–13. [Google Scholar] [CrossRef]
- Takasu, M.; Tani, C.; Sakoda, Y.; Ishikawa, M.; Tanitame, K.; Date, S.; Akiyama, Y.; Sakai, A.; Asaoku, H.; Kajima, T.; et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging of multiple myeloma: Initial clinical efficiency results. Eur. Radiol. 2012, 22, 1114–1121. [Google Scholar] [CrossRef]
- Bray, T.J.; Chouhan, M.D.; Punwani, S.; Bainbridge, A.; Hall-Craggs, M.A. Fat fraction mapping using magnetic resonance imaging: Insight into pathophysiology. Br. J. Radiol. 2018, 91, 20170344. [Google Scholar] [CrossRef]
- Latifoltojar, A.; Hall-Craggs, M.; Rabin, N.; Popat, R.; Bainbridge, A.; Dikaios, N.; Sokolska, M.; Rismani, A.; D’Sa, S.; Punwani, S.; et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: Early changes in lesional signal fat fraction predict disease response. Br. J. Haematol. 2017, 176, 222–233. [Google Scholar] [CrossRef]
- Barwick, T.; Orton, M.; Koh, D.M.; Kaiser, M.; Rockall, A.; Tunariu, N.; Blackledge, M.; Messiou, C. Repeatability and reproducibility of apparent diffusion coefficient and fat fraction measurement of focal myeloma lesions on whole body magnetic resonance imaging. Br. J. Radiol. 2021, 94, 20200682. [Google Scholar] [CrossRef]
- Blackledge, M.D.; Collins, D.J.; Tunariu, N.; Orton, M.R.; Padhani, A.R.; Leach, M.O.; Koh, D.-M. Assessment of Treatment Response by Total Tumor Volume and Global Apparent Diffusion Coefficient Using Diffusion-Weighted MRI in Patients with Metastatic Bone Disease: A Feasibility Study. PLoS ONE 2014, 9, e91779. [Google Scholar] [CrossRef]
- Colombo, A.; Saia, G.; Azzena, A.A.; Rossi, A.; Zugni, F.; Pricolo, P.; Summers, P.E.; Marvaso, G.; Grimm, R.; Bellomi, M.; et al. Semi-Automated Segmentation of Bone Metastases from Whole-Body MRI: Reproducibility of Apparent Diffusion Coefficient Measurements. Diagnostics 2021, 11, 499. [Google Scholar] [CrossRef]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Int. J. Nurs. Stud. 2011, 48, 661–671. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Rajpar, S.; Fizazi, K. Bone Targeted Therapies in Metastatic Castration-Resistant Prostate Cancer. Cancer J. 2013, 19, 66–70. [Google Scholar] [CrossRef]
- Blackledge, M.D.; Tunariu, N.; Orton, M.R.; Padhani, A.R.; Collins, D.J.; Leach, M.O.; Koh, D.-M. Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease. PLoS ONE 2016, 11, e0153840. [Google Scholar] [CrossRef]
- Latifoltojar, A.; Hall-Craggs, M.; Bainbridge, A.; Rabin, N.; Popat, R.; Rismani, A.; D’sa, S.; Dikaios, N.; Sokolska, M.; Antonelli, M.; et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur. Radiol. 2017, 27, 5325–5336. [Google Scholar] [CrossRef]
- Dijkstra, H.; Sijens, P.E.; van der Hoorn, A.; van Laar, P.J. Inter-observer reproducibility of quantitative dynamic susceptibility contrast and diffusion MRI parameters in histogram analysis of gliomas. Acta Radiol. 2020, 61, 76–84. [Google Scholar] [CrossRef]
- Law, M.; Young, R.; Babb, J.; Pollack, E.; Johnson, G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am. J. Neuroradiol. 2007, 28, 761–766. [Google Scholar]
- Liu, X.; Deng, L.; Zhou, L.; Peng, W. Combining Prostate Imaging Reporting and Data System, Histogram Analysis, and Prostate-Specific Antigen Density to Determine the Risk of Prostate Cancer in Patients with Prostate-Specific Antigen of 4 to 20 ng/mL. J. Comput. Assist. Tomogr. 2019, 43, 645–651. [Google Scholar] [CrossRef]
- Usuda, K.; Iwai, S.; Yamagata, A.; Iijima, Y.; Motono, N.; Matoba, M.; Doai, M.; Hirata, K.; Uramoto, H. Whole-Lesion Apparent Diffusion Coefficient Histogram Analysis: Significance for Discriminating Lung Cancer from Pulmonary Abscess and Mycobacterial Infection. Cancers 2021, 13, 2720. [Google Scholar] [CrossRef]
- Barrett, T.; Lawrence, E.M.; Priest, A.N.; Warren, A.Y.; Gnanapragasam, V.J.; Gallagher, F.A.; Sala, E. Repeatability of diffusion-weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis. Eur. J. Radiol. 2019, 110, 22–29. [Google Scholar] [CrossRef]
- Onodera, K.; Hatakenaka, M.; Yama, N.; Onodera, M.; Saito, T.; Kwee, T.C.; Takahara, T. Repeatability analysis of ADC histogram metrics of the uterus. Acta Radiol. 2019, 60, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Newitt, D.C.; Amouzandeh, G.; Partridge, S.C.; Marques, H.S.; Herman, B.A.; Ross, B.D.; Hylton, N.M.; Chenevert, T.L.; Malyarenko, D.I. Repeatability and Reproducibility of ADC Histogram Metrics from the ACRIN 6698 Breast Cancer Therapy Response Trial. Tomography 2020, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Suo, S.; Sun, Y.; Zu, J.; Qu, J.; Zhou, Y.; Chen, Z.; Xu, J. Apparent diffusion coefficient measurement in glioma: Influence of region-of-interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability. J. Magn. Reason. Imaging 2017, 45, 722–730. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, C.; Peng, H.; Qi, Y.; Wan, Q.; Zhou, H.; Qu, S.; Liang, D.; Liu, X.; Zheng, H.; et al. Automatic segmentation of whole-body adipose tissue from magnetic resonance fat fraction images based on machine learning. Magn. Reason. Mater. Phys. Biol. Med. 2022, 35, 193–203. [Google Scholar] [CrossRef]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef]
SEQUENCE | DWI | T1 DIXON | T2 HASTE | T1 TSE | T2 STIR |
---|---|---|---|---|---|
Orientation | Axial | Axial | Axial | Sagittal | Sagittal |
TR | 7820 | 6.66 | 700 | 500 | 5490 |
TE | 59 | 2.39 | 98 | 11 | 65 |
FOV (mm) | 430 | 430 | 470 | 380 | 380 |
Flip Angle (°) | 10 | ||||
b values (s/mm−2) | 50,800 |
Mean (%) | Bias | 95%CI | LoA [Lower-Upper] | |
---|---|---|---|---|
Small Lesions | ||||
Intra-reader slice | 16.3 | 0.611 | [−0.692; 1.91] | [−6.71; 7.93] |
Intra-reader volume | 18.2 | 0.175 | [−0.851; 1.2] | [−5.01; 5.36] |
Inter-reader slice | 16.5 | −0.47 | [−2.89; 1.95] | [−14.1; 13.1] |
Inter-reader volume | 19.4 | −2.32 | [−4.38; −0.268] | [−12.7; 8.07] |
Large Lesions | ||||
Intra-reader slice | 15 | −0.373 | [−0.783; 0.037] | [−2.68; 1.93] |
Intra-reader volume | 15.9 | 0.114 | [−0.616; 0.844] | [−3.99; 4.22] |
Inter-reader slice | 15.2 | −0.564 | [−1.66; 0.532] | [−6.72; 5.59] |
Inter-reader volume | 16.3 | −0.9 | [−1.67; −0.13] | [−5.22; 3.42] |
Small Lesions (<10 mm) | ICC | 95% CI |
---|---|---|
Intra-reader single slice | 0.914 | 0.837–0.956 |
Inter-reader single slice | 0.641 | 0.393–0.802 |
Intra-reader volume | 0.957 | 0.910–0.980 |
Inter-reader volume | 0.762 | 0.551–0.882 |
Large Lesions (>10 mm) | ICC | 95% CI |
Intra-reader single slice | 0.971 | 0.942–0.985 |
Inter-reader single slice | 0.805 | 0.647–0.897 |
Intra-reader volume | 0.897 | 0.806–0.947 |
Inter-reader volume | 0.883 | 0.780–0.940 |
Slice–volume correlation | Spearman’s rho | 95% CI |
Small lesions | 0.817 | 0.598–0.916 |
Large lesions | 0.649 | 0.342–0.852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agazzi, G.M.; Di Meo, N.; Rondi, P.; Saeli, C.; Dalla Volta, A.; Vezzoli, M.; Berruti, A.; Borghesi, A.; Maroldi, R.; Ravanelli, M.; et al. Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements. Tomography 2024, 10, 1014-1023. https://doi.org/10.3390/tomography10070075
Agazzi GM, Di Meo N, Rondi P, Saeli C, Dalla Volta A, Vezzoli M, Berruti A, Borghesi A, Maroldi R, Ravanelli M, et al. Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements. Tomography. 2024; 10(7):1014-1023. https://doi.org/10.3390/tomography10070075
Chicago/Turabian StyleAgazzi, Giorgio Maria, Nunzia Di Meo, Paolo Rondi, Chiara Saeli, Alberto Dalla Volta, Marika Vezzoli, Alfredo Berruti, Andrea Borghesi, Roberto Maroldi, Marco Ravanelli, and et al. 2024. "Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements" Tomography 10, no. 7: 1014-1023. https://doi.org/10.3390/tomography10070075
APA StyleAgazzi, G. M., Di Meo, N., Rondi, P., Saeli, C., Dalla Volta, A., Vezzoli, M., Berruti, A., Borghesi, A., Maroldi, R., Ravanelli, M., & Farina, D. (2024). Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements. Tomography, 10(7), 1014-1023. https://doi.org/10.3390/tomography10070075