CGull: A Non-Flapping Bioinspired Composite Morphing Drone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Overall Design
2.3. Wing Design
2.4. Tail Design
2.5. Fuselage Design
2.6. Propulsion and Avionics System
2.7. Manufacturing
3. Results
3.1. Actuation Testing
3.2. Flight Test
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lilienthal, O. Birdflight as the Basis of Aviation: A Contribution towards a System of Aviation; Compiled from the Results of Numerous Experiments Made by O. and G. Lilienthal; Markowski International Pub: Hummelstown, PA, USA, 2001; ISBN 978-0-938716-58-7. [Google Scholar]
- Anderson, J.D. The Airplane: A History of Its Technology; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002; ISBN 978-1-56347-525-2. [Google Scholar]
- Anderson, J.D. A History of Aerodynamics and Its Impact on Flying Machines; Cambridge Aerospace Series; 1. Paperback Ed., 9. Print.; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-66955-9. [Google Scholar]
- Harvey, C.; De Croon, G.; Taylor, G.K.; Bomphrey, R.J. Lessons from Natural Flight for Aviation: Then, Now and Tomorrow. J. Exp. Biol. 2023, 226, jeb245409. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A Review of Morphing Aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Sun, J.; Guan, Q.; Liu, Y.; Leng, J. Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-Art Review. J. Intell. Mater. Syst. Struct. 2016, 27, 2289–2312. [Google Scholar] [CrossRef]
- Ajaj, R.M.; Jankee, G.K. The Transformer Aircraft: A Multimission Unmanned Aerial Vehicle Capable of Symmetric and Asymmetric Span Morphing. Aerosp. Sci. Technol. 2018, 76, 512–522. [Google Scholar] [CrossRef]
- Bishay, P.L.; Burg, E.; Akinwunmi, A.; Phan, R.; Sepulveda, K. Development of a New Span-Morphing Wing Core Design. Designs 2019, 3, 12. [Google Scholar] [CrossRef]
- Rodrigue, H.; Cho, S.; Han, M.-W.; Bhandari, B.; Shim, J.-E.; Ahn, S.-H. Effect of Twist Morphing Wing Segment on Aerodynamic Performance of UAV. J. Mech. Sci. Technol. 2016, 30, 229–236. [Google Scholar] [CrossRef]
- Schlup, A.; Bishay, P.; Mclennan, T.; Barajas, C.; Talebian, B.; Thatcher, G.; Flores, R.; Perez-Norwood, J.; Torres, C.; Kibret, K.; et al. MataMorph 2: A New Experimental UAV with Twist-Morphing Wings and Camber-Morphing Tail Stabilizers. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 January 2021. [Google Scholar]
- Fincham, J.H.S.; Friswell, M.I. Aerodynamic Optimisation of a Camber Morphing Aerofoil. Aerosp. Sci. Technol. 2015, 43, 245–255. [Google Scholar] [CrossRef]
- Bishay, P.L.; Finden, R.; Recinos, S.; Alas, C.; Lopez, E.; Aslanpour, D.; Flores, D.; Gonzalez, E. Development of an SMA-Based Camber Morphing UAV Tail Core Design. Smart Mater. Struct. 2019, 28, 075024. [Google Scholar] [CrossRef]
- Bishay, P.L.; Kok, J.S.; Ferrusquilla, L.J.; Espinoza, B.M.; Heness, A.; Buendia, A.; Zadoorian, S.; Lacson, P.; Ortiz, J.D.; Basilio, R.; et al. Design and Analysis of MataMorph-3: A Fully Morphing UAV with Camber-Morphing Wings and Tail Stabilizers. Aerospace 2022, 9, 382. [Google Scholar] [CrossRef]
- Brown, R.H.J. The Flight of Birds. Biol. Rev. 1963, 38, 460–489. [Google Scholar] [CrossRef]
- Basri, E.I.; Basri, A.A.; Ahmad, K.A. Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics 2023, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Budholiya, S.; Bhat, A.; Raj, S.A.; Hameed Sultan, M.T.; Md Shah, A.U.; Basri, A.A. State of the Art Review about Bio-Inspired Design and Applications: An Aerospace Perspective. Appl. Sci. 2021, 11, 5054. [Google Scholar] [CrossRef]
- Han, J.; Hui, Z.; Tian, F.; Chen, G. Review on Bio-Inspired Flight Systems and Bionic Aerodynamics. Chin. J. Aeronaut. 2021, 34, 170–186. [Google Scholar] [CrossRef]
- Mackenzie, D. A Flapping of Wings. Science 2012, 335, 1430–1433. [Google Scholar] [CrossRef]
- Harvey, C.; Gamble, L.L.; Bolander, C.R.; Hunsaker, D.F.; Joo, J.J.; Inman, D.J. A Review of Avian-Inspired Morphing for UAV Flight Control. Prog. Aerosp. Sci. 2022, 132, 100825. [Google Scholar] [CrossRef]
- Abdulrahim, M.; Lind, R. Flight Testing and Response Characteristics of a Variable Gull-Wing Morphing Aircraft. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, USA, 16–19 August 2004. [Google Scholar]
- Abdulrahim, M. Flight Performance Characteristics of a Biologically-Inspired Morphing Aircraft. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Grant, D.; Abdulrahim, M.; Lind, R. Flight Dynamics of a Morphing Aircraft Utilizing Independent Multiple-Joint Wing Sweep. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, CO, USA, 21–24 August 2006. [Google Scholar]
- Bishay, P.L.; Brody, M.; Podell, D.; Corte Garcia, F.; Munoz, E.; Minassian, E.; Bradley, K. 3D-Printed Bio-Inspired Mechanisms for Bird-like Morphing Drones. Appl. Sci. 2023, 13, 11814. [Google Scholar] [CrossRef]
- Brody, M.; Podell, D.; Corte Garcia, F.; Munoz, E.; Massey, S.; Minassian, E.; Gharibi, N.; Lyon, D.; Sanchez, B.; Bishay, P.L. MataGull: A Lightweight Bio-Inspired Non-Flapping Bird-like Morphing Drone. In Proceedings of the 2023 Regional Student Conferences, University at Buffalo, Buffalo, NY, USA, 31 March–1 April 2023. [Google Scholar]
- Ajanic, E.; Feroskhan, M.; Mintchev, S.; Noca, F.; Floreano, D. Bioinspired Wing and Tail Morphing Extends Drone Flight Capabilities. Sci. Robot. 2020, 5, eabc2897. [Google Scholar] [CrossRef]
- Ajanic, E.; Feroskhan, M.; Wüest, V.; Floreano, D. Sharp Turning Maneuvers with Avian-Inspired Wing and Tail Morphing. Commun. Eng. 2022, 1, 34. [Google Scholar] [CrossRef]
- Chang, E.; Matloff, L.Y.; Stowers, A.K.; Lentink, D. Soft Biohybrid Morphing Wings with Feathers Underactuated by Wrist and Finger Motion. Sci. Robot. 2020, 5, eaay1246. [Google Scholar] [CrossRef]
- Tang, Z.; He, Z.; Zhang, P.; Hou, Q. Research on The Aerodynamic Performance of Bionic Morphing Aircraft. In Proceedings of the 2023 6th International Symposium on Autonomous Systems (ISAS), Nanjing, China, 23–25 June 2023; pp. 1–6. [Google Scholar]
- Murayama, Y.; Nakata, T.; Liu, H. Aerodynamic Performance of a Bird-Inspired Morphing Tail. JBSE J. Biomech. Sci. Eng. 2023, 18, 22-00340. [Google Scholar] [CrossRef]
- Di Luca, M.; Mintchev, S.; Heitz, G.; Noca, F.; Floreano, D. Bioinspired Morphing Wings for Extended Flight Envelope and Roll Control of Small Drones. Interface Focus. 2017, 7, 20160092. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.; Inman, D.J. Aerodynamic Efficiency of Gliding Birds vs Comparable UAVs: A Review. Bioinspir. Biomim. 2021, 16, 031001. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.; Baliga, V.B.; Wong, J.C.M.; Altshuler, D.L.; Inman, D.J. Birds Can Transition between Stable and Unstable States via Wing Morphing. Nature 2022, 603, 648–653. [Google Scholar] [CrossRef]
- Malling Olsen, K.; Larsson, H. Gulls of Europe, Asia and North America; A & C Black: London, UK, 2010; ISBN 978-1-4081-3577-8. [Google Scholar]
- Liu, T.; Kuykendoll, K.; Rhew, R.; Jones, S. Avian Wings. In Proceedings of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, OR, USA, 28 June–1 July 2004. [Google Scholar]
- Harvey, C.; Baliga, V.B.; Goates, C.D.; Hunsaker, D.F.; Inman, D.J. Gull-Inspired Joint-Driven Wing Morphing Allows Adaptive Longitudinal Flight Control. J. R. Soc. Interface 2021, 18, 20210132. [Google Scholar] [CrossRef]
- Machupx: Fast and Accurate Aerodynamic Modelling Using Lifting-Line Theory. 2020. Available online: https://www.github.com/usuaero/MachUpX (accessed on 27 August 2024).
- Reid, J.T.; Hunsaker, D.F. A General Approach to Lifting-Line Theory, Applied to Wings with Sweep. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Goates, C.D.; Hunsaker, D.F. Practical Implementation of a General Numerical Lifting-Line Method. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 January 2021. [Google Scholar]
- Shepard, E.L.C.; Williamson, C.; Windsor, S.P. Fine-Scale Flight Strategies of Gulls in Urban Airflows Indicate Risk and Reward in City Living. Phil. Trans. R. Soc. B 2016, 371, 20150394. [Google Scholar] [CrossRef] [PubMed]
- Jeger, S.L.; Wüest, V.; Toumieh, C.; Floreano, D. Adaptive Morphing of Wing and Tail for Stable, Resilient, and Energy-Efficient Flight of Avian-Informed Drones. arXiv 2024, arXiv:2403.08598. [Google Scholar]
Design | Bird | Wing Morphing | Tail Morphing |
---|---|---|---|
Variable gull-wing aircraft [20] or “WhoopingMAV” [21] | Seagull | Wing craning deflection (inboard and outboard dihedral morphing) | Traditional |
Grant et al. [22] | Seagull | Independent inboard and outboard wing sweep | Traditional |
“MataGull” [23,24] | Seagull | Feather folding and dihedral morphing | Pitch, tilt, and feather folding |
“Lishawk” [25] | Northern Goshawk | Feather folding | Pitch, yaw, and feather folding |
“LisEagle” [26] | Eagle | Wing pitch and feather folding | Pitch, yaw, and feather folding |
“PigeonBot” [27] | Pigeon | Feather folding | Traditional elevator and rudder |
Bionic albatross aircraft [28] | Albatross | Wingtip sweep | Synchronous extension and retraction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishay, P.L.; Rini, A.; Brambila, M.; Niednagel, P.; Eghdamzamiri, J.; Yousefi, H.; Herrera, J.; Saad, Y.; Bertuch, E.; Black, C.; et al. CGull: A Non-Flapping Bioinspired Composite Morphing Drone. Biomimetics 2024, 9, 527. https://doi.org/10.3390/biomimetics9090527
Bishay PL, Rini A, Brambila M, Niednagel P, Eghdamzamiri J, Yousefi H, Herrera J, Saad Y, Bertuch E, Black C, et al. CGull: A Non-Flapping Bioinspired Composite Morphing Drone. Biomimetics. 2024; 9(9):527. https://doi.org/10.3390/biomimetics9090527
Chicago/Turabian StyleBishay, Peter L., Alex Rini, Moises Brambila, Peter Niednagel, Jordan Eghdamzamiri, Hariet Yousefi, Joshua Herrera, Youssef Saad, Eric Bertuch, Caleb Black, and et al. 2024. "CGull: A Non-Flapping Bioinspired Composite Morphing Drone" Biomimetics 9, no. 9: 527. https://doi.org/10.3390/biomimetics9090527
APA StyleBishay, P. L., Rini, A., Brambila, M., Niednagel, P., Eghdamzamiri, J., Yousefi, H., Herrera, J., Saad, Y., Bertuch, E., Black, C., Hanna, D., & Rodriguez, I. (2024). CGull: A Non-Flapping Bioinspired Composite Morphing Drone. Biomimetics, 9(9), 527. https://doi.org/10.3390/biomimetics9090527